1,220 research outputs found

    Regression on fixed-rank positive semidefinite matrices: a Riemannian approach

    Full text link
    The paper addresses the problem of learning a regression model parameterized by a fixed-rank positive semidefinite matrix. The focus is on the nonlinear nature of the search space and on scalability to high-dimensional problems. The mathematical developments rely on the theory of gradient descent algorithms adapted to the Riemannian geometry that underlies the set of fixed-rank positive semidefinite matrices. In contrast with previous contributions in the literature, no restrictions are imposed on the range space of the learned matrix. The resulting algorithms maintain a linear complexity in the problem size and enjoy important invariance properties. We apply the proposed algorithms to the problem of learning a distance function parameterized by a positive semidefinite matrix. Good performance is observed on classical benchmarks

    Multidimensional approximation of nonlinear dynamical systems

    Get PDF
    A key task in the field of modeling and analyzing nonlinear dynamical systems is the recovery of unknown governing equations from measurement data only. There is a wide range of application areas for this important instance of system identification, ranging from industrial engineering and acoustic signal processing to stock market models. In order to find appropriate representations of underlying dynamical systems, various data-driven methods have been proposed by different communities. However, if the given data sets are high-dimensional, then these methods typically suffer from the curse of dimensionality. To significantly reduce the computational costs and storage consumption, we propose the method multidimensional approximation of nonlinear dynamical systems (MANDy) which combines data-driven methods with tensor network decompositions. The efficiency of the introduced approach will be illustrated with the aid of several high-dimensional nonlinear dynamical systems

    Isometry and convexity in dimensionality reduction

    Get PDF
    The size of data generated every year follows an exponential growth. The number of data points as well as the dimensions have increased dramatically the past 15 years. The gap between the demand from the industry in data processing and the solutions provided by the machine learning community is increasing. Despite the growth in memory and computational power, advanced statistical processing on the order of gigabytes is beyond any possibility. Most sophisticated Machine Learning algorithms require at least quadratic complexity. With the current computer model architecture, algorithms with higher complexity than linear O(N) or O(N logN) are not considered practical. Dimensionality reduction is a challenging problem in machine learning. Often data represented as multidimensional points happen to have high dimensionality. It turns out that the information they carry can be expressed with much less dimensions. Moreover the reduced dimensions of the data can have better interpretability than the original ones. There is a great variety of dimensionality reduction algorithms under the theory of Manifold Learning. Most of the methods such as Isomap, Local Linear Embedding, Local Tangent Space Alignment, Diffusion Maps etc. have been extensively studied under the framework of Kernel Principal Component Analysis (KPCA). In this dissertation we study two current state of the art dimensionality reduction methods, Maximum Variance Unfolding (MVU) and Non-Negative Matrix Factorization (NMF). These two dimensionality reduction methods do not fit under the umbrella of Kernel PCA. MVU is cast as a Semidefinite Program, a modern convex nonlinear optimization algorithm, that offers more flexibility and power compared to iv KPCA. Although MVU and NMF seem to be two disconnected problems, we show that there is a connection between them. Both are special cases of a general nonlinear factorization algorithm that we developed. Two aspects of the algorithms are of particular interest: computational complexity and interpretability. In other words computational complexity answers the question of how fast we can find the best solution of MVU/NMF for large data volumes. Since we are dealing with optimization programs, we need to find the global optimum. Global optimum is strongly connected with the convexity of the problem. Interpretability is strongly connected with local isometry1 that gives meaning in relationships between data points. Another aspect of interpretability is association of data with labeled information. The contributions of this thesis are the following: 1. MVU is modified so that it can scale more efficient. Results are shown on 1 million speech datasets. Limitations of the method are highlighted. 2. An algorithm for fast computations for the furthest neighbors is presented for the first time in the literature. 3. Construction of optimal kernels for Kernel Density Estimation with modern convex programming is presented. For the first time we show that the Leave One Cross Validation (LOOCV) function is quasi-concave. 4. For the first time NMF is formulated as a convex optimization problem 5. An algorithm for the problem of Completely Positive Matrix Factorization is presented. 6. A hybrid algorithm of MVU and NMF the isoNMF is presented combining advantages of both methods. 7. The Isometric Separation Maps (ISM) a variation of MVU that contains classification information is presented. 8. Large scale nonlinear dimensional analysis on the TIMIT speech database is performed. 9. A general nonlinear factorization algorithm is presented based on sequential convex programming. Despite the efforts to scale the proposed methods up to 1 million data points in reasonable time, the gap between the industrial demand and the current state of the art is still orders of magnitude wide.Ph.D.Committee Chair: David Anderson; Committee Co-Chair: Alexander Gray; Committee Member: Anthony Yezzi; Committee Member: Hongyuan Zha; Committee Member: Justin Romberg; Committee Member: Ronald Schafe

    Understanding High Dimensional Spaces through Visual Means Employing Multidimensional Projections

    Full text link
    Data visualisation helps understanding data represented by multiple variables, also called features, stored in a large matrix where individuals are stored in lines and variable values in columns. These data structures are frequently called multidimensional spaces.In this paper, we illustrate ways of employing the visual results of multidimensional projection algorithms to understand and fine-tune the parameters of their mathematical framework. Some of the common mathematical common to these approaches are Laplacian matrices, Euclidian distance, Cosine distance, and statistical methods such as Kullback-Leibler divergence, employed to fit probability distributions and reduce dimensions. Two of the relevant algorithms in the data visualisation field are t-distributed stochastic neighbourhood embedding (t-SNE) and Least-Square Projection (LSP). These algorithms can be used to understand several ranges of mathematical functions including their impact on datasets. In this article, mathematical parameters of underlying techniques such as Principal Component Analysis (PCA) behind t-SNE and mesh reconstruction methods behind LSP are adjusted to reflect the properties afforded by the mathematical formulation. The results, supported by illustrative methods of the processes of LSP and t-SNE, are meant to inspire students in understanding the mathematics behind such methods, in order to apply them in effective data analysis tasks in multiple applications

    On-line relational SOM for dissimilarity data

    No full text
    International audienceIn some applications and in order to address real world situations better, data may be more complex than simple vectors. In some examples, they can be known through their pairwise dissimilarities only. Several variants of the Self Organizing Map algorithm were introduced to generalize the original algorithm to this framework. Whereas median SOM is based on a rough representation of the prototypes, relational SOM allows representing these prototypes by a virtual combination of all elements in the data set. However, this latter approach suffers from two main drawbacks. First, its complexity can be large. Second, only a batch version of this algorithm has been studied so far and it often provides results having a bad topographic organization. In this article, an on-line version of relational SOM is described and justified. The algorithm is tested on several datasets, including categorical data and graphs, and compared with the batch version and with other SOM algorithms for non vector data
    corecore