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Uncertainty Estimation in Classification of MGMT Using
Radiogenomics for Glioblastoma Patients

W. Farzana, Z. A. Shboul, A. Temtam, and K. M. Iftekharuddin

Vision Lab in Department of Electrical and Computer Engineering, Old Dominion University,
Norfolk, VA23529

ABSTRACT

Glioblastoma Multiforme (GBM) is one of the most malignant brain tumors among all high-grade brain cancers.
Temozolomide (TMZ) is the first-line chemotherapeutic regimen for glioblastoma patients. The methylation
status of the O6-methylguanine-DNA-methyltransferase (MGMT) gene is a prognostic biomarker for tumor sen-
sitivity to TMZ chemotherapy. However, the standardized procedure for assessing the methylation status of
MGMT is an invasive surgical biopsy, and accuracy is susceptible to resection sample and heterogeneity of the
tumor. Recently, radio-genomics which associates radiological image phenotype with genetic or molecular mu-
tations has shown promise in the non-invasive assessment of radiotherapeutic treatment. This study proposes
a machine-learning framework for MGMT classification with uncertainty analysis utilizing imaging features ex-
tracted from multimodal magnetic resonance imaging (mMRI). The imaging features include conventional tex-
ture, volumetric, and sophisticated fractal, and multi-resolution fractal texture features. The proposed method is
evaluated with publicly available BraTS-TCIA-GBM pre-operative scans and TCGA datasets with 114 patients.
The experiment with 10-fold cross-validation suggests that the fractal and multi-resolution fractal texture fea-
tures offer an improved prediction of MGMT status. The uncertainty analysis using an ensemble of Stochastic
Gradient Langevin Boosting models along with multi-resolution fractal features offers an accuracy of 71.74% and
area under the curve of 0.76. Finally, analysis shows that our proposed method with uncertainty analysis offers
improved predictive performance when compared with different well-known methods in the literature.

Keywords: Radiogenomics, Uncertainity, Classification, MGMT, Glioblastoma.

1. INTRODUCTION

Glioblastoma (GBM) is an aggressive grade IV astrocytoma known to be the most malignant brain tumor,
which involves a complex treatment regimen.1 Temozolomide (TMZ) is the first-line chemotherapeutic treat-
ment for GBM patients. The chemotherapeutic treatment produces cytotoxicity and apoptotic effect in cancer
cells by inducing methylation at the O6-methylguanine methyltransferase (MGMT) site of DNA.2 Therefore,
the methylation status of MGMT has substantial prognostic significance and can impact GBM treatment. The
standardized approach of assessing genomic information in GBM is tissue sampling. Tissue sampling requires
an invasive surgical resection that could be imprecise due to the heterogeneity of the tumor.3 However, several
studies4–6 have shown that genetic alterations may be associated with phenotypic changes and can be detected
by mMRI texture features. The authors5,7 have discussed an association between radiomics features such as
gray-level co-occurrence matrix (GLCM), shape, area, volume, and intensity-relevant features for the prediction
of MGMT status. GLCM attributes might be useful in identifying grey-level spatial variance within the image
but may not be beneficial in evaluating the randomized surface structure variability of aberrant tumor tissues
in MRI.6 Multiresolution wavelet features, on the other hand, represent texture variation in tumor tissue across
independent image resolution.8 On the other hand, multi-resolution fractal features mathematically integrate
conventional textural analysis and multi-resolution texture analysis. Multi-resolution fractal texture features
reflect the randomized and complicated pattern of the tumor tissue at multiple scales. The work9–11 has demon-
strated the efficacy of multi-resolution fractal features for characterization, segmentation, and categorization of
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tumor tissues in MRI. Moreover, uncertainty estimation is crucial in medical decision making. For example, the
Bayesian approach has been applied in uncertainty estimation in neural network models.12 This study hypoth-
esizes that multi-resolution fractal texture features along with conventional features will offer improved MGMT
methylation classification performance. In addition, we also incorporate uncertainty estimation with an ensemble
of Stochastic Gradient Langevin Boosting (SGLB) models to further improve the prediction of MGMT status in
glioblastoma patients.

2. METHODS

2.1 Dataset

In this study, we use the pre-operative scans of glioblastoma patients13–15 to include four modalities of MRI scans:
pre-contrast T1-weighted (T1), post-contrast T1-weighted (T1Gd), T2-weighted (T2) and T2 Fluid Attenuated
Inversion Recovery (FLAIR). All scans are skull-stripped and co-registered. The dataset also includes segmented
tumor sub-regions of GBM: Gadolinium enhancing tumor (ET), the peritumoral edema (ED), and the necrosis
(NC) including non-enhancing tumor (NCR/NET). The status of the MGMT methylation of the patients is
collected from the Genomic Data Commons Data Portal (TCGA). In this work, a total of 114 patients with a
known MGMT methylation status are utilized. The distribution of the MGMT status is as follows: 71 patients
are unmethylated and 43 patients are methylated.

2.2 Methodology

In this study, we obtain MGMT status predictive model based on multi-resolution fractal texture features along
with other conventional mMRI image features. The extracted features depict the volumetric, area, histogram-
based statistics, and texture characteristics of tumor and sub-regions (ET, ED, NC). The conventional texture
features are extracted from grey-tone spatial dependence matrices (GTSDM), neighborhood grey-tone difference
matrix (NGTDM), and gray level size zone matrix (GLZSM). The fractal texture features are PTPSA for fractal
characterization,16 multi-resolution Brownian motion mBm analysis,17 and tumor region characterization with
Holder Exponent (HE) modeling.18 First, we divide the dataset randomly into 75% (91 cases) training and 25%
(23 cases) testing set with a stratified distribution of MGMT. Around 1300 radiomics features are extracted from
mMRI sequences of tumors in the training set. Then, K-best features are selected based on ANOVA F-value
between target and features. Afterward, a recursive feature elimination with 5-fold cross-validation is performed
by fitting Random Forest (RF) model as an estimator on feature sets where the number of features is 7, 9, 11,
13, 15. Based on the importance score which maximizes the accuracy, a feature set consists of 9 features se-
lected from training samples. In our study, we have utilized ensembles of Stochastic Gradient Langevin Boosting
(SGLB) models where SGLB itself is a cluster of trees. The selected features are utilized as an input, and the
MGMT methylation status is utilized as a targeted output. The overall pipeline for MGMT prediction in GBM
is presented in Figure 1.

An ensemble-based Bayesian approach is considered for estimation of uncertainty in prediction of MGMT
status. Considering model parameters θ as a random variable and prior probability distribution as p(θ), the
posterior probability distribution p(θ|D) according to Bayes’ rule is

p(θ|D) =
p(D|θ)p(θ)

p(D)
(1)

where, D = {x(i), y(i)}, defines the training dataset and i = 1....., N are the number of the sample size in
equation (1). The probabilistic ensemble model is represented as {P (y|x; θ(m)},where m = 1.....,M , are the
number of models as shown in Figure 1.Stochastic Gradient Langevin Boosting (SGLB) is the proposed algo-
rithm19for sampling of Gradient Boosting Decision Tree (GBDT) models from posterior distribution p(θ|D) .
SGLB integrates GBDT with stochastic gradient Langevin dynamics to obtain global optimum for loss func-
tion.20In SGLB gaussian noise is added into gradients throughout the learning process to achieve a solution space
for global optimum. In this study, we utilize the Stochastic Gradient Langevin Boosting (SGLB) algorithm with
different random seeds12 to obtain each independent model (Fig.1, block 4) within the ensemble model. Each
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Figure 1: The overall pipeline for MGMT status prediction.

distinct set of parameters in GBDT model yields diversity in prediction. The ensemble of SGLB is performed
with open-source Cat Boost Library.

The overall uncertainty in ensemble method can be divided into aleatoric (data) and epistemic (knowledge)
uncertainty in a Bayesian framework which improves predictive performance12 . Aleatoric (data) uncertainty
is estimated as the entropy of the predictive distribution of each model. Epistemic (knowledge) uncertainty is
estimated as dispersion or “disagreement” level of the model within the ensemble.21

3. RESULTS

In this work, we evaluate the efficacy of multi-resolution fractal texture features in MGMT methylation clas-
sification. For evaluation of texture features, we first consider a single SGLB (Model 1 in Fig.1) classification
model (fractal and non-fractal) followed by ensemble model consisting of twenty independent SGLB models for
uncertainty analysis. For the fractal model, we consider fractal features with other conventional features as input
to the feature selection step in Figure 1. The distribution of selected features for each model are shown in Figure
2. To avoid overfitting in model performance, 10-fold cross-validation is performed within the training dataset.
The model performance is evaluated on the test dataset.

The predictive performance is improved with the inclusion of multi-resolution fractal features. In Table 1,
Non-fractal model represents performance without inclusion of fractal features and Fractal model depicts inclu-
sion of fractal features.

Table 1: Predictive Performance of Single Model on Test Dataset

Models Training Accuracy Test Accuracy AUC Precision Recall F1-score
Non-fractal Model 70.41% 65.22% 0.62 0.66 0.65 0.60

Fractal Model 74.80% 69.57% 0.73 0.80 0.70 0.63
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(a) Non-fractal model (b) Fractal model

Figure 2: Feature description for (a) Non-fractal model and (b) Fractal models. The number of selected features
is denoted under each sub-category.

We apply an ensemble of Stochastic Gradient Langevin Boosting (SGLB) to further improve the performance
of the Fractal (single) Model. The ensemble of SGLB consists of twenty independent models (different random
seeds) where each model consists of 1000 trees. We compare the performance of the Fractal model, and the
ensemble of models based on accuracy and area under the curve in the test data as shown in Table 2.

Table 2: Performance comparison of fractal model (single) and ensemble model (of twenty single model) on Test
Dataset.

Classification Model Accuracy (%) Area Under Curve (AUC)
Fractal Model (Without Uncertainty) 69.57% 0.73

Ensemble of Models (With Uncertainty) 71.74% 0.76

(a) Models Performance on Train-Test Data (b) Models Performance on Test Data

Figure 3: (a) Accuracy of Fractal and Non-fractal model on training and test Data. (b) Fractal and Non-fractal
model performance on test data. Error bar represents one standard deviation and ∗ depicts significant difference
between two group and ‘ns’ denotes non-significant difference between groups.

The cross-validated training accuracy and predictive accuracy improved to 74.80% and 69.57% with the in-
clusion of fractal features. Moreover, there is no significant difference (ANOVA test, p-value= 0.441) between the
training and testing accuracy in fractal model which indicates exclusion from over-fitting. In Non-fractal model,
there is notable difference (p-value=0.002) between training and testing accuracy. Moreover, model accuracy on
test data, there is substantial difference (p-value=0.00005) between fractal and non-fractal model. The signifi-
cant difference in AUC and Precision (p-value= 0.0000000003, 0.013 respectively) on test data is also observed
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in fractal and non-fractal model.

(a) Models Accuracy on Train-Test Data. (b) Model AUC on Train-Test Data.

Figure 4: (a) Fractal and Ensemble model accuracy on training and testing data. (b) Fractal and Ensemble
model AUC on training and testing data. The error bar represents one standard deviation and ∗ depicts the
significance level and ‘ns’ denotes non-significant.

In fractal and ensemble model, there is no significant difference (ANOVA test, p-value= 0.441 and 0.511 re-
spectively) between cross-validated training and testing accuracy. However, there is notable difference in training
AUC (p-value= 0.0002) and testing AUC (p-value=0.0016) between fractal and ensemble model. The training
and testing AUC for fractal model is 0.78 and 0.73 respectively and in ensemble model the training and testing
AUC is 0.77 and 0.76 respectively.

Total uncertainty is the summation of data and knowledge uncertainty. The measurement of total uncertainty
and knowledge uncertainty from ensemble of models can be applied to measure misclassification or test error.12

The error can be evaluated by Prediction-Rejection-Ratio (PRR) which ranks the uncertainty estimation values
with error margins.21 A higher value of PRR suggests that the model can recognize and reject inaccurate
predictions based upon uncertainty measures.21

Table 3: Prediction Rejection Ratio (PRR) of single and ensemble model.

Type of Uncertainty Fractal Model
(Prediction Rejection Ratio)

Ensemble of Models
(Prediction Rejection Ratio)

Total Uncertainty (TU) 8.668% 29.23%
Knowledge Uncertainty (KU) N/A 15.47 %

Test error occurs because of noise and knowledge limitations. This explains the reason of higher PRR value
when ranking with total uncertainty compared to knowledge uncertainty in Table 3. In addition, fractal model
has no knowledge uncertainty. It is observed that in case of ensemble models PRR due to total uncertainty is
higher than knowledge uncertainty which is consistent with the observations in other studies.12,21

The performance comparison of ensemble method with deep learning-based study in Table 4 shows that the
ensemble-based machine learning model performs better. However, a direct comparison between these studies
and our study may not be applicable because of the differences in MRI modalities, methodologies, and datasets.

The evaluation results show that the proposed Fractal model with multi-resolution fractal features improves
the performance of MGMT methylation prediction. Our work further shows that incorporating ensemble mod-
eling with uncertainty estimation offers improved classification performance.
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Table 4: Performance Comparison between our method and other MGMT predictive method

Method Evaluation
Method

Accuracy Area Under
Curve (AUC)

Total
Number
of Patients

MRI modality

V. G. Kanas et al.22 10- fold CV 70.2 % 0.73 82 T1, T1Gd, T2
L. Han et al.23 15% Valida-

tion
63% 0.73 159 T1, T2, T2

FLAIR
E. Calabrese et al.24 10-fold CV − 0.55 199 T1, T1Gd, T2,

T2 FLAIR
Our Proposed Method
without Uncertainty

10-fold CV 69.57% 0.73 114 T1, T1Gd, T2,
T2 FLAIR

Our Proposed Method
with Uncertainty

10-fold CV 71.74% 0.76 114 T1, T1Gd, T2,
T2 FLAIR

4. CONCLUSION

The contributions of this study are in two folds. First, inclusion of multi-resolution fractal features with conven-
tional radiomics features to augment predictive performance of MGMT methylation. Secondly, an uncertainty
estimation analysis via ensemble of models is performed that further improves the model classification perfor-
mance.In this paper, we show that the inclusion of multi-resolution fractal features improves the predictive
performance of MGMT status in glioblastoma. The goal is to obviate invasive tissue-sampling and providing
complimentary perception on genetic biomarker relevant to treatment response of GBM patients. Moreover, as
uncertainty estimation is critical for machine learning models for medical decision making. We perform uncer-
tainty estimation via ensembles of gradient boosting models to further improve the performance of the MGMT
predictive model. The results suggest that the fractal features and uncertainty estimation via ensemble modeling
offers improved predictive performance when compared to deep learning methods. In the future, we plan to
develop the model with multi-omics data for a better prognosis of treatment response.
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