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ABSTRACT 

An updated classification of diffuse lower-grade gliomas is established in the 2016 World Health Organization 
Classification of Tumors of the Central Nervous System based on their molecular mutations such as TP53 mutation. 
This study investigates machine learning methods for TP53 mutation status prediction and classification using 
radiomics and genomics features, respectively. Radiomics features represent patients' age and imaging features that 
are extracted from conventional MRI. Genomics feature is represented by patients’ gene expression using RNA 
sequencing. This study uses a total of 105 LGG patients, where the patient dataset is divided into a training set (80 
patients) and testing set (25 patients). Three TP53 mutation prediction models are constructed based on the source of 
the training features; TP53-radiomics model, TP53-genomics model, and TP53-radiogenomics model, respectively. 
Radiomics feature selection is performed using recursive feature selection method. For genomics data, EdgeR method 
is utilized to select the differentially expressed genes between the mutated TP53 versus the non-mutated TP53 cases 
in the training set. The training classification model is constructed using Random Forest and cross-validated using 
repeated 10-fold cross validation. Finally, the predictive performance of the three models is assessed using the testing 
set. The three models, TP53-Radiomics, TP53-RadioGenomics, and TP53-Genomics, achieve a predictive accuracy 
of 0.84±0.04, 0.92±0.04, and 0.89±0.07, respectively. These results show promise of non-invasive MRI radiomics 
features and fusion of radiomics with genomics features for prediction of TP53. 

Keywords: Glioma grading, TP53 mutation prediction and classification, Radiomics, Genomics, Random Forest. 

1. INTRODUCTION 
Diffuse or infiltrative lower-grade gliomas (LGG) are a Central Nervous System (CNS) brain tumor that include the 
World Health Organization (WHO) Grade II and III gliomas [1, 2]. Infiltrative LGG arise from the glial cells in the 
nervous tissues of the CNS [3, 4]. The histology classes of diffuse LGG include astrocytoma, oligodendroglioma, and 
oligoastrocytoma. However, an updated classification of diffuse LGG is established based on their genetic mutations 
(such as isocitrate dehydrogenase (IDH) mutation and tumor protein 53 (TP53) mutation) and their histological type 
[1]. TP53 mutation is a molecular mutation that usually occurs in a younger patient with astrocytoma [5, 6]. TP53 is 
a well-known tumor suppressor gene that encodes p53 protein and involves in tumor survival, proliferation, and 
invasion [7]. A study by Ohgaki et. al, [8] with 715 diagnosed cases of glioblastoma (WHO Grade IV glioma) reveals 
that mutated TP53 is predictive of longer survival.  

Identifying the presence of certain mutations such as TP53 requires molecular profiling using invasive methods by 
obtaining tumor tissue sample with an increase in the proliferation and neovascularization [9]. Then, 
Immunohistochemistry (IHC) staining is used to detect missense mutations. Recently, several studies in the literature 
have proposed the use of RNA sequencing to determine TP53 functional status [10]. However, such invasive methods 
may also be accompanied by high cost, morbidity, and different difficulties [11]. Therefore, in this work, we 
investigate different machine learning methods for classification and prediction of TP53 mutation in diffuse LGG 
based on radiomics, genomics, and fused radiogenomics and compare the performance of these prediction models.  

Radiomics are quantitative features that are extracted from volumes of interest in radiology imaging. These 
quantitative features offer valuable information regarding intensity, shape, size, volume, and texture, and can be 
associated with glioma clinical outcomes and survival prediction  [12-17]. For example Gutman et al. [18], associate 
three volumetric imaging features with a genetic mutation, survival prediction and Verhaak subtypes [19]. In another 
study by Shboul et al. [17], the authors investigate the efficacy of using non-invasive quantitative texture features 
extracted from structural MRI to predict the progression of lower-grade glioma. Compared with the radiomic features, 
RNA counts data (i.e. genomics) describe the gene expression by counting the relative frequency of the RNA reads 
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mapping to one gene [20]. Because RNA is count data, in this study, we log-transformed the differentially expressed 
genes to normality to use them in machine learning models [21, 22]. 

The proposed work utilizes radiomics and genomics in machine learning modeling to predict TP53 mutations. The 
proposed work ascertain the efficacy of non-invasive MRI rasdiomics to predict TP53 mutation status when compared 
to genomics data. The dominant approach in identifying TP53 mutations besides RNA sequencing in literature requires 
viable tumor tissue that involves invasive tissue sampling. Our results show the efficacy of using either radiomics or 
radiomiocs fused with the genomics in predicting TP53 mutation status when compared to genomics model alone. 

2. METHOD 
In this study, we investigate TP53 mutation prediction based on a) radiomics (patient age at the diagnosis and imaging 
features extracted from Magnetic Resonance Imaging (MRI)), b) genomics (gene expression using RNA sequencing), 
c) and fused radiogenomics (illustrated in Figure 1). First, optimum radiomics are selected using recursive feature 
selection (RFS), and the top five differentially expressed genes are selected using EdgeR method [23]. Then, the 
optimum radiomics and the top differentially expressed genes are utilized along using a Random Forest (RF) classifier 
to construct and train the three different TP53 mutations models: TP53-Radiomics, TP53-Genomics, and TP43-
RadioGenomics model, respectively. The TP53 mutation models are evaluated using repeated 10-fold Cross-
Validation (CV). Finally, we assess the predictive performances of these models in predicting TP53 mutation status 
using the testing dataset.  

 
Figure 1. Flow Diagram of the proposed LGG TP53 prediction model. The training and testing analysis are repeated 10 
times independently.  

 

2.1 Dataset 

A total of 105 pre-operative LGG patients described in [24-26] is used to evaluate and asses the proposed models in 
Figure 1. Four modalities of the MRI are provided with the dataset (T1, T1Gd, T2, FLAIR) along with their segmented 
tumor. Clinical data and RNA counts data are downloaded from the Genomic Data Commons Data Portal 
(https://portal.gdc.cancer.gov/). Clinical data are de-identified following the HIPAA standard. The range of the 
patients’ age at the diagnosis is 20 – 75 years and the median and the mean age are 46 years. Fifty-five cases harbor 
TP53 mutations while fifty patients are without TP53 mutations (i.e. wild-type).  

2.2 Extraction of radiomics  

Radiomics are quantitative imaging texture features that are extracted from raw MRI (T1, T1Gd, T2, and FLAIR) 
sequences of the tumor, five Texton features [27], and multifractal features [28, 29], and the age of the patient at the 
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diagnosis. Radiomics features include the histogram, the co-occurrence matrix, the neighborhood gray-tone difference 
matrix, and the Size Zone Matrix [17, 30].  

Also, we utilize volumetric features that are computed as follows: the volume of the whole tumor, the volume of the 
whole tumor divided by the volume of the brain, the volume of sub-regions (edema, enhance tumor, and necrosis) 
divided by the volume of the whole tumor, and divided by the volume of the brain, the volumes of the enhance tumor 
and necrosis divided by the volume of the edema, the combined volume of the edema and enhance tumor, the volume 
of the edema divided by the combined volume of enhancing tumor and necrosis, and the volume of the necrosis from 
the combined volume of the edema and enhance tumor.  

Additionally, another nine area property features are extracted from the tumor from x, y, and z-axes. The properties 
are area, centroid, perimeter, major axis length, minor axis length, eccentricity, orientation, solidity, and extent.  

2.3 Machine learning models for TP53 prediction in LGG 

Three TP53 mutation prediction models are constructed based on the source of the training features; TP53-radiomics 
model, TP53-genomics model, and TP53-radiogenomics model, respectively. Figure 1 illustrates the complete flow 
diagram of the three TP53 mutation ML prediction models.  

In this study, the dataset is divided into training and testing datasets. Eighty patients are used in the training dataset 
and the remaining (twenty-five patients) are used in the testing dataset. Feature selection and Random Forest [31] are 
utilized to construct and train the three different TP53 mutation prediction models. Repeated 10-fold cross-validation 
is utilized to cross-validate and tune the RF parameters. Radiomics feature selection is performed using recursive 
feature selection (RFS). RFS is constructed based on RF and is performed by maximizing the ROC metric. In RFS, 
radiomics are trained using RF, ranked bases on their importance, and then the least important radiomics are removed. 
The step of training RF using the remaining radiomics and ranking them is repeated recursively until the radiomics’ 
set that maximizes the ROC is reached.  

Genomics represented by RNA counts data is the other source of features in this work. EdgeR [23] is exploited to 
select the top differentially expressed genes (i.e. most important). In EdgeR, the negative binomial distribution is used 
to model RNA counts. EdgeR assumes that the variance of RNA counts depends on two dispersion parameters; 
common and individual. Once the negative binomial is fitted and dispersion parameters are obtained, differential 
expression analysis is performed using either the likelihood ratio test or F-test to find the top differentially expressed 
genes. Then the top differentially expressed genes are log-transformed into normality and fed into RF to build TP53-
Genomics and TP53-RadioGenomics.  

Moreover, the prediction performance is tested using the testing datasets. The prediction performance is assessed using 
the accuracy (Acc), balanced accuracy (B. Acc), sensitivity (Sens.), specificity (Spec.), negative predictive value 
(NPV), and positive predictive value (PPV). 

Finally, a comparison of the performance between the three TP53 mutation models is conducted using Analysis of 
Variance (ANOVA) method. If the 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 of the ANOVA test is less than 0.05, a statistically significant difference 
is accepted. Association between TP53 mutation status and the optimum radiomics and the top differentially expressed 
genes is assessed using ANOVA.  

3. RESULTS 
The RFS method offers the most frequent optimum radiomics features as follows: the age, information correlation, 
and the low-gray level zone emphasis. EdgeR offers the top differentially expressed genes, and the gene that is the  
most occurred  (in the ten training splits) is TEC gene. Figure 2 illustrates the distribution of the most frequent optimum 
features and the distribution of the TEC gene expression. Younger ages, low values of low-gray level zone emphasis, 
and high values of information correlation are significantly associated with mutated TP53 with 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 < 0.05. 
Low values of TEC RNA expression are significantly correlated with mutated TP53 with 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 < 0.05.  

Moreover, our analysis shows that the patients’ age (at the diagnosis) carries a Hazard Ratio [HR] of 1.07 (95% CI, 
1.03-1.11, likelihood ratio test p-value < 0.05). Besides, patients age greater than the median age of 46 years carries a 
HR of 3.15 (95% CI, 1.39-7.16, likelihood ratio test p-value < 0.05) and a median survival of 62 months vs. 94.5 
months for patients with age less than 46 years as illustrated in Figure 3a. Unlike patients age at the diagnosis, the 
optimum radiomics of information correlation and the low gray level zone emphasis and the TEC gene do not show 
an association with overall survival. Additionally, our analysis reveals that TP53 mutation status does not associate 
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with the overall survival (likelihood ratio test p-value = 0.1) as illustrated in Figure 3b. However, as shown in Table 
1, a chi-square test reveals that mutated TP53 and patients with ages less than 46 are significantly associated with p-
value < 0.05, whereas WT TP53 status is significantly associated with patients with ages greater than 46.  

 

 
Figure 2. Feature distribution of the optimum radiomics and the top differentially expressed gene in the 10 training sets 
in discriminating mutated TP53 (Mutant) and not mutated TP53 (i.e. Wild Type (WT)). 

 

 

(a)     (b) 
Figure 3. Kaplan Meier curve of a) patients’ age clustered into two groups (age less than 46 years and age greater than 
46 years), and b) TP53 mutation status. 
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Table 1. TP53 mutation distribution based on the patients’ age in the dataset. 

 TP53 mutation Status 
Age groups Mutant WT 

Patients’ age less than 46 39 14 
Patients’ age greater than 46 16 36 

 

Figure 4 demonstrates the performance of the three TP53 mutation prediction models using the 10 testing sets. These 
values represent the mean ± standard deviation of the performance of the 10 repetitions using the testing sets. As 
illustrated in Figure 4, TP53-Radiomics model achieves an accuracy of 0.84±0.04, a sensitivity of 0.87±0.08, a 
specificity of 0.82±0.09, and balanced accuracy of 0.84±0.04. The performance of TP53-RadioGenomics model (with 
an accuracy of 0.92±0.04, a sensitivity of 0.92±0.05, a specificity of 0.93±0.08, and balanced accuracy of 0.92±0.05) 
outperforms the performance of the TP53-Radiomics models significantly (ANOVA test, 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 < 0.05) as 
shown in Table 2 and Figure 4. Note the performance of the TP53-RadioGenomics model is better than the 
performance of the TP53-Genomics models (with an accuracy of 0.89±0.07, a sensitivity of 0.89±0.07, a specificity 
of 0.89±0.13, and balanced accuracy of 0.89±0.07), however, the improvements of the TP53-RadioGenomics is not 
significant (ANOVA test, p − value >  0.05) as shown in Table 2 and Figure 4. 

 

Table 2. The ANOVA Probability value (p-value) of performance of the difference between TP53 mutation prediction 
models. Note, p-value < 0.05 indicates statistically significant difference. 

TP53 models comparison Accuracy Balanced 
Accuracy 

Negative 
Predictive 

Value 

Positive 
Predictive 

Value 
Sensitivity Specificity 

Radiomics VS. RadioGenomics 0.000 0.000 0.051 0.004 0.094 0.010 

Radiomics VS. Genomics 0.085 0.083 0.418 0.083 0.517 0.147 
RadioGenomic VS. Genomics 0.251 0.260 0.290 0.503 0.295 0.504 

 

 
Figure 4. The performance of the TP53 mutation prediction models using 10 different testing splits. Error bar 
represents two standard deviations. "Acc" refers to accuracy, "B. Acc" refers to balanced accuracy, "NPV" refers to the 
negative predictive value, "PPV" refers to the positive predictive value, “Sens” refers to sensitivity, and “Spec” refers 
to specificity.  
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4. CONCLUSION 
This study proposes multiple ML models for TP53 mutation status prediction based on non-invasive radiomics when 
compared to invasive genomics. Radiomics represent the patients’ age and extracted imaging features from the 
conventional raw and different characterization of MRI modalities (T1, T1Gd, T2, and Flair). Genomics is represented 
by RNA counts data in this study. Radiomics features selection is performed using RFS whereas the top differentially 
expressed genes are selected using EdgeR. A total of 105 LGG patients are randomly divided into 10 paired training 
(80 patients) and testing sets (25 patients). Based on the source of the training features, we construct three TP53 
mutation prediction models; the TP53-radiomics model, the TP53-genomics model, and TP53-radiogenomics model, 
respectively. The training classification of the three models is developed using the Random Forest. Ten-fold cross-
validation is utilized to cross-validate and tune the RF parameters. Finally, the predictive performance of the three 
models is assessed using the testing set. 

Our analysis reveals that age, information correlation, and the low-gray level zone emphasis show significance in 
predicting TP53 mutation status in the TP53-radiomics model. TEC gene is the most important gene that is used to 
predict TP53 mutation status in the TP53-Genomics model. Moreover, our TP53-Radiomics model achieves an 
accuracy of 0.84±0.04, a sensitivity of 0.87±0.08, a specificity of 0.82±0.09, and balanced accuracy of 0.84±0.04. In 
comparison, in a recent study by Li et. al, [32], the authors propose a TP53 mutation prediction model based on 
radiomics features. The authors use 180 LGG patients in the training set and 92 patients in the test set. Their proposed 
method utilize LASSO as a feature selection and SVM. Their proposed method has achieved an AUC of 76.3%, a 
sensitivity 62.2%, a specificity 85.1%, and an accuracy of 70.7%, in the validation set data. When comparing the 
performance of our TP53-Radiomics model and the performance of Li et. al, [32], our TP53-Radiomics model 
achieves better accuracy and sensitivity. 

As expected, the TP53-Gadiomics model achieves better performance than the TP53-Radiomics model. However, the 
TP53-Radiomics model offers comparable performance and the TP53-RadioGenomics model outperforms the TP53-
Radiomics model significantly. These results suggest efficacy of using conventional MRI as predictive biomarker for 
TP53 mutation prediction.  
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