50 research outputs found
Interfaces diffuses et flammes transcritiques LOX/H2
In cryogenic engines, the propellants are refrigerated and stored liquid in order to limit the dimension of the tanks. They are pressurized by turbopumps before their injection in the combustion chamber. To increase the efficiency of the engines, the chamber pressure is increased and can be above the critical pressure of the propellants. This combustion regime is called transcritical. It exhibits some properties of diphasic injection with a high density core jet but does not have a phenomenon of atomization. The study of the oxygen transition from dense to light has been the main objectives of this thesis. In supercritical regime, the width of this transition decreases with the pressure till it reaches the critical pressure where it becomes infinitely thin. The lack of discretization in the zone of strong gradients leads to numerical instabilities. This situation is analog from a numerical point of view to a liquid-vapor interface. Thus, in this thesis we have extented the diffuse interface methods to the supercritical regime. The second gradient method introduced by van der Waals has allowed the simulation of subcritical and supercritical flames. The multifluid approach has been implemented in the solver CEDRE for the computation of a large eddy simulation of the experimental bench MASCOTTE in supercritcal conditions.Dans les moteurs cryotechniques, les ergols sont refroidis pour être stockés sous forme liquide et limiter ainsi la taille des réservoirs. Ils sont ensuite mis sous pression, grâce à une turbopompe, avant d’être injectés dans la chambre de combustion. Pour augmenter les rendements des moteurs, la pression de chambre est augmentée et peut dépasser les pressions critiques des ergols. Le régime de combustion supercritique est alors appelé transcritique lorsque l’oxygène est injecté à une température inférieure à sa température critique avec une densité équivalente à celle d’un liquide. Ce régime possède certaines propriétés des injections diphasiques avec un dard dense mais sans présenter de phénomène d’atomisation ce qui le rapproche des injections gaz-gaz. L’étude de la transition dense-dilué de l’oxygène a été le dénominateur commun de cette thèse. En régime supercritique, l’épaisseur de cette transition diminue avec la pression jusqu’à devenir infiniment fine à la pression critique. Le manque de discrétisation des zones à forts gradients conduit à des instabilités numériques. Cette situation est analogue numériquement au cas d’une interface liquide vapeur subcritique. C’est pourquoi nous avons étendu dans cette thèse des méthodes d’interface diffuse au régime supercritique. La méthode dite de second gradient introduite par van der Waals a permis de simuler des flammes étirées subcritiques et supercritiques. Tandis que l’approche multifluide a été utilisée pour réaliser des simulations aux grandes échelles du banc d'essai MASCOTTE en régime supercritique avec le code CEDRE
Modélisation numérique de problèmes de transition de phase en mécanique des fluides par la méthode des éléments finis
RÉSUMÉ : On présente un modèle pour le phénomène de transition de phase, basé une méthode eulérienne
de capture de l’interface dans le cadre d’une discrétisation à l’aide de la méthode des éléments finis. Ce modèle est applicable aux écoulements multifluides où les phases sont incompressibles et immiscibles. Une technique de calcul et de représentation des flux d’énergie est développée et analysée. Le module développé est vérifié à l’aide d’un problème qui représente l’ébullition dans l’espace à une dimension et qui est étendu dans l’espace à trois dimensions. Des pistes sont proposées pour poursuivre et améliorer le modèle présenté.---------ABSTRACT : We develop and implement a model for liquid-vapor phase change in the case of non-miscible and incompressible fluids. We use a finite element method to discretize the problem and an Eulerian marker to represent the liquid-vapor interface. A technique is developed and analysed to compute and represent energy fluxes during the phase transition. The implemented code is verified by solving a simple one dimensionnal boiling problem extended in three dimensionnal space. Suggestions are made to guide further studies of this problem
Simulation aux grandes échelles d'écoulements diphasiques turbulents à phase liquide dispersée
Les écoulements diphasiques turbulents sont présents dans de nombreux systèmes industriels (moteur à piston, turbines à gaz, moteurs fusée...). La compréhension fine de telles configurations s'avèrent de nos jours nécessaire pour limiter notamment les émissions de polluants et de gaz à effet de serre, et la consommation des énergies fossiles. Nous nous intéressons ici à la simulation aux grandes échelles des écoulements diphasiques turbulents, permettant de capturer une large partie du spectre de la turbulence, et ainsi être capable de prédire des phénomènes instables ou transitoires. La phase dispersée est ici modélisée par une approche eulérienne, en raison de ses avantages dans le contexte du calcul haute performance. Le travail de cette thèse a consisté à étendre le formalisme eulérien existant dans le code AVBP à la simulation de sprays polydisperses dans des écoulements turbulents. Pour cela, le Formalisme Eulérien Mésoscopique (FEM) a été couplé à une approche Multi-fluide. Cette nouvelle approche, intitulée Formalisme Eulérien Mésoscopique Multi-fluide (FEMM), a été évaluée sur des cas simples canoniques, permettant de bien caractériser le comportement autant en terme de dynamique turbulente que d'effets polydisperses. Les stratégies numériques disponibles dans le code de calcul AVBP sont aussi analysées, afin d'en cerner les limites pour la simulation eulérienne d'une phase liquide. Ce nouveau formalisme est finalement appliqué à la configuration aéronautique MERCATO, pour laquelle on dispose de résultats numériques obtenus avec d'autres approches (FEM et approche lagrangienne), et de résultats expérimentaux. Un accord satisfaisant avec l'expérience est montré pour toutes les approches, même si le FEM, monodisperse, obtient de moins bon résultats en terme de fluctuations. D'autres résultats expérimentaux s'avèrent nécessaires pour évaluer les approches et déterminer quelle est la plus prédictive pour cette configuration, notamment concernant la fraction massique de kerosene, autant en phase liquide qu'en phase gazeuse. ABSTRACT : Turbulent two-phase flows are encountered in several industrial devices (piston engine, gas turbine, rocket engine...). A fine understanding of such configurations is mandatory to face problems of pollutant emissions, greenhouse gas, and fossil fuel rarefaction. The Large Eddy Simulation seems to be a good candidate. This kind of simulation captures a wide part of turbulence spectrum, and thus allows to predict instabilities and transient phenomena. The dispersed phase is simulated using an Eulerian approach, which seems to be more suitable than lagrangian methods for High Performance Computing. The present work consists in the extension to polydisperse flows of the existing eulerian formalism in the AVBP code. The Mesoscopic Eulerian Formalism (MEF) is coupled with the Multifluid approach. This new formalism, called Multifluid Mesoscopic Eulerian Formalism, is evaluated on simple test cases, showing the ability of such approach to capture turbulent and polydisperse effects. Numerical strategies available in AVBP are also evaluated, in order to emphasize on their limiting aspects for the eulerian simulation of a dispersed phase. The new formalism is finally applied to the simulation of the aeronautical configuration called MERCATO. Several experimental results are available, as well as numerical results using FEM and lagrangian approach. Results show a good agreement between experiments and numerical results, even if FEM results are worse concerning the fluctuations. New experimental results are necessary to determine which is the best approach, especially in terms of liquid and gas kerosene mass fraction
Weak solutions for immiscible compressible multifluid flows in porous media
International audienc
Interaction Fluide-Structure pour les corps élancés
Cet article présente le couplage du solveur
fluide ISIS-CFD du LMF et d’un solveur structure de type poutre appliqué à des problèmes
3D complexes d’interaction fluide-structure des corps élancés en grand déplacement,
comme les risers. Le couplage temporel s’appuie sur un algorithme itératif. Un soin tout
particulier a été porté au couplage spatial, en particulier au processus de déformation
de maillage. Afin de valider le code IFS, le cas-test 2D d’Hübner a été traité
Un nouveau modèle d'échange de masse et de quantité de mouvement entre formulation lagrangienne et eulérienne appliqué à une cavité de roulement de moteur d'avion
Résumé
La quête de puissance à bas coût de l’industrie aérospatiale pousse les ingénieurs à réduire le volume occupé par les sections chaudes des moteurs d’aéronefs et à améliorer l’efficacité de leur système d’huile. Pour réduire la consommation d’huile sans affecter la gestion de la chaleur du moteur, les ingénieurs ont besoin d’outils numériques performants, précis et fiables, car les conditions d’opération des moteurs sont pratiquement impossibles à reproduire en laboratoire. Les cavités de roulement sont une des zones les plus complexes du système d’huile, car l’huile et l’air, qui s’y retrouvent, sont animés par la rotation des arbres dans un espace confiné. L’écoulement résultant est visuellement similaire à celui d’une machine à laver opérant dix fois plus rapidement qu’à sa vitesse de rotation habituelle. La présence de différentes échelles de structures liquides (gouttelettes, ligaments et film mince) rend la modélisation de l’écoulement particulièrement complexe.
Pour réussir à simuler un tel écoulement, un nouvel outil numérique permettant l’interaction entre un écoulement dispersé et un écoulement de film mince en parois a été créé. Quatre objectifs ont été définis et accomplis à partir du code ANSYS Fluent. Le premier objectif consistait à définir une méthode robuste pour modéliser le film d’huile en parois. Le second objectif nécessitait de modéliser les gouttelettes d’huile en circulation dans la cavité de roulement. Les troisièmes et quatrièmes objectifs consistaient à modéliser l’intégration des gouttelettes au film liquide et leur détachement par les forces de cisaillement de l’air en mouvement. Pour réaliser ces objectifs, il a été démontré que les gouttelettes retrouvées dans les cavités de roulement peuvent être approximées par des sphères rigides et que l’évaporation de l’huile peut être négligée.
Le premier objectif a été complété en employant le modèle Volume of Fluid (VoF) avec une version modifiée du modèle de turbulenc
Modélisation multiphasique et calcul d'interface dans les procédés de mise en œuvre des propergols
Co-encadrement de la thèse : Luisa SilvaImproving the determination of the fluid/air interface evolution, we propose an adaptation of a Level Set method. Indeed, we avoid the reinitialization stage by including it in a transport equation model. Moreover a smooth truncation of the distance function by using a sinus filter is proposed. We stabilise the discretization scheme by using a SUPG method. The convected Level Set method created is easily implementable and shows good results as expected. In order to underline the advantages, we present numerical results on classical interface capturing benchmarks. Fluid Buckling is a phenomenon consisting in torroidal oscillations. This phenomenon appears when a high viscosity fluid flows vertically against a flat surface. This phenomenon may occur in industrial situations, like the injection molding of propergol in complex-shaped cavities. These coiling or folding oscillations appeared during the mold filling stage lead to air entrapment. To understand and control this flaw, we use our Convected Level Set method to simulate two-dimensional and three dimensional viscous jet buckling.La motivation principale de cette thèse était de pouvoir simuler numériquement les procédés de mise en œuvre des propergols, comme le mélange et le remplissage de Booster. La viscosité de ce type de fluide implique durant la phase de remplissage l'apparition d'oscillations toroïdales caractéristiques du phénomène appelé Fluid Buckling. Ce phénomène est particulièrement difficile à représenter numériquement car l'interface entre le fluide et l'air présente une surface libre dont la complexité augmente avec le temps. C'est pourquoi, c'est cet exemple qui a été choisi pour valider l'efficacité d'une méthode numérique de représentation des surfaces libres. Nous avons pour cela choisit d'implémenter dans la librairie de calcul CimLib une méthode de type Level Set. Celle-ci a pour particularité d'effectuer l'étape de convection et l'étape de réinitialisation, indispensables à ce type de résolution, simultanément. De plus, la fonction distance a été tronquée aux alentours de l'interface à l'aide d'une fonction sinus, obtenant ainsi une fonction niveau sinusoïdale auto-déterminante. La résolution est stabilisée à l'aide d'une méthode de type SUPG. L'implémentation finale de la méthode est facilitée puisque le problème est réduit à une unique équation de convection d'une fonction Level Set Locale. Après une série de tests classiques de validation de méthode de surface libre, notre méthode a donc été validée en 2 et 3 Dimensions en simulant l'apparition du Fluid Buckling. La méthode a ensuite été implémentée dans les deux logiciels de simulation et validée sur des cas tests industriels prédéfinis de remplissage et de mélange. Les défauts obtenus numériquement correspondent à ceux attendus expérimentalement. La méthode est aujourd'hui utilisée pour simuler de nombreux autres procédés et a montré sa robustesse particulièrement dans des procédés multifluides. Afin d'optimiser la visualisation des défauts d'interfaces et de diminuer les temps de calcul, on peut envisager comme suite de ces travaux de recherche l'adaptation du maillage à proximité de l'interface et du pas de temps, le tout de façon automatique
Schémas numériques mimétiques et conservatifs pour la simulation d'écoulements multiphasiques compressibles
In some highly demanding fluid dynamics simulations, it appears necessary tosimulate multiphase flows involving numerous constraints at the same time : large numbers of fluids, both isentropic and strongly shocked compressible evolution, highly variable and contrasted equations of state, large deformations, and transport over large distances. Fulfilling such a challengein a robust and tractable way demands that thermodynamic consistency of the numerical scheme be carefully ensured.In the first chapter, a Lagrange plus remap scheme is proposed for the simulation of two-phase flows with a dissipation-free six-equation bakcbone model. The importance of the property of isentropic flow preservation is highlighted with a comparison with Ransom test results fromthe literature. This chapter also also point out certain limitations of the Lagrange plus remap approach for multiphase simulations.In order to overcome these limitations, a novel derivation procedure is proposed to construct a mimetic scheme for the simulation of unsteady and compressible flows in a direct ALE (ArbitraryLagrangian-Eulerian) formalism. The possibility to choose a priori the degrees of freedom allows to obtain a continuity with historical staggered scheme, while imposing conservativity at discretelevel. The discrete momentum evolution equation is obtained by application of a variational principle, thus natively ensuring the thermodynamic consistency of pressure efforts. This approach is applied to single-fluid flows as a proof of concept in Chapter 3, then it is extended to N-phasecompressible flows in Chapter 4. Single- and multi-phase tests show satisfactory behavior in terms on conservation, versatility to grid motions, and robustness.Dans certaines simulations numériques exigeantes de mécanique des fluides, ilest nécessaire de simuler des écoulements multiphasiques impliquant de nombreuses contraintes simultanées : nombre de fluides important, évolutions compressibles à la fois isentropes et fortement choquées, équations d’états variables et contrastées, déformations importantes et transport surdes longues distances. Afin de remplir ces objectifs de manière robuste, il est nécessaire que la cohérence thermodynamique du schéma numérique soit vérifiée.Dans le premier chapitre, un schéma de type Lagrange plus projection est proposé pour la simulation d’écoulements diphasiques avec un modèle squelette à six équations et sans termes de dissipation. L’importance de la propriété de préservation des écoulements isentropiques est mise en évidence à l’aide d’une comparaison avec des résultats issus de la littérature pour le test deRansom. Ce chapitre souligne aussi certaines limitations de l’approche Lagrange plus projection pour simuler des modèles multiphasiques.Afin de pallier à ces limitations, une nouvelle procédure de dérivation est proposée afin de construire un schéma mimétique pour la simulation d’écoulements instationnaires compressibles dans un formalisme ALE direct (Arbitrary Lagrangian–Eulerian). La possibilité de choisir a prioriles degrés de liberté permet de s’inscrire dans une continuité avec les schémas historiques décalés, tout en imposant les conservations au niveau discret. L’équation de quantité de mouvement discrèteest obtenue par application d’un principe variationnel, assurant par construction la cohérence thermodynamique des efforts de pression. Cette approche est appliquée au cas d’écoulements monofluides comme preuve de concept au Chapitre 3, puis elle est étendue au cas d’écoulements à Nphasescompressibles au Chapitre 4. Des tests mono et multiphasiques montrent un comportement satisfaisant en terme de conservativité, versatilité aux mouvements de grilles et robustesse
Méthodes d'éléments finis adaptatives pour les écoulements multifluides
Le modèle numérique -- Les équations -- La discrétisation des équations -- Les méthodes adaptatives -- La localisation d'Interface -- La tension superficielle modèles -- Les stratégies numériques -- Les simulations numériques -- La tension superficielle : vérifications -- Les écoulements stratifiés -- Les jets -- La dynamique de gouttelettes
