
ISOMETRY AND CONVEXITY IN DIMENSIONALITY
REDUCTION

A Thesis
Presented to

The Academic Faculty

by

Nikolaos Vasiloglou II

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
May 2009

ISOMETRY AND CONVEXITY IN DIMENSIONALITY
REDUCTION

Approved by:

Professor Anthony Yezzi, Committee Chair
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor David Anderson and Professor
Alexander Gray, Advisor
School of Electrical and Computer
Engineering/College of Computing
Georgia Institute of Technology

Professor Hongyuan Zha
College of Computing
Georgia Institute of Technology

Professor Ronald Schafer
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: 23 January 2009

to my mother for buying my first book in physics

iii

PREFACE

The size of data generated every year follows an exponential growth. The number of

data points as well as the dimensions have increased dramatically the past 15 years.

The gap between the demand from the industry in data processing and the solutions

provided by the machine learning community is increasing. Despite the growth in

memory and computational power, advanced statistical processing on the order of

gigabytes is beyond any possibility. Most sophisticated Machine Learning algorithms

require at least quadratic complexity. With the current computer model architecture,

algorithms with higher complexity than linear O(N) or O(N log N) are not considered

practical.

Dimensionality reduction is a challenging problem in machine learning. Often

data represented as multidimensional points happen to have high dimensionality. It

turns out that the information they carry can be expressed with much less dimensions.

Moreover the reduced dimensions of the data can have better interpretability than

the original ones. There is a great variety of dimensionality reduction algorithms

under the theory of Manifold Learning. Most of the methods such as Isomap, Local

Linear Embedding, Local Tangent Space Alignment, Diffusion Maps etc. have been

extensively studied under the framework of Kernel Principal Component Analysis

(KPCA).

In this dissertation we study two current state of the art dimensionality reduction

methods, Maximum Variance Unfolding (MVU) and Non-Negative Matrix Factor-

ization (NMF). These two dimensionality reduction methods do not fit under the

umbrella of Kernel PCA. MVU is cast as a Semidefinite Program, a modern convex

nonlinear optimization algorithm, that offers more flexibility and power compared to

iv

KPCA. Although MVU and NMF seem to be two disconnected problems, we show

that there is a connection between them. Both are special cases of a general nonlinear

factorization algorithm that we developed.

Two aspects of the algorithms are of particular interest: computational complexity

and interpretability. In other words computational complexity answers the question of

how fast we can find the best solution of MVU/NMF for large data volumes. Since we

are dealing with optimization programs, we need to find the global optimum. Global

optimum is strongly connected with the convexity of the problem. Interpretability is

strongly connected with local isometry1 that gives meaning in relationships between

data points. Another aspect of interpretability is association of data with labeled

information.

The contributions of this thesis are the following:

1. MVU is modified so that it can scale more efficient. Results are shown on 1

million speech datasets. Limitations of the method are highlighted.

2. An algorithm for fast computations for the furthest neighbors is presented for

the first time in the literature.

3. Construction of optimal kernels for Kernel Density Estimation with modern

convex programming is presented. For the first time we show that the Leave

One Cross Validation (LOOCV) function is quasi-concave.

4. For the first time NMF is formulated as a convex optimization problem

5. An algorithm for the problem of Completely Positive Matrix Factorization is

presented.

6. A hybrid algorithm of MVU and NMF the isoNMF is presented combining

advantages of both methods.

1Preservation of local distances

v

7. The Isometric Separation Maps (ISM) a variation of MVU that contains

classification information is presented.

8. Large scale nonlinear dimensional analysis on the TIMIT speech database is

performed.

9. A general nonlinear factorization algorithm is presented based on sequential

convex programming.

Despite the efforts to scale the proposed methods up to 1 million data points in

reasonable time, the gap between the industrial demand and the current state of the

art is still orders of magnitude wide.

vi

ACKNOWLEDGEMENTS

The journey for completing this thesis has lasted 8 years, almost as long as they

Odyssey. In this trip there was an army of people that supported me locally and

globally. I made friends and I lost comrades. The emotional ups and downs made the

whole experience interesting, stamping my life forever. It is hard for me to enumerate

all these people that helped me and made this thesis possible and I acknowledge that

each ones help was necessary for me to fulfill the requirements of a PhD. Going back

2 years, I remember myself being on the verge of dropping out, when my good friend

Sourabh Ravindran introduced me to Alexander Gray. I want to thank Sourabh for

all the good time we had as labmates and for his help, unfortunately we never had the

chance to write a paper together. Alex holds the keystone of this thesis. As a young

faculty he inspired a lot of ”lost” students like me, blowing the spark of research

hidden inside all of us. Very soon he convinced me to continue my PhD and finishing

it although I was on the 6th year without any clue about what my thesis would look

like. I feel more grateful to him for this wonderful collaboration and for his energy as

a coach. Along with Alex, David Anderson and Ronald Schafer my advisors, always

believed in me and they were always there to support me financially and morally, even

if it took me 3 times to pass the prelim exam and more than two years to publish a

paper. I feel privileged to be their student and I believe all 3 of them stand as model

advisors. This PhD wouldn’t have started at all if Petros Maragos in Greece hadn’t

endorsed me with his recommendation letters. I would always feel grateful to him for

everything he gave me as an undergrad in Greece.

It has been an honor for me to be part of the FASTlab an amazing community of

promising PhD students. Special thanks to Garry Boyer and Ryan Riegel for building

vii

the core of the FASTlib library that was necessary for me and a lot of other students.

Dongryeol Lee has been a great friend collaborator which I would also like to thank,

for our long discussions and all the help he provided to me. Ravi Sastry a promising

student is also another person I would like to thank for coauthoring papers together,

he sort of reminds me of myself during the first years, but I belive he will find his

Ithaca sooner than I did. Pari, Manyu, Hua and Bill (my son) have also provided a

great atmosphere in the lab along with a lot of community work. On the other side

of the highway, special thanks to Walter Huang who brought the recliner in the lab,

making it possible for me to take quick naps and recharge my batteries. Brian, Ken,

Tira, Rich, John, Mike and Shyam thank you too, for being great labmates. Professors

Shapiro and Nemirovski provided significant mathematical guidance in the last phase

of my PhD.

A big company of people balanced my academic life with their friendship. Symeon

Nikolaou has been a great friend and I will always feel nostalgic to the nice moments

we spent together. Georgios Georgoulas was another milestone in my Odyssey. Kelly

Erinn Caine (the smartest PhD student at Georgia Tech) was one of the most

interesting people I met at Georgia Tech. Even if I had failed getting my PhD, I

would still have earned a great friend, a beautiful mind. Christos Gantsidis was

the first one to drag me from electrical engineering to computer science starting

my metamorphosis. Antonios Fornaro, Niko Vlantassis, Niko Athanasiadis, Niko

Papageorgiou Christina Vlachou, George Stefopoulos, Vassilis Lakafosis, Vagelis

Farantatos, Stathis Bacolas, Stathis Velenis, Domniki Assimaki , Lilla Zachou,

Dimitris Anagnostou, Manos Tentzeris (for providing academic support the difficult

moments), Manos Antonakakis, Nektarios Oreopoulos, Kostis Grigoriou, Efthimia

Antonoudi, Maria Konte and Kostas Dovrolis. Among the greek fellows Stelios

Kavadias was a big influence on me and he convinced me to repsect managment

as a scince. Beyond that he and his family have been great friends. Crhis Markou

viii

(and the family) along with Athan Sambanis offered a family atmosphere here in

Atlanta. I have to thank both of them for the endless and uncountable grill sessions.

There are also some Georgia Tech employees that by doing their job right made

my life easier here at Tech. Marilou Mycko in the academic office was always very

good at making things work. Christy Ellis has been a model administrator and I

think she is being rewarded for that. Finally Rosvelt Hardy the Janitor at TSRB has

been the most hard working Georgia Tech employee, justifying his salary to the last

nickel, by keeping the working environment clean.

On the west coast I want to thank Manos Pontikakis (for the lovely summer at

Google), Alexandros Dimakis (for all he gave me at Berkeley), Shahid Chouldry (for

opening the door to Google), Ayman Farahat, Harry Boukas, Angelos Stavrou (for

teaching me C++), Mat Hans (for openning the door to HP, and for his advice to

start programming, which I regret I didn’t adopt earlier).

My Odyssey evolved simultaneously in both sides of the Atlantic Ocean. On the

other side of the Atlantic my family and my friends contributed in many ways so that

I can look back proud of what I accomplished these 8 years. My mother who bought

me the first physics book and bought me the ticket to come in Atlanta is the first

person I feel I owe the most, specially during 2004 where I got sick. My sisters Myrto,

Areti and Ismini along with my aunt Lina have always been on my side taking care

of me and making my summers in Greece unforgetable.

I have great repsect for my high school professors, Nikolaos Krasakis, Thanassis

Mol, Kostas Mantzaris, Elisavet Kampani Despina Kalamaridou, Stavroula Resvani,

who built my personality and believed in me since they first met me, They put the

foundation and some of them had the opportunity to see my finishing what they

started. Unfortunately some of them didn’t make it and I consider them as the toll of

this PhD. Kostas Mantzaris along with Yannis Tzortzis left us early during the first

years of my PhD. Their absence filled me with sadness and I wish they could see me

ix

graduating.

I am also grateful to HP Labs and Google for providing the grants to support me

during all these years

At last I feel grateful to my wife Vicki for standing on my side during these

years. I realize how difficult and painful it has been for her to see me switching from

dissapointment and devastation to excitemnt so often.

x

TABLE OF CONTENTS

DEDICATION . iii

PREFACE . iv

ACKNOWLEDGEMENTS . vii

LIST OF TABLES . xv

LIST OF FIGURES . xvi

SUMMARY . xx

I INTRODUCTION . 1

II LOCAL AND NON-LOCAL GEOMETRY AND SEMIDEFINITE PRO-
GRAMMING . 6

2.1 Fast computation of local and non-local neighborhoods 7

2.1.1 Kd-trees . 7

2.1.2 Ball trees . 8

2.1.3 Nearest Neighbor Algorithm 10

2.1.4 The k nearest neighbors algorithm 13

2.1.5 All nearest Neighbors and the dual-tree algorithm 14

2.1.6 Furthest neighbor and the dual tree algorithm 15

2.1.7 The k-in-between neighbor algorithm 17

2.2 Semidefinite Programming (SDP) 19

2.2.1 Convex programming and the semidefinite cone 19

2.2.2 Preserving distances . 21

2.2.3 Ellipsoidal volumes and density preservation 22

2.2.4 Geometric means and leave one out cross validation 23

III MAXIMUM VARIANCE UNFOLDING, SCALABILITY AND EXTEN-
SIONS . 25

3.1 Maximum Variance Unfolding, the convex SDP case 27

3.2 The non-convex Maximum Variance Unfolding 29

xi

3.3 Maximum Furthest Neighbor Unfolding 30

3.4 Stochastic Proximity Embedding 31

3.4.1 Evaluation of SPE . 33

3.5 Implementation of MVU-like methods and Experiments 33

3.5.1 Implementation Issues of the Augmented Lagrangian and L-
BFGS . 34

3.5.2 Datasets . 35

3.6 Extensions of MVU . 37

3.6.1 Maximization of the Leave One Out Cross Validation (LOOCV) 37

3.6.2 Preserving volumes/densities instead of distances 38

3.7 Summary . 40

IV NON-NEGATIVE MATRIX FACTORIZATION AS A SPECIAL CASE OF
MVU. YET ANOTHER EMBEDDING PROBLEM 52

4.1 Convexity in Non-Negative Matrix Factorization under the positive
completeness. 55

4.1.1 Solving the optimization problem of NMF. 57

4.2 Convex relaxations of the NMF problem. 58

4.2.1 A simple convex upper bound with Singular Value Decom-
position. 58

4.2.2 Relaxation with a positive semidefinite cone. 59

4.2.3 Approximating the SDP cone with smaller ones. 61

4.2.4 NMF as a convex multi-objective problem. 63

4.2.5 Augmenting the relaxations with sparsity constraints 64

4.2.6 An algorithm for rank constrained problems 66

4.2.7 Experiments . 68

4.2.8 An algorithm for solving the problem of Completely Positive
Factorization . 69

4.3 Global and local solutions of non-convex NMF. 71

4.3.1 NMF as a Generalized Geometric Program and its Global
Optimum. 72

4.4 Isometric NMF. 75

xii

4.4.1 Convex isoNMF. 76

4.4.2 Non-convex formulation of isoNMF. 76

4.5 Experimental Results . 78

4.6 Summary . 79

V LEARNING ISOMETRIC SEPARATION MAPS 85

5.1 Isometric Separation Maps (ISM) 87

5.2 Dimensionality Minimization with ISM 89

5.3 Transductive SVMs . 90

5.4 Summary . 92

VI NONLINEAR MATRIX FACTORIZATIONS, A GENERAL FRAME-
WORK FOR DIMENSIONALITY REDUCTION 102

6.1 Matrix factorizations and dimensionality reduction 103

6.2 Casting MVU, NMF and more as a general rank-constrained semidef-
inite program . 104

6.2.1 MVU as a special case . 106

6.2.2 LOOCV unfolding as a special case 108

6.2.3 NMF as a special case . 109

6.3 Extending to factorizations with any nonlinear dot product or even
divergence . 111

6.4 Moving even further, automatic construction of the nonlinear oper-
ator g . 112

6.5 Summary . 113

VII DIMENSIONALITY REDUCTION OF LARGE SPEECH CORPORA . 115

7.1 MFCC Features . 117

7.2 Principal Component Analysis . 117

7.3 Experiments . 118

7.3.1 Preliminary experiments . 118

7.3.2 300K points experiments . 119

7.3.3 1 Million points experiments 120

7.3.4 Weaknesses, limitations of MVU/MFNU 121

xiii

7.3.5 Future work . 122

7.4 Summary . 123

VIII CONCLUSION . 130

8.1 Directions for future research . 131

IX AUTHOR’S PUBLICATIONS . 132

REFERENCES . 135

VITA . 142

xiv

LIST OF TABLES

1 Dataset description . 35

2 Classic NMF, the relative root mean square error, sparsity and distance
error for the four different datasets (cbcl normalized and plain, statue
and orl) . 79

3 isoNMF, the relative root mean square error, sparsity and distance
error for the four different datasets (cbcl normalized and plain, statue
and orl) . 79

4 ISM SVM classification score versus k-neighborhood for the First
Experiment . 93

5 Traditional SVM Classification Score versus k-neighborhood 93

6 ISM SVM Classification Score versus k-neighborhood For the Whole
Dataset . 94

7 ISM SVM Classification Score versus k-neighborhood For the Whole
Dataset . 94

xv

LIST OF FIGURES

1 The parent node of a 2 dimensional kd-tree 9

2 A two node 2 dimensional kd-tree . 9

3 Nearest neighbor with pruning . 12

4 True nearest neighbor is out of the leaf 12

5 Kd tree with no possible pruning . 13

6 A two dimensional pathological kd-tree 13

7 In this case the partition is very bad and almost for every point pruning
is not feasible . 14

8 The query node in red after top down recursion ends up in a leaf of
the reference tree. Then every point in the query node (red) finds with
the naive method its candidate nearest neighbor. Then for all of them
we compare all the candidate nearest distances and find the maximum
rmax. Now we know that if there is any node in distance greater than
rmax there is no point in checking for candidate nearest neighbors. As
we see in the right Figure the dashed box doesn’t intersect with the
bounding box of the leaf. This means that we can prune the yellow
boxes. 16

9 A two dimensional kd-tree . 17

10 Simulation of the dual tree algorithm 17

11 Pseudo-code for the dual-tree all nearest neighbor algorithm 18

12 Pseudo-code for the dual-tree all furthest neighbor algorithm 19

13 Pseudo-code for the in-between-k-neighbor. The
RemoveExtraFurthestNeighbors() removes the extra m extra
neighbors by finding the m+1 furthest neighbor. m is typically small,
less than the maximum number of points in a leaf. 20

14 MVU maximizes the distances of points from the origin 30

15 MFNU maximizes distances beteen furthest neighbors. As we can see
points get pushed from different directions. This fact helps avoiding
local minima . 31

16 The Stochastic Proximity Embedding Algorithm 32

17 The classic MVU algorithm a)Scaling performance b)Iterations re-
quired for the optimization . 42

xvi

18 Convex MVU vs non-convex MFNU. For the convex MVU we run
experiments up to 600 points and then extrapolated 43

19 The MFNU performance, a) Scaling of the MFNU b)Maximization
results of the Maximum Furthest Neighbors objective c) Iterations
required for the optimization d) Number of constrained kN (solid line),
consolidated constraints (dashed line) 44

20 The MFNU algorithm with auto-tuning of k-neighborhoods, a)Scaling
of the algorithm b)Iterations required for the optimization c)Number
of constrained kN (solid line), consolidated constraints (dashed line) . 45

21 Unfolded Swiss rolls 10K, 20K, 40K (top to bottom row), (left column)
MFNU, (center column)MFNU with auto-tuning for k-neighborhoods,
(right column)MVU. All images have been sampled showing only 4000
points, for visual clarity . 46

22 (left column) corel color moments, (right column) corel color his-
togram, (a)4-point neighborhood, (b)5-point neighborhood, (c)7-point
neighborhood . 47

23 The 3 first components of the Max LOOCV unfolding 256-point swiss
roll, along with the eigenvalue spectrum. In this experiment a k=5
neighborhood is preserved. 48

24 The 3 first components of the Max LOOCV unfolding 512-point swiss
roll, along with the eigenvalue spectrum. In this experiment a k=5
neighborhood is preserved. 49

25 Top: The first 3 components of the DPM for a 400-point swiss roll,
Bottom: The first 3 components of Kernel PCA. In this experiment
a k=4 neighborhood is preserved. The bandwidth of the Gaussian is
medium to small. 50

26 Top: The spectrum of DPM and Kernel PCA for small bandwidth.
Bottom: The same spectra for large bandwidth. 51

27 3 rice seeds original gray scale image 69

28 The 6 components of rank reduction convex NMF 70

29 The 6 components of non-convex NMF 71

30 The 3 rice seeds image reconstructed from the 6 NMF components
acquired with the rank reduction convex NMF 72

31 The 3 rice seeds image reconstructed from the 6 NMF components
acquired with non-convex NMF . 73

32 The singular values of the 3 rice seeds 74

xvii

33 The six first svd components of the 3 rice seeds 75

34 (a)Some images from the cbcl face database (b)The same images
after variance normalization, mean set to 0.25 and thresholding in the
interval [0,1] (c)The synthetic statue dataset from the isomap website
[40] (d)472 images from the orl faces database [42] 80

35 Top row: 49 Classic NMF prototype images. Bottom row: 49 isoNMF
prototype images (a, c) CBCL-face database with mean variance
normalization and thresholding, (b, d) CBCL face database without
preprocessing. 81

36 Top row: 49 Classic NMF prototype images. Bottom row: 49 isoNMF
prototype images (a, c) statue database , (b, d) orl-faces database . . 82

37 Scatter plots of two largest components of classic NMF(in blue) and
Isometric NMF(in red) for (a)cbcl faces (b)isomap faces (c)orl faces . 83

38 In this set of figures we show the spectrum of classic NMF (solid
line) and Isometric NMF (dashed line) for the three datasets (a)cbcl
face (b)isomap statue (c)orl faces. Although isoNMF gives much more
compact spectrum we have to point that the basis functions are not
orthogonal, so this Figure is not comparable to SVD type spectrums . 84

39 a)A three dimensional swiss roll painted with color gradient. b)The
same swiss roll with two classes on it, black and green c)Unfolded swiss
roll (a) with MVU/MFNU (no class information). The color gradient
shows that local distances has been preserved. d) Unfolded swiss roll
(b) with MVU/MFNU. The two classes are not linearly separable. e,f)
Views of the swiss roll (a) with ISM. The class structure was taken
from (b). The intension of this Figure is to show how the points are
mapped so that the local neighborhoods are preserved. g,h)Views of
the (b) manifold after ISM. Now points are painted with the class colors
to show that they are linearly separable 96

40 Top: Three classes laying on a swiss roll. Bottom: After unfolding
them with MVU the classes are not linearly separable. Isometric
Separation Maps managed to map this manifold in a 12-dimensional
space such that the classes were linearly separable by 3 hyperplanes
100% of the time and the 5-neighborhood distances were preserved
with 0.1% relative root mean square error 97

41 In this Figure we illustrate the PCA (SVD) spectrum of the unfolded
swiss roll of Figure 40. As we can see it is pretty rich. 98

xviii

42 Top: Three classes laying randomly on a swiss roll. Bottom: After
unfolding them with MVU the classes are not linearly separable.
Isometric Separation Maps managed to map this manifold in a 12-
dimensional space such that the classes were linearly separable by 3
hyperplanes. The optimization algorithm terminated with feasibility
error 0.4% for 5-neighborhood distance preservation, while 99.83% of
the points were correctly classified. The goal of this experiment was to
verify experimentally that ISM can lift any strange dataset to a high
dimensional space, such that classes are linearly separable 99

43 In this Figure we illustrate the PCA (SVD) spectrum of the unfolded
swiss roll of Figure 42. As we can see it is pretty rich. Despite the bad
structure of the classes, the ISM algorithm was able to map it on a 12
dimensional space. 100

44 (a) A trivial one dimensional manifold (b) The separation hyperplane
from an SVM with a gaussian kernel (c) ISM will do a homeomorphic
transformation on the manifold so that a linear hyperplane can do
perfect separation . 101

45 Nonlinear Convex Factorization . 106

46 . 122

47 (a) The magnitude of the principal components for the whole TIMIT
dataset (b) Cumulative percentage energy of the eigenvalues. 124

48 (a) The magnitude of the principal components for the 20,000 TIMIT
dataset (with variance normalization) (b) Cumulative percentage en-
ergy of the eigenvalues. 125

49 (a) Embedding of the 100,000 TIMIT dataset (without variance
normalization) with the MFNU method. (b) Embedding of the same
dataset with PCA . 126

50 Left: PCA of the 39 dimensional TIMIT datapoints, Right: PCA
spectrum of the 15 dimensional unfolded 127

51 Left:PDFs of the 39 dimensional TIMIT data points, Right: PDFs of
the of the 15 dimensional Unfolded 128

52 Left:PDFs of the 39 dimensional TIMIT data points for uh, Right:
PDFs of the of the 15 dimensional Unfolded uh 128

53 Right:PDFs of the 39 dimensional TIMIT data points for sh, Left:
PDFs of the of the 15 dimensional Unfolded sh 129

xix

SUMMARY

In this dissertation we address the problem of dimensionality reduction for

large datasets based on the algorithms of Maximum Variance Unfolding (MVU) and

Non-Negative Matrix Factorization (NMF). In chapter 1 we give a short review of

the existing dimensionality reduction methods. Following, in chapter 2 we introduce

efficient multidimensional structures for computing near and distant neighborhoods

between points, along with some new algorithms for computing furthest neighbors.

In the same chapter we give an overview of Semidefinite Programming (SDP) and

show how geometric and statistical properties of data can be SDP representable.

In chapter 3 an extensive computational analysis of MVU is given. Techniques for

scaling MVU are shown. We verify experimentally a novel variation called Maximum

Furthest Neighbor Unfolding (MFNU) that shows very good performance. In the same

chapter extensions of MVU are presented based on the Kernel Density Estimation

of the data. Next in chapter 4 an extensive study of NMF as a global optimization

problem is presented. For the first time in the literature we show that NMF can be

cast as a convex program. An extension of NMF with local isometric constraints, the

isoNMF, is introduced and compared to NMF. In chapter 5 Isometric Separation Maps

(ISM) are introduced as a dimensionality reduction tool. ISM supplements MVU

with classification information, leading to a transductive SVM. Comparisons with

traditional SVMs are illustrated showing comparable performance. In chapter 6 we

present a unified framework for dimensionality reduction as a nonlinear factorization

problem. We show that all the algorithms presented in this dissertation along with

many others more complex can be cast as a rank constraint problem, that its local

solution can be found with a sequence of convex programs. Although the algorithm

xx

presented is of polynomial complexity it is not yet scalable. Finally in chapter 7 MVU

is applied on 1 million speech data points, revealing its strengths and the weaknesses.

xxi

CHAPTER I

INTRODUCTION

1

Most of the time data is represented as m−dimensional Euclidean points where

m might be high. For example speech waveforms are converted to m−dimensional

vectors through Fast Fourier Transform or Linear Prediction Coefficients or Mel

Frequency Cepstrum Coefficients MFCC [70]. m can typically range from 40 to a

few hundreds. Another example of high dimensional data appears in the user-movie

rating data. Assume N users that can possibly rate m movies. This information

can be represented in an N ×m matrix. In other words any user can be represented

with an m−dimensional vector. The dimensionality of the data m is also known as

extrinsic dimensionality. In many cases the extrinsic dimensionality of the data is

significantly large. Often though, dimensions are nonlinearly correlated. That means

the original information included in m dimensions can be represented with k < m

dimensions. In the literature k is referred as the intrinsic dimensionality. Discovering

the dependance between dimensions not only leads to compression of the data,

but also extracts information. Several methods have been proposed for discovering

relationships between dimensions. They are divided in two categories, those that

assume linear dependance and those ones that do not. The first category is very

well represented by Principal Component Analysis (PCA) and Linear Discriminant

Analysis (LDA) [31]. On the other side a great variety of non-linear dimensionality

reduction methods has been developed in the last 10 years. The most important ones

are the following:

1. Isomap [89]

2. Locally Linear Embedding (LLE) [74]

3. Laplacian EigenMaps (LE) [5]

4. Hessian EigenMaps (HE) [20]

5. Local Tangent Space Alignment (LTSA) [101]

2

6. Diffusion Maps (DM) [17]

7. Maximum Variance Unfolding (MVU) [97].

8. Non-Negative Matrix Factorization (NMF) [55]

In [30] authors showed that most of these methods along with Multidimensional

Scaling (MDS) [49, 50] are a special case of Kernel PCA [75, 10]. Each of the above

methods defines a data-dependant kernel that emphasizes different properties of the

data. All of the above methods are based on preserving some properties defined

on a local neighborhood, with the exception of MDS that in its original form was

based on all pair distances. Once the Kernel matrix is built, the embedding can be

retrieved from the eigenvectors. Isomap extends MDS by building the Kernel matrix

based on geodesic distances rather than the Euclidean ones. Laplacian EigenMaps

is based on the Laplacian of the graph based on the Gaussian kernel. It turns

out that the Laplacian of the graph is a positive semidefinite kernel matrix. The

Laplacian Eigenmaps developed almost simultaneously with the Diffusion Maps are

based on the diffusion kernel. Instead of computing the geodesic distances based on

the shortest path on the Euclidean path it computes the time a diffusion process

needs to reach from point A to point B. Diffusion maps in general squeezes local

distances and increases distances between points that are far away. These techniques

deform the manifold and are ideal for classification. Maximum Variance Unfolding

solves a semidefinite program that tries to spread points in space while constraining

local distances. The method gives similar results with Isomap. The only fundamental

difference is that MVU doesn’t explicitly compute geodesic distances. In general MVU

gives better embedding than Isomap [96]. This is because Isomap computes geodesic

distances approximately causing some deformation that often leads to slightly higher

dimensional embedding compared with MVU. Both methods behave better than the

others when it comes to intrinsic dimensionality estimation as studied in [97, 57].

3

LLE tries to reconstruct points from its neighbors. LLE can also be interpreted as

a diffusion between points allowing negative and positive reactions , in contrast to

Diffusion Maps. Hessian LLE is a blend of LLE and Laplacian EigenMaps. The

basic advantage over LLE is that it gets rid of the convexity constraint of LLE.

LTSA tries to reconstruct the tangent space locally on every point and then aligns

them with affine transformations in order to reconstruct the geodesic distances in a

Euclidean space. LTSA has the same goal with ISOMAP, but provides more rigorous

error analysis. In many applications, it makes more sense to preserve ranks between

distances rather than the exact distances. This idea was first introduced as a variation

of MDS. Although the problem was cast as a non-convex problem, in [1] it was posed

as a semidefinite one. In [66] a simpler formulation of the problem as a quadratic

problem was presented achieving superior results. Moreover, the method provided a

solution for out-of-sample extension. The common thing about all the above methods

compared to traditional kernels such as the Gaussian is that each element of the kernel

matrix Kij does not depend on the inputs xi, xj but on all the other training data.

All of the above methods have their strengths and their weaknesses,. MVU,

though, seems to give the most compact embedding1 compared to other methods

at least for toy data sets [97, 57], but there are still cases that it fails [78]. Moreover

the comparisons are not extensive so it would be wrong to claim that MVU is the best

method. Unlike MVU all the other methods listed above have already been extensively

studied and unified under the framework of kernel PCA [75, 10], but NMF and MVU

have not. This motivates us to unify all of them under a general dimensionality

reduction algorithm. Another challenge is MVU’s polynomial complexity due to the

underlying semidefinite program. In this dissertation we scale MVU up to million

point datasets. We investigate whether it is possible to preserve the convex nature of

1Experiments have shown that it tends to recover the intrinsic dimension of manifolds for which the intrinsic
dimension is known. With the term compact we mean that the svd spectrum of the embedded dimensions is very
concentrated

4

the algorithm and the same time scale it.

Some applications require that the data are non-negative, so any nonlinear

transformation on the dimensions should also give non-negative components. In [55]

authors present a method that reduces the dimensionality of the data so that non-

negativity is preserved. The method provides sparse representation of the data and

in some cases it projects the data in vectors that are meaningful. For example when

NMF is applied in a set of images it extracts parts of the images that are meaningful

[55]. A major drawback of the algorithm is the underlying non-convex problem. In

this chapter 4 we present convex relaxations of NMF along with an algorithm that

finds the global optimum. In this dissertation we investigate if a convex formulation of

the problem exists. Convexity is a desirable property in machine learning optimization

problems, because it guarantees global solutions. Another challenge also addressed is

whether NMF and MVU can be combined together and give an algorithm that shares

the properties of both.

5

CHAPTER II

LOCAL AND NON-LOCAL GEOMETRY AND

SEMIDEFINITE PROGRAMMING

6

All nonlinear dimensionality projection methods mentioned in chapter 1 share a

common step. Local nearest neighbors have to be computed for every point. The

local geometry can be expressed in terms of dot products, distances, volumes and

densities. Preservation of local geometry and deformation of the non-local geometry

leads to different dimensionality reduction methods. In this chapter we show how

local and non-local geometry can be computed in a fast and scalable way. Moreover

we show how geometry can be expressed with convex constraints with the help of the

recently developed theory for semidefinite programming [64, 90, 99].

2.1 Fast computation of local and non-local neighborhoods

In this section we discuss the state of the art method for computing all k-nearest

neighbor method and we also introduce a variant of this method for computing

furthest neighbors. We introduce multidimensional trees, a hierarchical partition of a

dataset so that data points are grouped close to their neighbors. It has been proven

that there is not a globally optimal partition strategy [28] and it is heavily dependant

on the distribution of the data points as well as on the intrinsic dimensionality. In

the next section we present a particular class of multidimensional trees, the binary

trees and more specifically kd-trees and ball (metric) trees. The key concept in binary

trees is partitioning a set recursively in two sets at every step.

2.1.1 Kd-trees

The first multidimensional tree in the literature was the kd-tree [8]. After 30 years it

still performs comparably and in some cases, even better than modern trees. At every

level a partition (pivot) dimension is chosen according to a user defined criterion and

the data is split in two subsets according to this dimension. Kd-trees are off-line

trees. In order to build a kd-tree all the data must be available before building the

tree in contrast to other trees that can dynamically add or delete points.

Several strategies have been recommended for finding the splitting dimension.

7

The most popular ones are splitting on the dimension with the maximum variance

or maximum range. However both of these strategies are heuristics and there is

no underlying theory behind them that guarantees better performance of the trees.

Another issue once the splitting dimension is found, is the actual numeric value of the

split value. In other words, the ratio of the points going in the two resulting sets. The

mid value of the range or the mid value of the variance will in general give two sets

that in most of the cases will have different number of points. Another strategy is to

find the value that gives equally sized sets. This strategy in general gives balanced

trees, while the first one leads to unbalanced trees. In the following sections we show

that empirically it is preferable to have unbalanced splits on the tree, since it favors

pruning in the process of finding the nearest neighbors.

Data structures for kd-trees Kd-trees consist of two types of data structures,

nodes and leafs. The basic data needed for the nodes are the hyper-rectangles,

Figure 1. Hyper-rectangles are the k-dimensional rectangles that describe the

minimum bounding box for a given set of points. Leafs hold the data points, Figure 2.

The number of points on a leaf is user defined. The tree method for finding the nearest

neighbor is faster than the naive only after a threshold of points. This threshold is

used as the maximum number of points per leaf. Bounding boxes (Hyper-rectangles)

and points are the minimum amount of information required to be stored on nodes

on the leaf. Extra information about the data, such as the centroid of the box,

higher order moments, etc., also called Cached Statistics can speed up tremendously

algorithms other than nearest neighbor. The algorithm of nearest neighbor search

with kd-trees will be described in the following section (see Figure 3).

2.1.2 Ball trees

One of the main disadvantage of kd-trees is that they can only handle problems

associated with the Euclidian metric, or metrics that can be cast in terms of the

8

Figure 1: The parent node of a 2 dimensional kd-tree

Figure 2: A two node 2 dimensional kd-tree

Euclidian metric such as the Hamming distance. In many cases, though, the data

is expressed in cartesian coordinates but similarity cannot be expressed with the

euclidian metric. For example the cosine distance is used in many applications of

machine learning such as document retrieval.

9

Metric or Ball trees [63] provide a solution to this problem. Instead of using hyper-

rectangles, they use hyper-spheres. Hyper-spheres are generalized k-dimensional

spheres:

x, x0 ∈ <k, d(x, x0) = r, r ∈ < (1.1)

where d(x, y) defines a distance metric in a k dimensional space. At every split two

points that are far away are chosen as anchor points. Every other point of the initial

set is classified according to the minimum distance from the anchor points. The choice

of anchor points is done heuristically. One method that works in practice is choosing

a point randomly and then find the furthest point. This is the first anchor point. The

next anchor point is chosen as the furthest point from the first.

2.1.3 Nearest Neighbor Algorithm

The purpose of using a tree in the nearest neighbor problem is to gradually find

bounds for the neighbor distance and prune parts of the search space. In general

trees give bounds for data partitions that can be used in other problems.

Initially we start the search from the root node. At each step we recurse down to

the child node that contains the query point. In kd-trees we check the pivot dimension

of the query point and if it is smaller than the pivot value we recurse on the left child

otherwise on the right. In ball trees we recurse to the child that is closer to the

query point. The recursion continues until we reach a leaf. Then the distances of the

query point and the points on the leaf are computed. The closest point is a candidate

nearest neighbor Figure 3. Moreover we know that the actual nearest neighbor can

not be further than the current nearest neighbor. So in the end of the top down

recursion we have an upper bound for the nearest neighbor. Note that the top down

recursion is logarithmic to the number of points assuming a balanced tree. The next

step is to backtrack. At each step in backtracking we check if the candidate nearest

neighbor is in the current leaf/node. There are two ways to check that. First of all

10

when we are on a leaf we check whether the hyper-sphere centered around the query

point with radius equal to the distance between the query point and the candidate

nearest neighbor dmin intersects the bounding box, Figure 4 5. If not then this means

it is the nearest neighbor. If it does, then we have to check all the bounding boxes

that intersect the hyper-sphere. For kd-trees and ball trees it is fairly easy to detect

that. The algorithm is outlined below:

1. Recurse to the leaf that contains the point. To do that compare at every node

the split value of the splitting dimension of the point and recurse to the right

direction.

2. On the leaf compute the nearest neighbor with the naive method. The distance

to the nearest point on the leaf (candidate nearest neighbor) is the upper bound

for the nearest neighbor distance rmax, Figure 3.

3. If the sphere centered on the query point and radius rmax doesn’t intersect the

bounding box terminate. The candidate nearest neighbor is the actual nearest

neighbor.

4. If not, then backtrack and visit all subtrees recursively to the leaf and update

the candidate nearest neighbor if you find a point that is closer than rmax,

Figure 5.

5. Every time you backtrack check if the sphere centered on the query point with

the radius rmax doesn’t intersect the bounding box. If it doesn’t, then terminate

otherwise continue.

In general for natural datasets where data tend to cluster, it is possible to heavily

prune and achieve logarithmic performance in search. In some cases when the

partitioning is not very good, trees behave poorly (Figure 6, 7) and eventually have

11

Figure 3: Nearest neighbor with pruning

Figure 4: True nearest neighbor is out of the leaf

to search almost the whole data-set and they behave worse than the naive method

since they have extra recursion overhead.

12

Figure 5: Kd tree with no possible pruning

Figure 6: A two dimensional pathological kd-tree

2.1.4 The k nearest neighbors algorithm

In machine learning it is very rare that only the nearest neighbor is necessary. In

practice we need more than one, we need k. The k nearest algorithm differs from the

one described above in step 2. When hitting a leaf we compare the query point with

13

Figure 7: In this case the partition is very bad and almost for every point pruning
is not feasible

every reference point and we keep a sorted list with the kth nearest neighbors. Every

time the algorithm visits a leaf it updates the list and it always keeps the kth nearest

neighbors. In order to be able to prune, rmax is always set to the distance of the kth

neighbor computed so far.

2.1.5 All nearest Neighbors and the dual-tree algorithm

The problem of computing all nearest neighbors appears often in many machine

learning problems, usually in the training phase. As we will see in the following

sections the formation of the kernel matrix involves all nearest neighbor computations.

The all-nearest neighbor problem is a special case of a more general class of problems

called N-body problems [27].

Having in mind the tree based algorithm, it is natural to assume that finding all

nearest neighbors can be solved by executing N nearest neighbor queries resulting

in an O(N log N) complexity. We will refer to this as the single tree all nearest

neighbor algorithm. However, it is not difficult to notice that there are redundant

computations. For example, consider a query set stored on a kd-tree and a reference

14

set stored on another kd-tree as well. If we do the top down recursion for a point

then we notice that most likely this top down recursion might be exactly the same for

all the points in the same query leaf. It is also possible that the top down recursion

might be the same for a whole query subtree (see Figure 8).

This observation leads us to the conclusion that instead of comparing distances

between points in the search it is more useful to compare bounding boxes. The

algorithm is a four-way recursion Figures 9, 10 11,. In general, the dual tree algorithm

as we call it since the query and the reference set lie on trees (they might share the

same tree if the query and the reference set are the same), gives linear complexity over

the number of data. This is empirical complexity. In Figure 8 we give an example of

dual-tree pruning.

2.1.6 Furthest neighbor and the dual tree algorithm

The problem of finding the nearest neighbors has many applications in different areas

such as statistics, machine learning, physics simulation, etc. In chapter 3, we show

that distances between furthest “neighbors” can also be useful in manifold learning.

It is not the first time that furthest neighbor is used, it is a very common term in

computational geometry [26]. Although it does not make sense to call “neighbors”

points that they are far away, we will still call furthest neighbor of point x the point

y that its distance from x is maximized. Finding the furthest neighbor with the

naive method has the same complexity with finding the nearest neighbor. Use of

multidimensional trees can speed up the computation the same way it does with the

nearest neighbor. In the top down recursion the algorithm always chooses the node

that is further away. At the end of the top down recursion, the exhaustive search

finds the point that has the maximum distance with the query point. The point

found is a candidate furthest neighbor and its distance from the query point is less or

equal to the true furthest neighbor. In the back tracking steps (bottom up recursion)

15

Figure 8: The query node in red after top down recursion ends up in a leaf of the
reference tree. Then every point in the query node (red) finds with the naive method
its candidate nearest neighbor. Then for all of them we compare all the candidate
nearest distances and find the maximum rmax. Now we know that if there is any
node in distance greater than rmax there is no point in checking for candidate nearest
neighbors. As we see in the right Figure the dashed box doesn’t intersect with the
bounding box of the leaf. This means that we can prune the yellow boxes.

nodes that are closer than the candidate furthest neighbor are pruned. The algorithm

just described is a single tree furthest neighbor one. It is very simple to apply the

framework of the dual-tree algorithm for furthest neighbor computation. In Figure 12

16

Figure 9: A two dimensional kd-tree

Figure 10: Simulation of the dual tree algorithm

we show the pseudo code. This algorithm can compute all pair furthest distances very

fast, speeding up the Gonzalez algorithm mentioned above and improving MVU’s

performance as shown in chapter 3.

2.1.7 The k-in-between neighbor algorithm

We already presented algorithms for computing k-nearest/furthest neighbors, for

fairly small k. There are applications where the kth neighbor is essential but not

the preceding ones. If k is large (fraction of N) then the algorithm described in

section 2.1.4 is slow as it needs to keep a sorted list of k neighbors. Every time the

algorithm visits a leaf that has m points the algorithm has to sort a list of k + m

point distances and keep only the k first elements. If k >> m sorting should not

be very complex, since the list is sorted before the insertion of the new m distances.

17

recurse(q : KdTree, r : KdTree) {

if (max_nearest_neighbor_distance_in_node(q)

< distance(q, r) {

/* prune */

} else if (IsLeaf(q)==true and IsLeaf(r)==true) {

/* search for every point in q node its

/* nearest neighbor in the r node */

/* at leaves we must resort to */

/* exhaustive search O(n^2) */

/*update the maximum_nearest_distance_in_node(q)*/

} else if (IsLeaf(q)==false and IsLeaf(r)=true {

/*choose the child that is closest to r */

/* and recurse first */

recurse(closest(r, q.left, q.right), r)

recurse(furthest(r, q.left, q.right), r)

} else if (IsLeaf(q)==true and IsLeaf(r)==false) {

/* choose the child that is closest to q */

/* and recurse first */

recurse(q, closest(q, r.left, r.right))

recurse(q, furthest(q, r.left, r.right))

} else {

recurse(q.left,closest(q.left, r.left, r.right));

recurse(q.left,furthest(q.left, r.left, r.right));

recurse(q.right,closest(q.right, r.left, r.right));

recurse(q.right,furthest(q.right, r.left, r.right));

}

}

Figure 11: Pseudo-code for the dual-tree all nearest neighbor algorithm

So for a single tree algorithm the algorithm behaves fairly well. For the dual tree

algorithm though the above approach is not practical since it requires keeping N

sorted lists of k length. Since k is a fraction of N the memory requirements are of

O(N2). In Figure 13 we present a single tree algorithm for finding the k − neighbor

with minimal memory requirements. The main idea is that for every point we need to

keep a subtree with all the candidate k neighbors. Every time the subtree is overfilled

with m, the m + 1 furthest neighbors are found and the m of them are discarded.

18

recurse(q : KdTree, r : KdTree) {

if (min_furthest_neighbor_distance_in_node(q)

< distance(q, r) {

/* prune */

} else if (IsLeaf(q)==true and IsLeaf(r)==true) {

/* search for every point in q node its

/* furthest neighbor in the r node */

/* at leaves we must resort to */

/* exhaustive search O(n^2) */

/*update the minimum_furthest_distance_in_node(q)*/

} else if (IsLeaf(q)==false and IsLeaf(r)=true {

/*choose the child that is furthest to r */

/* and recurse first */

recurse(furthest(r, q.left, q.right), r)

recurse(closest(r, q.left, q.right), r)

} else if (IsLeaf(q)==true and IsLeaf(r)==false) {

/* choose the child that is furthest to q */

/* and recurse first */

recurse(q, furthest(q, r.left, r.right))

recurse(q, closest(q, r.left, r.right))

} else {

recurse(q.left,furthest(q.left, r.left, r.right));

recurse(q.left,closest(q.left, r.left, r.right));

recurse(q.right,furthest(q.right, r.left, r.right));

recurse(q.right,closest(q.right, r.left, r.right));

}

}

Figure 12: Pseudo-code for the dual-tree all furthest neighbor algorithm

2.2 Semidefinite Programming (SDP)

In this section we give an overview of semidefinite programming (SDP) [64, 99, 90, 19]

as a tool for expressing geometric constraints.

2.2.1 Convex programming and the semidefinite cone

Convex optimization programs have the well known advantage of converging to

globally optimal solutions, that is why they are very appealing in machine learning

19

recurse(q : QueryPoint, r : KdTree, k: Integer, ktree: KdTree) {

if (ktree.CurrentKdistance < Distance(q, r)) {

return;

}

if (NumOfPointsInTheSubtree(r) <= k) {

ktree.AddTree(r);

} else {

if (IsLeaf(r)) {

ktree.AddTree(r);

ktree.RemoveExtraFurthestNeighbors();

} else {

recurse(q, ClosestNode(q, r), k);

recurse(q, FurthestNode(q, r), k);

}

}

}

KdTree::AddTree(rtree : KdTree) {

internal_list.Add(rtree);

}

KdTree::RemoveExtraFurthestNeighbors(ktree : KdTree) {

list=FindkFurthestNeighbors(ktree);

Delete(list);

}

Figure 13: Pseudo-code for the in-between-k-neighbor. The
RemoveExtraFurthestNeighbors() removes the extra m extra neighbors by
finding the m + 1 furthest neighbor. m is typically small, less than the maximum
number of points in a leaf.

and in engineering in general. The following optimization problem:

min
x

f(x) (2.2)

gi(x) ≤ 0

hi(x) = 0

x ∈ <m

is convex provided that f(x), gi(x) are convex and hi(x) is linear. Not all optimization

problems can be cast as convex ones. Capabilities of convex programming were mainly

limited to linear and quadratic forms. Recent advances in the convex properties of

20

the semidefinite cone, along with the development of interior point methods opened

the door for expressing non-linear programs as convex. Moreover, a lot of non-

convex (often combinatorial) programs can be relaxed to convex ones, with the help

of semidefinite constraints [99]. Another advantage of the semidefinite constraint

is that it is a convex cone that encapsulates the 2nd order and the linear cones.

Almost any convex constraint can be expressed or approximated with the help of

the semidefinite cone. The very recently developed primal-dual algorithms have

computational advantage over the conventional ones [100]. Unfortunately, the primal-

dual method is only applicable to small scale problems, since its complexity is cubic,

although in some special cases it can be significantly less than that.

In this thesis we will use the symbol º as the positive semidefinite operator. For

example K º 0 implies that K matrix is positive semidefinite. Also Z º X implies

that Z − X º 0 meaning that Z − X is positive semidefinite. Given A,B ∈ <N×N

we define the dot product between matrices as A •B = Trace(ABT).

2.2.2 Preserving distances

Given a set of points stored in a matrix X ∈ <N×m the Gram (or dot product matrix)

is defined as:

G = XXT (2.3)

Notice that by definition G º 0 is always positive semidefinite. The Gram matrix

is a more abstract representation of the points. Several datasets may map to the

same Gram matrix. If G º 0 is given then X can be recovered with Singular Value

Decomposition, up to an orthogonal transformation. In many algorithms we prefer

to represent points with their Gram matrix. One of the great advantages of the

Gram matrix is that the distances between two points can be expressed with a linear

function. Consider points i, j, where xi, xj ∈ <m×1 then the squared distance dij is:

dij = xT
i xi + xT

j xj − xT
i xj − xT

j xi (2.4)

21

If we want to preserve distances in an optimization problem ,the above constraint is

non-convex with respect to xi, xj. If we instead use G then the distance dij can be

expressed in the following way:

dij = Gii + Gjj −Gij −Gji (2.5)

Now the distance between points is linear in G. In general given G we can uniquely

retrieve the distance matrix D ∈ <N×N that contains the squared distances between

all pairs [19].

D = δ(G)1T + 1 + δ(G)T − 2G (2.6)

where δ(G) is vector with the diagonal elements of G and 1 is a vector full of ones.

2.2.3 Ellipsoidal volumes and density preservation

Another interesting property of G is that it can be uniquely defined given all pairs

distances between points [19].

G = −1

2
(D − 1

N
D11T − 1

N
11T D +

1

N2
11T D11T) (2.7)

So instead of working with the Gram matrix, it is equivalent to work with the distance

matrix. The relationship between the distance matrix and the Gram matrix was

pointed in the original work of metric Multidimensional Scaling.

Nemirovski [64] showed that finding the minimum volume ellipsoidal that contains

a set of points is an SDP. Given a set of k points xi ∈ <m, i = 1, . . . , m, S is

the corresponding convex hull and E is an ellipsoidal containing S. The analytic

expression of E is:

E = {x|(x− c∗)T D∗(x− c∗) ≤ 1} (2.8)

where c∗, D∗ are given by the solution (t∗, Z∗, z∗, s∗) of the following semidefinite

22

problem:

max
t,s,z,Z

t (2.9)

such that: (2.10)

t ≤ (det Z)
1
m

Z º 0

s zT

z Z

 º 0

xT
i Zxi − 2xT

i z + s ≤ 1, i = 1, . . . , k

D∗ = Z∗, c∗ = Z−1
∗ z∗.

As we will see later in chapter 3 by approximating the volume of a convex hull of

a neighborhood with an ellipsoid we can have an estimate of the density locally.

2.2.4 Geometric means and leave one out cross validation

Often the Gram Matrix might correspond to a generalized dot product as introduced

in modern kernel learning theory [76, 79]. In other words there are positive definite

kernel functions that generate positive definite matrixes once applied on pairs of

points. Probably the most popular kernel is the Gaussian one:

k(x1, x2) = e−||x1−x2||22/σ2

(2.11)

where x1, x2 ∈ <m and σ is a real non-zero number representing the bandwidth of

the Gaussian. The Gaussian falls under broad class of functions known as Mercer

Kernels, that admit a factorization of the form:

k(x1, x2) =
N∑

i=1

φi(x1)φi(x2) (2.12)

where N can be infinity. Kernels have been used in Kernel Density Estimation (KDE)

[80] although it is not really necessary to belong in the Mercer family. A very common

metric for evaluating the performance of KDE is the Leave One Out Cross Validation

23

(LOOCV). Given a set of points xi ∈ <m, i = 1, . . . , N , the KDE for every point is

given by:

f̂(xj) =
∑

i6=j

k(xj, xi) (2.13)

and the LOOCV is given by :

LOOCV =
N∏

j=1

f̂(xj) (2.14)

From equation 2.13 we see that the KDE evaluation on a point is linear on the

kernel terms. So instead of using the coordinate representation of a dataset it is

better to use the Gram matrix as we also pointed earlier. The expression of LOOCV

as pointed in equation 2.14 is neither convex or concave. Yet it easy to bring it in a

concave form just by taking the Nth root:

N
√

LOOCV = N

√√√√
N∏

j=1

f̂(xj) (2.15)

The above form is concave and it admits a second order cone representation [64].

24

CHAPTER III

MAXIMUM VARIANCE UNFOLDING, SCALABILITY

AND EXTENSIONS

25

Maximum Variance Unfolding (MVU) is one of the-state-of-the-art Manifold

Learning (ML) algorithms [95]. In his original paper Weinberger showed that MVU

is empirically the best unfolding method that recovers the intrinsic dimension of a

manifold compared to other known ML algorithms. These results were also verified

in [57]. An improved version of MVU is the Minimum Volume Embedding (MVE)

[78] that can handle cases where the data are not on a manifold. It is more general

than MVU and it gives lower level embedding when the manifold assumption is not

valid. MVE has a more computationally heavy objective function.

Unfortunately MVU and MVE are only scalable up to a few hundred points

because they are cast as a Semidefinite Programs (SDP) [90] and their complexity is

cubic. Weinberger [94] suggested some solutions to the scalability of MVU by selecting

landmark points. This improves scalability but it is still bound on the efficiency of

the sampler and on the SDP solver. If the solver can handle N points and the sampler

can reduce the points by 1/m then the maximum dataset that can be handled is mN .

Moreover sampling without error bounds on the final results can be dangerous as

there is no guarantee on the induced error. In [98] another approach was given that

shares the same limitations.

In [51], a non-convex formulation of MVU known as NCMVU was presented

based on the non-convex SDP framework developed in [16]. This method [51] has

linear complexity per iteration based on L-BFGS algorithm [65], but nothing can

be said about the overall complexity. Experiments in [?] showed that it speeds

MVU significantly with the disadvantage that it may find non-optimal solutions that

correspond to local minima. Despite the speedup the method could only scale up to

a few thousand points. This is mainly because MVU, like any other ML technique,

requires the computation of all k-nearest neighbors which has quadratic complexity.

Another problem of non-convex MVU is auto-tuning the optimization parameters that

can distort the optimal solution. A different approach for reducing the complexity

26

of Semidefinite Programming was presented in [73], where the semidefinite constraint

was replaced by diagonal dominance on the Gram matrix. This restriction reduces

the problem to a Linear Program which is more scalable.

The first bottleneck was addressed with the dual-tree algorithm described in

chapter 2 that has empirically linear complexity and speeds up the computation of

neighborhoods significantly. For the second problem (local minima) we introduce a

different objective function for unfolding that is based on the distances of the furthest

neighbors, Maximum Furthest Neighbor Unfolding MFNU. In the experiments we

show that it behaves better than NCMVU in terms of local optima. We also derive

an upper bound for NCMVU and MFNU that helps in auto-tuning the optimization

parameters. In our experiments we were able to unfold 10-dimensional 100K point

datasets in 5 hours. This is the largest dataset to be unfolded based on MVU or its

variants on standard machine learning benchmarks. In chapter 7 we present results

on even larger datasets. The largest set ever processed with ML was done in [87],

that involved 18M images, but different techniques were used.

This chapter is organized as follows: In section 3.1 and 3.2 the convex and non-

convex MVU algorithms are outlined. MFNU is presented in section 3.3 and in the

end (sections 3.5, 3.5.2) implementational issues and experiments are discussed.

3.1 Maximum Variance Unfolding, the convex SDP case

Weinberger formulated the problem of isometric unfolding as a Semidefinite Program-

ming algorithm [95]. According to his experiments MVU has the best performance

compared to the other state of the art Manifold Learning methods.

Given a set of data X ∈ <N×d, where N is the number of points and d is the

dimensionality. The dot product or Gram matrix is defined as G = XXT . The

goal is to find a new Gram matrix K such that rank(K) < rank(G) in other words

K = X̂X̂T where X̂ ∈ <N×d′ and d′ < d. Now the dataset is represented by X̂

27

which has fewer dimensions that X. The requirement of isometric unfolding is that

the Euclidean distances in <d′ for a given neighborhood around every point have to

be the same as in <d. This is expressed in:

Kii + Kjj −Kij −Kji = Gii + Gjj −Gij −Gji,∀i, j ∈ Ii (1.16)

where Ii is the set of the indices of the neighbors of the ith point. From all the

K matrices MVU chooses the one with the maximum variance. So the algorithm is

presented as an SDP:

max
K

Trace(K)

subject to

Aij •K = dij ∀i, j ∈ Ii

1 •Kij = 0

K º 0

where Aij has the following form:

1 0 . . . −1 . . . 0

0
. . . 0 . . . 0 0

... 0
. . . 0 . . . 0

−1 . . . 0 1 . . . 0

... 0 . . . 0 . . . 0

0 0 . . . 0

(1.17)

1 =

1 1

...
. 1

... . . .
. . . 1

1 1

(1.18)

and

dij = Gii + Gjj −Gij −Gji (1.19)

28

The last constraint is just a centering constraint for the Gram matrix. The new

dimensions X̂ are the eigenvectors of K. In general MVU gives Gram matrices

that have compact spectrum at least more compact than traditional linear Principal

Component Analysis (PCA). Unfortunately this method can handle datasets of no

more than hundreds of points because of its complexity.

3.2 The non-convex Maximum Variance Unfolding

By replacing the constraint K º 0 [16] with an explicit rank constraint K = RRT

the problem becomes non-convex and it is reformulated to

max
R

RRT (2.20)

subject to (2.21)

Aij • RRT = dij (2.22)

1 • RRT = 0 (2.23)

The above problem can be solved with the augmented Lagrangian method [65].

L = −RRT −
N∑

i=1

∑

∀j∈Ii

λij(Aij •RRT − dij) +

σ

2

N∑
i=1

∑

∀j∈Ii

(Aij •RRT − dij)
2

Because our goal is to minimize the Lagrangian, the objective function is −RRT and

not RRT

The derivative of the augmented Lagrangian is:

∂L
∂R

= −2R− 2
N∑

i=1

∑

∀j∈Ii

λijAij •R +

2σ
N∑

i=1

∑

∀j∈Ii

(Aij •RRT − dij)R (2.24)

Gradient descent is a possible way to solve the minimization of the Lagrangian, but it

is rather slow. The Newton method is also prohibitive. The Hessian of this problem

29

is a sparse matrix. Although the cost of the inversion might be high it is worth

investigating. In our experiments we used the limited memory BFGS (L-BFGS)

method [59, 65] that is known to give a good rate for convergence.

3.3 Maximum Furthest Neighbor Unfolding

Weinberger presented a physical explanation of MVU by simulating every point with a

metallic ball connected to its neighbors with a rod. Every rod can freely rotate around

the ball. Every ball tries to move far away from the origin bound to its neighbors.

Mathematically this is expressed as variance maximization. Instead of maximizing

Figure 14: MVU maximizes the distances of points from the origin

the variance which is equivalent to maximizing the distance of every point from the

origin Figure 14 we propose maximization of the distance between furthest neighbors

Figure 15. So the objective function becomes

max
N∑

i=1

Ci •RRT (3.25)

where Ci selects the pair of furthest neighbor, it has similar structure with (1.17). This

formulation as we will see later leads to better unfolding of the manifold, bypassing

local minima. Computing the furthest neighbors is an N-body problem too, meaning

that the naive method would be of O(N2) complexity. It turns out that the dual-

tree and single tree algorithms can efficiently compute the furthest neighbors too as

already shown in chapter 2.

30

Figure 15: MFNU maximizes distances beteen furthest neighbors. As we can see
points get pushed from different directions. This fact helps avoiding local minima

As it can be seen from 4.89 the derivative of the Lagrangian becomes bigger if

the first term R is changed to R(BijRRT − fik) where fik is the the distance of the

furthest neighbor of i and Bij has similar structure with Aij

Another formulation would be to maximize the variance but make sure that the

distance of the furthest neighbors BijRRT in the embedded domain is larger than

the distance in the Euclidean domain dij. This condition has been extensively used

in manifold learning, specially when ML is intended to be the preprocessing step for

classification. Taking account this constraint we exploit more information about the

manifold. As we will see further this constraint makes optimization even faster than

the simple MVU, because it will give extra push to points that are initially close but

we eventually want them to be far away.

3.4 Stochastic Proximity Embedding

Stochastic Proximity Embedding (SPE) [2] has also been suggested as a scalable

dimensionality reduction method. The goal of SPE is to minimize a stress function of

the distances in the initial domain and in the embedded on. Let dij be the distance

in the initial domain <d, and d′ij in the embedded domain <m then SPE minimizes

E =
∑ (d′ij−dij)

2

dij∑
dij

,∀i, j where dij < dc (4.26)

31

dc is a user defined distance that represents local neighborhoods of the manifold

This method tries to match the distances on the lower dimensional space <m with

the distances in the original space <m on local neighborhoods. The original algorithm

worked on range dc neighborhoods while we work on k-neighborhoods which doesn’t

make a difference. The algorithm is outlined in Figure 16.

1. pick two points randomly i, j.

2. if

(a) i is in the neighborhood of j

(b) or i is not in the neighborhood of j and dij < d′ij go to 3

3. Update

yi = yi − λ
d′ij − dij

d′ij + ε
(yi − yj) (4.27)

yj = yj − λ
d′ij − dij

d′ij + ε
(yj − yi) (4.28)

(4.29)

4. if step 2 fails go to one

5. Loop for a number of iterations proportional to the number of point in the set

Figure 16: The Stochastic Proximity Embedding Algorithm

The above procedure is repeated for a 100 times in each step λ (see Figure 16)

decreases linearly from 2 to 0.1. Two are the main drawbacks of this method. The

adhoc parameters and the fact that most of the time is spent in choosing points that

might not lead to updates. The use of the dual-tree algorithm for off-line computation

of the neighborhoods accelerates the algorithm since all iterations lead to updates.

The formulation of SPE is actually the solution of the feasibility problem of the

augmented Lagrangian with the addition of the inequality constraints:

Aij •RRT > dc (4.30)

requiring that the distances in the embedded domain between points that are not in

32

the neighborhood should always be greater than the distances in the original domain.

3.4.1 Evaluation of SPE

One fundamental problem for SPE is that it picks points randomly and most of the

time no update is done because points are not in the neighborhood. For that reason

we precomputed nearest neighbors and used this information to make sure that the

pairs chosen always lead to updates because they satisfy the condition (2.1). Moreover

we also used furthest neighbors that, most of the time satisfy condition (2.2). The

results where very poor since the algorithm converged slowly to a manifold that wasn’t

perfectly unfolded. We noticed that running the algorithm several times improved

the results at high cost of speed. Another drawback of the procedure is the number

of ad-hoc parameters that cannot be easily determined automatically. The method

suffers from the same problems of stochastic gradient descent algorithms.

3.5 Implementation of MVU-like methods and Experi-
ments

Our experiments target datasets from 5K up to a 100K points. All the algorithms

were developed in C++ as part of the Fastlib library [25], that uses data structures

based on BLAS and LAPACK that are known to be optimal for linear algebra

operations. Moreover Fastlib has several other optimizations ideal for machine

learning algorithms. Fastlib also contains algorithms for kd-trees and fast all-nearest

neighbor implementation. All the experiments were run on identical dual Xeon

3.00GHz, 64-bit processors with 8 GB RAM and with the hyperthreading off. The

following objective functions were tested:

1. Maximum Variance Unfolding

2. Maximum Furthest Neighbors Unfolding

33

3.5.1 Implementation Issues of the Augmented Lagrangian and L-BFGS

Before presenting the results the authors think it is necessary to mention some details

on the parameters of the optimization methods. As mentioned above, the augmented

Lagrangian method has some parameters that need to be tuned. First of all the

memory of the L-BFGS method was chosen to be 10.

The sigma (penalty parameter) is the most critical one since if it is very small

then the method does not converge. The solution is moving away from the feasible

domain. If sigma is very high then the method moves very quickly to feasible domain

without giving the opportunity for the variance to be maximized. Our strategy was

to always start with a small sigma and if the objective function exceeds an upper

bound sigma is increased. Eventually sigma will get the right value. It turns out

that a reasonable upper bound for the objective (distance of furthest neighbors) in

the optimization problem is the following:

B = dmax ∗N2 (5.31)

where dmax is the maximum nearest neighbor distance in the set. The geodesic

distance between two furthest neighbors cannot be greater than Ndmax. This upper

bound is also valid for the maximum variance case since the variance is the distance

from the axis origin which is always less than the distance of the furthest neighbors.

Another parameter of the method is the k-neighborhood. This can be set ad-hoc

or it can be tuned. In the experiments, the technique of leave-one-out cross validation

was used described in [91]. As it will be shown in the following sections, a bad choice

of the k-parameter can give wrong results.

The only parameter that still remains ad-hoc is the norm gradient accuracy for

optimization for a fixed-penalty parameter (sigma). As a heuristic we found out that

when the norm gradient is less than sigma the inner optimization should terminate,

although we noticed that it could have been set at a higher value. The whole

34

Table 1: Dataset description

dataset points dimension
Swiss roll up to 100,000 3

TIMIT MFCC features 100,000 39
Corel color histogram 68,040 32
Corel color moments 68,040 9

Corel textures 68,040 16

optimization algorithm terminates when the feasibility error is below a certain value.

3.5.2 Datasets

For our experiments we used the following datasets:

1. A three dimensional Swiss roll ranging from 1000 points up to 100K

2. Speech features from the TIMIT database

3. The Corel image features

Detailed descriptions of the datasets can be found at [38], while a short descriptions

can be found in table 1.

The goal of the experiments was to visualize the datasets so we tried low

dimensional embedding to 2, 3 dimensions or up to the dimension for which the

optimization method would give a satisfactory feasibility error.

Swiss roll experiments. Swiss roll has been a benchmark for manifold learning,

but the experiments have been limited to few hundreds of points. In these experiments

the goal is to investigate the scalability of both the MVU and MFNU and the quality

of the results. In Figure 3.5.2 we see the tremendous difference between convex MVU

and NCMFNU, as it is 6 orders of magnitude slower for 100K points.

Maximum Furthest Neighbors Unfolding. In Figure 19.a we see that the

algorithm scales in a quasi-linear way. The jump between 50 and 70 thousand points

is because we had to increase the number of neighbors. In Figure 19.c we see that

35

the number of iterations has a linear trend which means that the whole complexity

of the algorithm has to be quadratic asymptotically. The reason why we don’t notice

clear quadratic behavior is because all linear operations of LBFGS don’t scale linearly

because of the BLAS implementation. BLAS has almost constant behavior for small

vectors and asymptotically linear. In Figure 19.c we see that the objective function

increases linearly, which is something expected and a good way to verify that the

algorithm works, although the results were also visually inspected in order to verify

convergence of the algorithm. In Figure 19.d, the number of constraints versus the

number of points is plotted. When the k-neighborhoods are computed it is obvious

that some of them will be duplicated. In this picture we see that the necessary

constraints also grow linearly but they are always less than the imposed ones (solid

line).

Maximum Furthest Neighbors Unfolding with auto-tuning. In Figure 20,

it is noteworthy that in the middle column the unfolded Swiss roll seems very well

unfolded. The scaling seems to be be almost linear until 45000 points.

Maximum Variance Unfolding. In Figure 17 we see the scaling of MVU.

By comparing Figure 17.a and 19.a we can see that MVU is faster than MFNU.

Unfortunately in fig 21 we see that the MVU gives very poor results and gets trapped

into local minima more easily.

Corel dataset. In Figure 22 the results from MFNU are depicted for the color

moments and color histograms. We tested different k-neighborhoods and dimensions.

It turns out that both datasets can be embedded in 3 dimensions. All the experiments

run in reasonable time from a few minutes up to 2 hours.

TIMIT dataset. The TIMIT dataset is a benchmark speech dataset. After

sampling we extracted 100,000 39-dim points that correspond to the Mel-frequency

cepstrum coefficients of 25msec frames with 12.5msec overlap. The dimension was

reduced with PCA and the first 10 principal components were found to correspond to

36

96% of the total sum of eigenvalues. It took about 5 hours to unfold it in 5 dimensions.

Optimization is the most intensive part as it took 95% of the time. The part of

computing the nearest neighbors took only 15 minutes with the dual tree algorithm.

Just as a comparison, if we are using the naive method it would take 14hours just to

compute the neighbors and the whole algorithm would take 14+5=19hours.

Although the dataset was unfolded in 5 dimensions, it turns out that 3 are the

dominant ones. This is a very useful result since it shows clearly that there are many

redundant dimensions on the initial 10 dimensional dataset.

3.6 Extensions of MVU

In this chapter, we showed experimentally the power of MVU and with the help of

furthest neighbors we reformulated the objective so that the optimization is more

robust when it comes to the non-convex case. In this section, we will introduce some

variations of MVU that can be useful for different types of applications. Our goal is

not to show experimental results on real data as it is not yet possible to scale these

methods.

3.6.1 Maximization of the Leave One Out Cross Validation (LOOCV)

As discussed in chapter 2, the Gram matrix K can represent any Mercer Kernel

function that can be used for Kernel Density Estimation (KDE). The only restriction

is that the kernel should be positive everywhere. Therefore the Kernel matrix has

two useful applications, computing distances between points and computing densities

on points. Our goal is to embed a dataset in a Euclidean space where the coordinates

can be used to compute geodesic distances and kernel densities. The formulation of

the problem is the following:

37

max
K

N

√√√√
N∏

j=1

fj (6.32)

s.t.

Aij •K = dij ∀i, j ∈ Ii

fj =
∑

i6=j

Kji, ∀i = 1, . . . , N

K ≥ 0

K º 0

The objective function requires approximately log2(N) second order cones. In Figures

23 and 24 examples of max LOOCV are shown. Compared to the MVU the spectrum

is slightly wider, but considerably more compact to Kernel PCA. Another interesting

part is that it deforms the manifold and it squeezes points into clusters.

3.6.2 Preserving volumes/densities instead of distances

In [67] Ozakin showed that for a large class of manifolds it is not possible to preserve

the distances. For example, a 3 dimensional ice-cream cone cannot be embedded

in 2 dimensions. The same holds for the 3 dimensional sphere. He proved that

instead of distances it makes more sense to preserve densities or measures over the

manifolds. Based on that he developed an algorithm for embedding a dataset based on

density preservation. The algorithm is based on the solution of a non-convex problem.

According to the previous analysis the problem can be cast as a semidefinite program:

max
K

Trace(K) (6.33)

s.t.

f̂j =
∑

i

Kji, ∀j = 1, . . . , N

K ≥ 0

K º 0

38

where f̂(xj) is the KDE on point xj estimated with any of KDE method on the

original dataset. We also propose a different way to compute densities. The density

can be defined as the number of points per volume. Assume that for every point

we have found the k-nearest neighbors. For that set it is possible to compute the

minimum volume inclusive ellipsoid as shown in chapter 2.

E = {x|(x− c∗)T D∗(x− c∗) ≤ 1} (6.34)

An approximation of density can be:

f̂(xj) =
k

det D∗
−1 (6.35)

An alternative way that has been suggested in the past is using a sphere instead of

an ellipsoid (not the minimum volume one). This corresponds to centering the sphere

on a point and setting the radius equal to the distance of the k-nearest neighbor.

Although this is not the optimal packing sphere is computationally cheap.

The formulation in equation 6.33 is weak and it does not generate interesting

results. This is mainly because it does not include any information about the geometry

of the data. It is easy to verify (we also verified it experimentally with SEDUMI [86])

that the KDE values will be placed on the diagonal giving a very high rank and a

trivial solution. So instead we prefer to maximize the distance between neighbors.

In other words we are trying to spread the neighbors around the points, but they

are constrained by the fact that the sum of their dot products must be equal to the

density value.

max
K

∑

(i,j)∈I

Aij •K (6.36)

s.t.

f̂j =
∑

i

Kji, ∀j = 1, . . . , N

Kij ≥ 0, (i, j) ∈ I

K º 0

39

We call the above algorithm Density Preservation Map (DPM). The optimization of

6.36 can be seen as a reduction process of Kernel matrices. For example a matrix

that contains all pair Gaussian kernel evaluations has typically high rank. The rank

is controlled by the bandwidth (sigma) of the Gaussian. Large bandwidths give lower

rank matrices, while low ones, increase the rank. In general the optimal bandwidth

[80, 29] is small, so the rank is expected to be high. In many cases what is really

interesting about a kernel matrix is that the sum of its rows corresponds to the density

on each point. So with the formulation of equation 6.36 we can construct a matrix

that the sum of only k elements of every row matches a given density. Essentially we

are stripping information out of the matrix and implicitly we reduce its rank. For the

optimization problem only N constraints are necessary. It is well known that the rank

of the SDP solution depends on the number of constraints. In Figure 25 we see the

results of DPM compared to Kernel PCA. In Figure 26 we show the corresponding

eigenvalue spectra. In both cases where the bandwidth is either small or large DPM

has more compact spectrum.

3.7 Summary

In this chapter we presented implementational issues of Maximum Variance Unfolding

and tested it over medium size to large datasets. The contribution of this chapter

is primarily the modification of the objective function from Max Variance to Max

Furthest Neighbor distance, that turned out to have better performance in terms of

overcoming local optima. The MFNU method significantly outperforms by far SPE.

We also presented some heuristics for auto-tuning of the augmented Lagrangian, by

estimating an upper bound for the objective function. Our experiments showed that it

is not yet clear if the method can scale linearly, as it depends on the dataset pathology,

and on the number of the necessary constraints. Another critical parameter for the

scalability of any Manifold Learning Method is the k-neighborhood. Recent work

40

presented in [82] shows that k should be on the order of O(N
1

d+1), where d is the

intrinsic dimensionality. Essentially this adds more complexity on the problem.

This is the first time that MVU is applied on medium to large size datasets,

revealing some dimensional aspects. As a future direction we believe that analytical

computation of the Hessian and investigation of the right preconditioner for the

Newton Method should be considered.

Extensions of MVU on the KDE domain were also introduced and preliminary

experiments showed promising results for discovering new kernels suitable for KDE.

41

(a)

10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

1600

1800

2000

thousands of points

ti
m

e

in

s
e
c
o

n
d
s

(b)

10 20 30 40 50 60 70 80 90
1800

2000

2200

2400

2600

2800

3000

thousands of points

it
e

ra
ti
o

n
s

Figure 17: The classic MVU algorithm a)Scaling performance b)Iterations required
for the optimization

42

0 2 4 6 8 10

x 10
4

10
2

10
4

10
6

10
8

10
10

10
12

number of points

tim
e

Convex MVU
Nonconvex MVFU

Figure 18: Convex MVU vs non-convex MFNU. For the convex MVU we run
experiments up to 600 points and then extrapolated

43

(a)
10 20 30 40 50 60 70 80 90 100

0

2000

4000

6000

8000

10000

12000

thousands of points

ti
m

e

in

s
e

c
o

n
d

s

(b)

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5x 10
8

thousands of points
o

b
je

c
ti
v
e

fu

n
c
ti
o

n

(c)

10 20 30 40 50 60 70 80 90 1005000

6000

7000

8000

9000

10000

11000

12000

13000

thousands of points

it
e

ra
ti
o

n
s

(d)
10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8x 10
5

thousands of points

n
u

m
b

e
r

o
f

c
o

n
s
tr

a
in

ts

Figure 19: The MFNU performance, a) Scaling of the MFNU b)Maximization
results of the Maximum Furthest Neighbors objective c) Iterations required for the
optimization d) Number of constrained kN (solid line), consolidated constraints
(dashed line)

44

(a)

10 15 20 25 30 35 40 45
0

500

1000

1500

2000

2500

3000

3500

4000

thousands of points

ti
m

e

in

s
e
c
o

n
d

s

(b)
10 15 20 25 30 35 40 45

4000

5000

6000

7000

8000

9000

10000

thousands of points

it
e

ra
ti
o

n
s

(c)

10 15 20 25 30 35 40 45

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5x 10
5

thousands of points

n
u
m

b
e

r
o
f

c
o

n
s
tr

a
in

ts

consolidated

imposed

Figure 20: The MFNU algorithm with auto-tuning of k-neighborhoods, a)Scaling
of the algorithm b)Iterations required for the optimization c)Number of constrained
kN (solid line), consolidated constraints (dashed line)

45

Figure 21: Unfolded Swiss rolls 10K, 20K, 40K (top to bottom row), (left
column) MFNU, (center column)MFNU with auto-tuning for k-neighborhoods, (right
column)MVU. All images have been sampled showing only 4000 points, for visual
clarity

46

(a)

(b)

(c)

Figure 22: (left column) corel color moments, (right column) corel color histogram,
(a)4-point neighborhood, (b)5-point neighborhood, (c)7-point neighborhood

47

5 10 15 20 25 30
0

0.5

1

1.5

2

x 10
4

dimensions

m
ag

ni
tu

de

Figure 23: The 3 first components of the Max LOOCV unfolding 256-point swiss
roll, along with the eigenvalue spectrum. In this experiment a k=5 neighborhood is
preserved.

48

5 10 15 20 25 30 35
0

1000

2000

3000

4000

5000

6000

dimensions

m
ag

ni
tu

de

Figure 24: The 3 first components of the Max LOOCV unfolding 512-point swiss
roll, along with the eigenvalue spectrum. In this experiment a k=5 neighborhood is
preserved.

49

−0.05

0

0.05

0.1

0.15

0.2

−0.1

−0.05

0

0.05

0.1

0.15

−0.2

0

0.2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

−0.3

−0.2

−0.1

0

0.1
−0.4

−0.3

−0.2

−0.1

0

0.1

Figure 25: Top: The first 3 components of the DPM for a 400-point swiss
roll, Bottom: The first 3 components of Kernel PCA. In this experiment a k=4
neighborhood is preserved. The bandwidth of the Gaussian is medium to small.

50

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

dimension

no
rm

al
iz

ed
 m

ag
ni

tu
de

DPM
KPCA

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

dimension

no
rm

al
iz

ed
 m

ag
ni

tu
de

DPM
data2

Figure 26: Top: The spectrum of DPM and Kernel PCA for small bandwidth.
Bottom: The same spectra for large bandwidth.

51

CHAPTER IV

NON-NEGATIVE MATRIX FACTORIZATION AS A

SPECIAL CASE OF MVU. YET ANOTHER

EMBEDDING PROBLEM

52

In this chapter we are going to address Non-Negative Matrix Factorization [55],

[68], another dimensionality reduction method. Through a different reformulation of

the problem we will show that this is special case of MVU. We will show that the

same framework of semidefinite programming can be used in order to find NMF.

NMF is a dimensionality reduction method of much recent interest which can,

for some common kinds of data, sometimes yield results which are more meaningful

than those returned by the classical method of Principal Component Analysis (PCA),

for example (though it will not in general yield better dimensionality reduction than

PCA, as we’ll illustrate later). For data of significant interest such as images (pixel

intensities) or text (presence/absence of words) or astronomical spectra (magnitude

in various frequencies), where the data values are non-negative, NMF can produce

components which can themselves be interpreted as objects of the same type as the

data which are added together to produce the observed data. In other words, the

components are more likely to be sensible images or documents or spectra. This

makes it a potentially very useful interpretive data mining tool for such data.

A second important interpretive usage of dimensionality reduction methods is the

plot of the data points in the low-dimensional space obtained (2-D or 3-D, generally).

Multidimensional scaling methods and recent nonlinear manifold learning methods

focus on this usage, typically enforcing that the distances between the points in the

original high-dimensional space are preserved in the low-dimensional space (isometry

constraints). Then, apparent relationships in the low-dimensional plot (indicating for

example cluster structure or outliers) correspond to actual relationships. A plot of the

points using components found by standard NMF methods will in general produce

misleading results in this regard, as existing methods do not enforce such a constraint.

Another major reason that NMF might not yield reliable interpretive results

is that current optimization methods [47, 56] might not find the actual optimum,

leading to poor performance in terms of both of the above interpretive usages. This

53

is because its objective function is not convex, and so unconstrained optimizers are

used. Thus, obtaining a reliably interpretable NMF method requires understanding

its optimization problem more deeply – especially if we are going to actually create

an additionally difficult optimization problem by adding isometry constraints.

In section 4.1 we first study at a fundamental level the optimization problem

of standard NMF. We relate for the first time the NMF problem to the theory

of Completely Positive Factorization, then using that theory, we show that every

non-negative matrix has a non-trivial exact non-negative matrix factorization of the

form W=VH, a basic fact which had not been shown until now. Using this theory

we also show that a convex formulation of the NMF optimization problem exists,

though a practical solution method for this formulation does not yet exist. We

then (section 4.2) explore four novel formulations of the NMF optimization problem

toward achieving a global optimum: convex relaxation using the positive semidefinite

cone, approximating the semidefinite cone with smaller ones, convex multi-objective

optimization, and g eneralized geometric programming (section 4.3). We highlight

the difficulties encountered by each approach. Following we show that the quality

of the relaxations can be improved by cross-validating over sparsity constraints. We

also apply a rank reduction method based on a heuristic that finds a local optimum

of NMF.

In section 4.4 we show a practical algorithm for an isometric NMF (isoNMF

for short), representing a new data mining method capable of producing both

interpretable components and interpretable plots simultaneously. This method

combines the advantages of MVU and its variants presented in chapter 3 and

NMF. We use ideas for efficient optimization and efficient neighborhood computation

presented in chapter 2 to obtain a practical scalable method.

In section 4.5 we demonstrate the utility of isoNMF in experiments with datasets

used in previous papers. We show that the components it finds are comparable to

54

those found by standard NMF, while it additionally preserves distances much better,

and also results in more compact spectra.

4.1 Convexity in Non-Negative Matrix Factorization under
the positive completeness.

Given a non-negative matrix V ∈ <N×m
+ the goal of NMF is to decompose it in two

matrices W ∈ <N×k
+ , H ∈ <k×m

+ such that V = WH. Such a factorization always

exists for k ≥ m. The factorization has a trivial solution where W = V and H = Im.

Determining the minimum k is a difficult problem and no algorithm exists for finding

it. In general we can show that NMF can be cast as a Completely Positive (CP)

Factorization problem [9].

Definition 4.1.1. A matrix A ∈ <N×N
+ is Completely Positive if it can be factored

in the form A = BBT , where B ∈ <N×k
+ . The minimum k for which A = BBT holds

is called the CP rank of A.

Not all matrices admit a completely positive factorization even if they are positive

definite and non-negative. Notice though that for every positive definite non-negative

matrix a Cholesky factorization always exists, but there is no guarantee that the

Cholesky factors are non-negative too. Up to now there is no algorithm of polynomial

complexity that can decide if a given positive matrix is CP. A simple observation can

show that A has to be positive definite, but this is a necessary and not a sufficient

condition.

Theorem 4.1.1. If A ∈ <N×N
+ is CP then rank(A) ≤ cp-rank(A) ≤ N(N+1)

2
− 1

The proof can be found in [9]p.156. It is also conjectured that the upper bound can

be tighter N2

4
.

Theorem 4.1.2. if A ∈ <N×N
+ is diagonally dominant1, then it is also CP.

1A matrix is diagonally dominant if aii ≥
∑

j 6=i |aij|

55

The proof of the theorem can be found in [46]. Although CP factorization (A = BBT)

doesn’t exist for every matrix, we prove that non-trivial NMF (A = WH) always

exists.

Theorem 4.1.3. Every non-negative matrix V ∈ <N×m
+ has a non-trivial, non-

negative factorization of the form V = WH.

Proof. Consider the following matrix:

Z =

D V

V T E

 (1.37)

We want to prove that there always exists B ∈ <N×k
+ such that Z = BBT . If this is

true then B can take the form:

B =

W

HT

 (1.38)

Notice that if D and E are arbitrary diagonally dominant completely positive

matrices, then B always exists. The simplest choice would be to chose them as

diagonal matrices where each element is greater or equal to the sum of rows/columns

of V. Since they are diagonally dominant according to 4.1.2 Z is always CP. Since Z

is CP then B exists so do W and H. ¤

Although theorem 4.1.2 also provides an algorithm for constructing the CP-

factorization, the cp-rank is usually high. A corollary of theorems 4.1.1 (cp-rank(A) ≥
rank(A)) and 4.1.3 (existence of NMF) is that SVD has always a more compact spec-

trum than NMF.

There is no algorithm known yet for computing an exact NMF despite its existence.

In practice, scientists try to minimize the norm [37, 56] of the factorization error.

min
W,H

||V −WH||22 (1.39)

This is the objective function we use in the experiments for this paper.

56

4.1.1 Solving the optimization problem of NMF.

Although in the current literature it is widely believed that NMF is a non-convex

problem and only local minima can be found, we will show in the following subsections

that a convex formulation does exist. Despite the existence of the convex formulation,

we also show that a formulation of the problem as a generalized geometric program,

which is non-convex, could give a better approach for finding the global optimum.

4.1.1.1 NMF as a convex conic program.

Theorem 4.1.4. The set of Completely Positive Matrices KCP is a convex cone.

Proof. See [9]p.71.

It is always desirable to find the minimum rank of NMF since we are looking for the

most compact representation of the data matrix V . Finding the minimum rank NMF

can be cast as the following optimization problem:

min
W,H

rank

W V

V T H

 (1.40)

subject to:

W ∈ KCP

H ∈ KCP

(1.41)

Since minimizing the rank is non-convex, we can use it’s convex envelope that

according to [72] is the trace of the matrix. So a convex relaxation of the above

57

problem is:

min
W,H

Trace

W V

V T H

 (1.42)

subject to: (1.43)

W ∈ KCP

H ∈ KCP

(1.44)

After determining W ,H, W and H can be recovered by CP factorization of W ,H,

which again is not an easy problem. In fact there is no practical barrier function

known yet for the CP cone so that Interior Point Methods can be employed. Finding

a practical description of the CP cone is an open problem. So although the problem

is convex, there is no algorithm known for solving it.

4.2 Convex relaxations of the NMF problem.

In the following subsections we investigate convex relaxations of the NMF problem

with the Positive Semidefinite Cone [64].

4.2.1 A simple convex upper bound with Singular Value Decomposition.

Singular Value Decomposition (SVD) can decompose a matrix in two factors U, V :

A = UV (2.45)

Unfortunately the sign of the SVD components of A ≥ 0 cannot be guaranteed to

be non-negative except for the first eigenvector [62]. However if we project U, V on

the nonnegative orthant (U, V ≥ 0) we get a very good estimate (upper bound) for

NMF. We will call it clipped SVD, (CSVD). CSVD was used as a benchmark for the

relaxations that follow. It has also been used as an initializer for NMF algorithms

[54].

58

4.2.2 Relaxation with a positive semidefinite cone.

In the minimization problem of equation 4.2.2 where the cost function is the L2 norm,

the nonlinear terms wilhlj appear. A typical way to get these terms [64] would be to

generate a large vector z = [W ′(:); H(:)], where we use the MATLAB notation (H(:)

is the column-wise unfolding of a matrix). If Z = zzT (rank(Z) = 1) and z > 0

is true, then the terms appearing in ||V − WH||2 are linear in Z. In the following

example eq. 2.46, 2.47 (see next page) where V ∈ <2×3,W ∈ <2×2, H ∈ <2×3 we show

the structure of Z. Terms in bold are the ones we need to express the constraint

V = WH.

z =

w11

w12

w21

w22

h11

h21

h12

h22

h13

h23

(2.46)

Z =

w2
11 w11w12 w11w21 w11w22 w11h11 w11h21 w11h12 w11h22 w11h13 w11h23

w12w11 w2
12 w12w21 w12w22 w12h11 w12h21 w12h12 w12h22 w12h13 w12h23

w21w11 w21w12 w2
21 w21w22 w21h11 w21h21 w21h12 w21h22 w21h13 w21h23

w22w11 w22w12 w22w21 w2
22 w22h11 w22h21 w22h12 w22h22 w22h13 w22h23

h11w11 h11w12 h11w21 h11w22 h2
11 h11h21 h11h12 h11h22 h11h13 h11h23

h21w11 h21w12 h21w21 h21w22 h21h11 h2
21 h21h12 h21h22 h21h13 h21h23

h12w11 h12w12 h12w21 h12w22 h12h11 h12h21 h2
12 h12h22 h12h13 h12h23

h22w11 h22w12 h22w21 h22w22 h22h11 h22h21 h22h12 h2
22 h22h13 h22h23

h13w11 h13w12 h13w21 h13w22 h13h11 h13h21 h13h12 h13h22 h2
13 h13h23

h23w11 h23w12 h23w21 h23w22 h23h11 h23h21 h23h12 h23h22 h23h13 h2
23

(2.47)

59

Now the optimization problem is equivalent to:

min
Z

i=N,j=m∑
i=1,j=1

k∑

l=1

(Zik+l,Nk+jk+l − Vij)
2 (2.48)

subject to:

rank(Z) = 1

This is not a convex problem but it can be easily be relaxed to [22]:

min
Z

Trace(Z) (2.49)

subject to:

A • Z = Vij

Z º 0

Z º zzT

Z ≥ 0

where A is a matrix that selects the appropriate elements from Z. Here is an example

for a matrix A that selects the elements of Z that should sum to the V13 element:

A13 =

0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0

(2.50)

In the second formulation (2.49) we have relaxed Z = zzT with Z º zzT . The

objective function tries to minimize the rank of the matrix, while the constraints try

to match the values of the given matrix V . After solving the optimization problem

the solution can be found on the first eigenvector of Z. The quality of the relaxation

depends on the ratio of the first eigenvalue to sum of the rest. The positivity of Z will

60

guarantee that the first eigenvector will have elements with the same sign according to

the Peron Frobenious Theorem [62]. Ideally if the rest of the eigenvectors are positive

they can also be included. One of the problems of this method is the complexity. Z

is (N + m)k × (N + m)k and there are ((N+m)k)((N+m)k−1)
2

non-negative constraints.

Very quickly the problem becomes unsolvable.

In practice the problem as posed in 2.48 always gives W and H matrices that

are rank one2. After testing the method exhaustively with random matrices V that

either had a product V = WH representation or not the solution was always rank

one on both W and H. This was always the case with any of the convex formulations

presented in this paper. This is because there is a missing constraint that will let the

energy of the dot products spread among dimensions. This is something that should

characterize the spectrum of H.

The H matrix is often interpreted as the basis vectors of the factorization and W

as the matrix that has the coefficients. It is widely known that in nature spectral

analysis is giving spectrum that decays either exponentially e−λf or more slowly 1/fγ.

Depending on the problem we can try different spectral functions. In our experiments

we chose the exponential one. Of course the decay parameter λ is something that

should be set adhoc. We experimented with several values of λ, but we couldn’t come

up with a systematic, heuristic and practical rule. In some cases the reconstruction

error was low but in some others not. Another relaxation that was necessary for

making the optimization tractable was to reduce the the non-negativity constraints

only on the elements that are involved in the equality constraints.

4.2.3 Approximating the SDP cone with smaller ones.

A different way to deal with the computational complexity of SDP (eq. 2.49) is to

approximate the big SDP cone (N +m)k×(N +m)k with smaller ones. Let Wi be the

2Unfortunately the non-zero eigenvalues are more than one. As it was highlighted only the first one can be included.
For some reason when we construct W and H from the first eigenvector they are always rank 1

61

ith row of W and Hj the jth column of H. Now zij = [Wi(:)
′; Hj(:)] (2k dimensional

vector) and Zij = zijz
T
ij (2k × 2k matrix), or

Zij =

W T
i Wi W T

i Hj

W T
i Hj HjH

T
j

 (2.51)

or it is better to think it in the form:

Zij =

Wi ZWH

ZWH Hj

 (2.52)

and once W ,H are found then Wi, Hj can be found from SVD decomposition of

W ,H and the quality of the relaxation will be judged upon the magnitude of the

first eigenvalue compared to the sum of the others. Now the optimization problem

becomes:

min
N∑

i=1

m∑
j=1

Trace(Zij) (2.53)

Zij ≥ 0

Zij º 0

Aij • Zij = vij, ∀i, j

The above method has Nm constraints. In terms of storage it needs

• (N + m) symmetric positive definite k × k matrices for every row/column of

W,H, which is (N+m)k(k+1)
2

• Nm symmetric positive definite k × k matrices for every WiHj product, which

is (Nm)k(k+1)
2

In total the storage complexity is O((N+m+Nm)k(k+1)
2

) which is significantly smaller

by an order of magnitude from O((N+m)k((N+m)k−1)
2

) which is the complexity of the

previous method. There is also significant improvement in the computational part.

The SDP problem is solved with interior point methods [64] that require the inversion

62

of a symmetric positive definite matrix at some point. In the previous method that

would require O((N + m)3k3) steps, while with this method we have to invert Nm

2k × 2k matrices, that would cost Nm(2k)3. Because of their special structure the

actual cost is (Nm)k3 + max(N, m)k3 = (Nm + max(N,m))k3.

We know that Wi,Hj º 0. Since Zij is PSD and according to Schur’s complement

on eq. 2.52:

Hj −ZWHW−1
i ZWH º 0 (2.54)

So instead of inverting (2.52) that would cost 8k3 we can invert 2.54. This formulation

gives similar results with the big SDP cone and most of the cases the results are

comparable to the CSVD.

4.2.4 NMF as a convex multi-objective problem.

A different approach would be to find a convex set in which the solution of the NMF

lives and search for it over there. Assume that we want to match Vij = WiHj =

∑m
l=1 WilHlj. In this section we show that by controlling the ratio of the L2/L1

norms of W,H it is possible to find the solution to NMF. Define WilHlj = Vij,l and

∑k
l=1 Vij,l = Vij. We form the following matrix that we require to be PSD:

1 Wil Hlj

Wil til Vij,l

Hlj Vij,l tjl

º 0 (2.55)

If we use the Schur complement we have:

til −W 2
il Vij,l −WilHlj

Vij,l −WilHlj tjl −H2
lj

 º 0 (2.56)

An immediate consequence is that

til ≥ W 2
il (2.57)

tjl ≥ H2
ll (2.58)

(til −W 2
il)(tjl −H2

lj) ≥ (Vij,l −WilHlj)
2 (2.59)

63

In the above inequality we see that the L2 error
∑N

i=1

∑m
j=1

∑k
l=1(Vij,l − WilHlj)

2

becomes zeros if til = W 2
il, tjl = H2

il, ∀til, tjl. In general we want to minimize t while

maximizing ||W ||2 and ||H||2. L2 norm maximization is not convex, but instead

we can maximize
∑

Wil,
∑

Hlj which are equal to the L1 norms since everything is

positive. This can be cast as convex multi-objective problem 3 on the second order

cone [12].

min

∑i=N
i=1

∑k
l=1 til +

∑j=m
j=1

∑k
l=1 tlj

−∑i=N
i=1

∑k
l=1 Wil −

∑j=m
j=1

∑k
l=1 Hlj

subject to : (2.60)

til −W 2
il Vij,l −WilHlj

Vij,l −WilHlj tjl −H2
lj

 º 0

Unfortunately multi-objective optimization problems even when they are convex they

have local minima that are not global too. An interesting direction would be to test

the robustness of existing multi-objective algorithms on NMF.

4.2.5 Augmenting the relaxations with sparsity constraints

A common problem in all the previous relaxations is a constraint on the distribution of

the eigenvalues of the problem. A different way to constraint the problem is through

the expected sparsity of the result. Hoyer [37] showed that the sparsity s(x) of a

vector x ∈ <m×1 can be expressed through its L1 and L2 norms.

s(x) =

√
m− ||x||1

||x||2√
m− 1

(2.61)

If x has only one non zero element s(n) evaluates to zero and if all the elements are all

the same (up to the sign) it evaluates to 1. The above method has been tested and it

is a good measure for the sparsity. If sparsity is given then a linear constraint between

L1 and L2 norms would suffice to solve the problem. Unfortunately in all the convex

3also known as vector optimization

64

relaxations we have optimizations that correspond to the L1 norm and to the square of

L2. That means we can only express constraints of the form L1 = (
√

m−(
√

m−1)s)L2
2.

Consider the following formulation:

Z =

I W T HT

W W V

H V T H

(2.62)

where V ∈ <N×m
+ , W ∈ <N×k

+ , H ∈ <m×k
+ . If the rank of Z is k then there exists

a matrix

z =

I

W

H

(2.63)

such that Z = zzT . This relaxation along with the others suffers from rank one

solution. To remedy this problem we enforce sparsity constraints. Sparsity constraints

can be enforces either on the W or H matrix. It is more common to enforce sparsity

constraints on the W matrix, specially when looking for sparse representation of data.

The optimization problem becomes now:

min
Z

Trace(Z) (2.64)

s.t.

AV
ij • Z = Vij, i = 1, . . . , N, j = 1, . . . , k

AW
ij • Z ≥ 0, i = 1, . . . , N, j = 1, . . . , k

AH
ij • Z ≥ 0, i = 1, . . . , m, j = 1, . . . , k

N∑

i=k+1

k∑
j=1

Zij = (
√

m− (
√

m− 1)s)
N∑

i=k+1

Zii

where AV , AW , AH are matrices that select elements of W,H, V . The last constraint

is an approximation to the sparsity constrain on W as indicated in equation 2.61.

In some problems it is useful to constraint the L2 norm to 1, so the last constraint

65

becomes an exact sparsity constraint. In reality the sparsity of the results is not known

or estimated ahead of time, so in practice the we solve the above problem for different

values of s and we pick the solution with the minimum error. A similar approach

for solving sparse NMF with a sequence of 2nd order conic programs and Reverse

Convex Programming was presented in [33, 32]. The method computes sequentially

updates on W,H and it is different to ours.

4.2.6 An algorithm for rank constrained problems

In his excellent book [19] Dattorro presented an iterative algorithm for rank constraint

optimization problems. The algorithm presented is a sequence of semidefinite

programs. Assume the following SDP problem:

min
G∈<N×N

Trace(G) (2.65)

s.t. (2.66)

Ai •G = bi,∀i = 1, . . . , p

Bi •G ≥ ci, ∀i = 1, . . . , q

G º 0

rank(G) ≤ n;

In [19] Dattorro proved that a local solution for the problem can be given by the

following sequential algorithm:

1. Set R = I

66

2. Let G∗ be the optimal solution of the following SDP:

min
G∈<N×N

G •R (2.67)

s.t. (2.68)

Ai •G = bi, ∀i = 1, . . . , p

Bi •G ≥ ci,∀i = 1, . . . , q

G º 0

(2.69)

3. Find R∗ by solving the following SDP:

min
R∈<N×N

G∗ •R (2.70)

I º W º 0

Trace(R) = N − n

4. if G∗ •R∗ ≤ ε terminate. Otherwise set R = R∗ and go to step 2.

The algorithm is known to behave well for small problems 4. Following we apply

and evaluate the above algorithm in the NMF problem as discussed in the previous

section without the sparsity constraint.

1. Set R = I

4According to [19] the method fails in large scale problems due to numerical errors of the current interior point
solvers

67

2. Let Z∗ be the optimal solution of the following SDP:

min
Z

Z •R (2.71)

s.t.

AV
ij • Z = Vij, i = 1, . . . , N, j = 1, . . . , k

AW
ij • Z ≥ 0, i = 1, . . . , N, j = 1, . . . , k

AH
ij • Z ≥ 0, i = 1, . . . , m, j = 1, . . . , k

(2.72)

3. Find R∗ by solving the following SDP:

min
R∈<N×N

Z∗ •W (2.73)

I º W º 0

Trace(Z) = N − k

4. if Z∗ •R∗ ≤ ε terminate. Otherwise set R = R∗ and go to step 2.

4.2.7 Experiments

In this section we evaluate the performance of the sparsity constraint optimization

as well as the algorithm 4.2.6 described in the previous section. Experiments on

random matrices with algorithm 2.64 showed poor performance, compared to the

standard non-convex solver. On the other hand the rank reduction algorithm 4.2.6 was

tested on several synthetic random matrices with known factorization and successfully

recovered the NMF components. Compared to the standard NMF it converged

much faster in a relative error on the order of 1e − 8 for small matrices. For larger

matrices the semidefinite program, becomes slow and for even larger ones intractable.

Specially the second one in the algorithm 4.2.6 has 2 positive semidefinite inequalities

R º 0, Z º 0 and a matrix equality Z = I − W that requires O((N + M + k)2)

equalities. We examine the NMF of a picture that contains 3 rice seeds Figure 27.

68

On this particular image the convex rank reduction algorithm gives the smaller error

with the non-convex solver (relative error 5.2% ¡7%). In Figure 28, 29 we show

the 6 components of both methods that are not very different. The reconstructed

images from both NMF algorithms is shown in Figure 30, 31 For comparison we also

show (Figure 33) the 6 first components that give 20% relative reconstruction error

(Figure 32). As it can be seen the svd components are meaningless, while the NMF

ones identify areas where the rice seeds exist.

10 20 30 40 50 60 70

5

10

15

20

25

30

35

Figure 27: 3 rice seeds original gray scale image

Although the rank constraint algorithm can guarantee local but not global

convergence, it tends to be very robust. We tested it extensively in over 1000 matrices

with known factorization and it always found the solution. A very similar heuristic

for reducing the rank of a matrix was introduced in the Minimum Volume Embedding

(MVE) [78]. The authors verified the robustness with a great variety of experiments.

4.2.8 An algorithm for solving the problem of Completely Positive
Factorization

We started this chapter with the theory of Completely Positive Matrices (CPM). The

theory of CPMs gave us a guarantee that NMF has a convex formulation, but never

provided an algorithm for computing it. Up to now CP factorization of a matrix in

polynomial time is an open problem. In this section we show that a rank constrained

69

20 40 60

10

20

30

20 40 60

10

20

30

20 40 60

10

20

30

20 40 60

10

20

30

20 40 60

10

20

30

20 40 60

10

20

30

Figure 28: The 6 components of rank reduction convex NMF

algorithm presented in section 4.2.6 can solve the problem of CP factorization and

find a local solution.

Given matrix A ∈ <N×N
+ , we want to test whether matrix B ∈ <N×k

+ such that

A = BBT , exists. Consider the matrix:

Z =

Ik BT

B A

 (2.74)

Matrix B can be found by solving the feasibility problem:

find B (2.75)

such that: (2.76)

B ≥ 0 (2.77)

rank(Z) ≤ k (2.78)

Z º 0 (2.79)

70

20 40 60

10

20

30

20 40 60

10

20

30

20 40 60

10

20

30

20 40 60

10

20

30

20 40 60

10

20

30

20 40 60

10

20

30

Figure 29: The 6 components of non-convex NMF

The above problem can be solved with the algorithm presented in section 4.2.6. We

know from theorem 4.1.1 that rank(A) ≤ k ≤ N(N+1)
2

−1 (also known as CP-rank). In

order to decide if a matrix is CP we need to solve 2.75 N(N+1)
2

− 1 times in the worst

case. Since the solution of 2.75 is local and not global if the algorithm converges to

Z∗ • R∗ = τ 6= 0 then we don’t know if this is because of infeasibility of the problem

or of local convergence.

4.3 Global and local solutions of non-convex NMF.

In the previous sections we gave several convex formulations and relaxations of the

NMF problem that unfortunately are either unsolvable or they are not scalable at all.

In practice the non-convex formulation of eq. 4.2.2 (classic NMF objective) along

with other like the KL distance between V and WH are used in practice [56].

All of them are non-convex and several methods have been recommended, such

as alternating least squares, gradient decent or active set methods [47]. In our

71

10 20 30 40 50 60 70

5

10

15

20

25

30

35

Figure 30: The 3 rice seeds image reconstructed from the 6 NMF components
acquired with the rank reduction convex NMF

experiments we used the L-BFGS method that scales very well for large matrices.

4.3.1 NMF as a Generalized Geometric Program and its Global Opti-
mum.

The objective function (eq. 4.2.2) can be written in the following form:

||V −WH||22 =
N∑

i=1

m∑
j=1

k∑

l=1

(Vij −WilHlj)
2 (3.80)

The above function is twice differential so according to [36] the function can be cast

as the difference of convex (d.c.) functions. The problem can be solved with general

off-the-shelf global optimization algorithms. It can also be formulated as a special

case of dc programming, the generalized geometric programming. With the following

72

10 20 30 40 50 60 70

5

10

15

20

25

30

35

Figure 31: The 3 rice seeds image reconstructed from the 6 NMF components
acquired with non-convex NMF

transformation Wil = ew̃il , Hlj = eh̃lj the objective becomes:

||V −WH||22 =
N∑

i=1

m∑
j=1

k∑

l=1

(
Vij − ew̃il+h̃lj

)2

(3.81)

=
N∑

i=1

m∑
j=1

V 2
ij +

N∑
i=1

m∑
j=1

(
k∑

l=1

ew̃il+h̃lj

)2

−2
N∑

i=1

m∑
j=1

Vij

(
k∑

l=1

ew̃il+h̃lj

)

The first term is constant and it can be ignored for the optimization. The other two

terms:

f(w̃il, h̃lj) =
N∑

i=1

m∑
j=1

(
k∑

l=1

ew̃il+h̃lj

)2

(3.82)

g(w̃il, h̃lj) = 2
N∑

i=1

m∑
j=1

Vij

(
k∑

l=1

ew̃il+h̃lj

)
(3.83)

73

0 10 20 30 40
0

2000

4000

6000

8000

X: 6
Y: 212.6

dimensions

ei
ge

nv
al

ue
 m

ag
ni

tu
de

Figure 32: The singular values of the 3 rice seeds

are convex functions also known as the exponential form of posinomials 5 [12]. For

the global solution of the problem

min
W̃ ,H̃

f(W̃ , H̃)− g(W̃ , H̃) (3.84)

the algorithm proposed in [23] can be employed. The above algorithm uses a branch

and bound scheme that is impractical for high dimensional optimization problems as

it requires too many iterations to converge. It is worthwhile though to compare it

with the local non-convex NMF solver on a small matrix. We tried to do NMF of

order 2 on the following random matrix:

0.45 0.434 0.35

0.70 0.64 0.43

0.22 0.01 0.3

5Posynomial is a product of positive variables exponentiated in any real number

74

20 40 60

10

20

30

20 40 60

10

20

30

20 40 60

10

20

30

20 40 60

10

20

30

20 40 60

10

20

30

20 40 60

10

20

30

Figure 33: The six first svd components of the 3 rice seeds

After 10000 restarts of the local solver the best error we got was 2.7% while the global

optimizer very quickly gave 0.015% error, which is 2 orders of magnitude less than

the local optimizer.

Another direction that is not investigated in this paper is the recently developed

algorithm for Difference Convex problems by Tao [88] that has been applied

successfully to other data mining applications such as Multidimensional Scaling. [3].

4.4 Isometric NMF.

NMF and MFNU are both optimization problems. The goal of isoNMF is to combine

these optimization problems in one optimization problem. MFNU has a convex and

a non-convex formulation, while for NMF only a non-convex formulation that can be

solved is known.

75

4.4.1 Convex isoNMF.

By using the theory presented in section 4.1.1.1 we can cast isoNMF as a convex

problem:

max
W̃ ,H̃

N∑
i=1

Bi • Z (4.85)

subject to:

Aij • W̃ = dij

Z =

W̃ V

V T H̃

Z ∈ KCP

W̃ ∈ KCP

H̃ ∈ KCP

Then W,H can be found by the completely positive factorization of W̃ = WW T , H̃ =

HHT . Again this problem although it is convex, there is no polynomial algorithm

known for solving it. The rank reduction framework of section 4.2.6 can also be

applied but it is not yet scalable.

4.4.2 Non-convex formulation of isoNMF.

The non convex isoNMF can be cast as the following problem:

max
N∑

i=1

Bi •WW T (4.86)

subject to:

Aij •WW T = dij

WH = V

W ≥ 0

H ≥ 0

76

The augmented lagrangian with quadratic penalty function is the following:

L = −
N∑

i=1

Bi •WW T (4.87)

−
N∑

i=1

∑

∀j∈Ii

λij(Aij •WW T − dij)

−
N∑

i=1

m∑
j=1

µij

k∑

l=1

(WikHkj − Vij)

+
σ1

2

N∑
i=1

∑

∀j∈Ii

(Aij •WW T − dij)
2

+
σ2

2

N∑
i=1

m∑
j=1

k∑

l=1

(WilHlj − Vij)
2

The non-negativity constraints are missing from the Lagrangian. This is because we

can enforce them through the limited bound BFGS also known as L-BFGS-B. The

derivative of the augmented Lagrangian is:

∂L
∂W

= −2
N∑

i=1

BiW (4.88)

−2
N∑

i=1

∑

∀j∈Ii

λijAijW

−
N∑

i=1

m∑
j=1

µijW

+2σ1

N∑
i=1

∑

∀j∈Ii

(Aij •WW T − dij)AijW

+2σ2

N∑
i=1

m∑
j=1

k∑

l=1

(WilHlj − Vij)W

∂L
∂H

= −
N∑

i=1

m∑
j=1

µijH (4.89)

+2σ2

N∑
i=1

m∑
j=1

k∑

l=1

(WilHlj − Vij)H

77

4.5 Experimental Results

In order to evaluate and compare the performance of isoNMF with traditional NMF

we picked 3 benchmark datasets that have been tested in the literature:

1. The CBCL faces database Figure 34(a,b) [39], used in the experiments of the

original paper on NMF [55]. It consists of 2429 grayscale 19 × 19 images that

they are hand aligned. The dataset was normalized as in [55].

2. The isomap statue dataset Figure 34(c) [40] consists of 698 64 × 64 synthetic

face photographed from different angles. The data was downsampled to 32×32

with the Matlab imresize function (bicubic interpolation).

3. The ORL faces [42] Figure 34(d) presented in [37]. The set consists of 472

19× 19 gray scale images that are not aligned. For visualization of the results

we used the nmfpack code available on the web [43].

The results for classic NMF and isoNMF with k-neighborhood equal to 3 are

presented in Figure 35, 36 and tables 2, 3. We observe that classic NMF gives always

lower reconstruction error rates that are not that far away from the isoNMF. Classic

NMF fails to preserve distances contrary to isoNMF that always does a good job in

preserving distances. Another observation is that isoNMF gives more sparse solution

than classic NMF. The only case where NMF has a big difference in reconstruction

error is in the CBCL-face database when it is being preprocessed. This is mainly

because the preprocessing distorts the images and spoils the manifold structure. If

we don’t do the preprocessing Figure 35(d), the reconstruction error of NMF and

isoNMF are almost the same. We would also like to point that isoNMF scales equally

well with the classic NMF.

78

In Figure 38 we see a comparison of the energy spectrums of classic NMF and

isoNMF. We define the spectrum as

si =

∑N
l=1 W 2

li√∑M
l=1 H2

il

This represents the energy of the component normalized by the energy of the

prototype image generated by NMF/isoNMF. Although the results show that isoNMF

is much more compact than NMF, it is not a reasonable metric. This is because the

prototypes (rows of the H matrix are not orthogonal to each other. So in reality

∑k
i=1 si <

∑N
i=1

∑m
j=1(WH)2

ij and actually much smaller. This is because the dot

product between the rows is not zero.

Table 2: Classic NMF, the relative root mean square error, sparsity and distance
error for the four different datasets (cbcl normalized and plain, statue and orl)

classic NMF cbcl norm. cbcl statue orl
rec. error 22.01% 9.20% 13.62% 8.46%
sparsity 63.23% 29.06% 48.36% 46.80%

dist. error 92.10% 98.61% 97.30% 90.79%

Table 3: isoNMF, the relative root mean square error, sparsity and distance error
for the four different datasets (cbcl normalized and plain, statue and orl)

isoNMF cbcl norm. cbcl statue orl
rec error 33.34% 10.16% 16.81% 11.77%
sparsity 77.69% 43.98% 53.84% 54.86%

dist. error 4.19% 3.07% 0.03% 0.01%

4.6 Summary

In this chapter we presented a deep study of the optimization problem of NMF,

showing some fundamental existence theorems for the first time as well as various

advanced optimization approaches – convex and non-convex, global and local.

79

(a) (b)

(c) (d)

Figure 34: (a)Some images from the cbcl face database (b)The same images after
variance normalization, mean set to 0.25 and thresholding in the interval [0,1] (c)The
synthetic statue dataset from the isomap website [40] (d)472 images from the orl faces
database [42]

We presented an algorithm that finds a local optimum of NMF by solving a

sequence of semidefinite programs. We also used the same algorithm to solve the

problem of Completely Positive Factorization. We also developed and experimentally

demonstrated a new method, isoNMF, which preserves both non-negativity and

isometry, simultaneously providing two types of interpretability. With the added

reliability and scalability stemming from an effective optimization algorithm, we

believe that this method represents a potentially valuable practical new tool for the

exploratory analysis of common data such as images, text, and spectra.

80

(a) (b)

(c) (d)

Figure 35: Top row: 49 Classic NMF prototype images. Bottom row: 49 isoNMF
prototype images (a, c) CBCL-face database with mean variance normalization and
thresholding, (b, d) CBCL face database without preprocessing.

81

(a) (b)

(c) (d)

Figure 36: Top row: 49 Classic NMF prototype images. Bottom row: 49 isoNMF
prototype images (a, c) statue database , (b, d) orl-faces database

82

(a)
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b)
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(c)
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 37: Scatter plots of two largest components of classic NMF(in blue) and
Isometric NMF(in red) for (a)cbcl faces (b)isomap faces (c)orl faces

83

(a)
0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

NMF dimension

no
rm

al
iz

ed
 e

ne
rg

y

(b)
0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

NMF dimension

no
rm

al
iz

ed
 e

ne
rg

y

(c)
0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

NMF dimension

no
rm

al
iz

ed
 e

ne
rg

y

Figure 38: In this set of figures we show the spectrum of classic NMF (solid line)
and Isometric NMF (dashed line) for the three datasets (a)cbcl face (b)isomap statue
(c)orl faces. Although isoNMF gives much more compact spectrum we have to point
that the basis functions are not orthogonal, so this Figure is not comparable to SVD
type spectrums

84

CHAPTER V

LEARNING ISOMETRIC SEPARATION MAPS

85

Support Vector Machines (SVMs)have been quite successful in separating classes

of data that are not linearly separable. The kernel trick lifts the data in a high

dimensional Hilbert space usually of infinite dimension [79]. Embedding datasets

in infinite dimensional spaces gives the advantage of separating data with linear

hyperplanes in the lifted space, that otherwise would not be separable in the original

space. So far it is not clear how the dimensionality of the kernel affects the

performance of SVMs. It is not known yet how many dimensions are sufficient for

separating the classes. It is very likely that the minimum dimension required for linear

separability is much smaller than the original dimension of the data. This is because

the data might already be embedded in a manifold with redundant dimensions.

Maximum Variance Unfolding (MVU) [95] along with other manifold learning

methods has addressed the problem of reducing the dimensionality of the data by

preserving local distances. Most of the time data end up living in a lower dimensional

space. MVU explicitly finds the optimal kernel matrix for the data, by solving a

semidefinite program as we saw in chapter 3. Although MVU usually gives the most

compact spectrum [97, 57], it has very poor performance when it comes to using

the kernel matrix for SVM classification [97] as it does not include any information

about the linear separability of the classes. For example, in Figure 39b we show two

classes on a Swiss roll manifold. After unfolding with MVU 39d, the classes remain

non-linearly separable.

In [83] the authors introduced colored MVU as an algorithm that can find low

dimensional embedding on data that are colored according to their class. It is cast as

an optimization problem for minimizing the ”user defined” class distance regularized

by the local distance preservation. Depending on the weight of the regularizer the

embedding dimension can change dramatically and the initial manifold geometry can

be heavily distorted.

86

In this chapter we introduce a variation of MVU that takes into consideration the

linear separability of the classes. The result is a new algorithm, Isometric Separation

Mapping (ISM), that gives an unfolding that preserves the class structure of the

manifold. The algorithm can be seen as a transductive (semi-supervised) SVM, since

it requires the test data during training. Previous work on transductive SVMs has

also been studied by several researchers. When the choice of the kernel is ad-hoc,

the problem becomes very difficult as it boils down to mixed integer programming

[7]. In [53] and [48] the authors train the kernel matrix over a set of predefined

kernels. Although this gives higher flexibility in forming the kernel, it might still

require a large number of predefined kernels. For example if one of the choices was

the Gaussian, it would be necessary to keep a large number of them with different

sigmas (bandwidths). It is widely known that if the bandwidth of the Gaussian is

too wide or too narrow, kernel methods perform poorly. This technique usually leads

to full rank semidefinite programs that are computationally hard. Finally, in [6] the

Laplacian Eigenmap (LE) framework is used for training SVMs. Laplacian Eigenmaps

are another dimensionality reduction method based on the Gaussian kernel. It also

tries to capture the local geometry and take advantage of it in SVM training. Our

technique does not make any assumption on the kernel function. The only requirement

is to preserve isometry on the data.

The chapter is organized in the following way. In section 5.1 we present the ISM

algorithm. Some examples on embedding manifolds with ISM are presented in 5.2.

In section 5.3 we present a transductive SVM based on the ISM.

5.1 Isometric Separation Maps (ISM)

Although MVU and its variant MFNU give low-rank kernel matrices, experiments

[97] show that they perform poorly when it comes to SVM classification. In this

section we show that MVU/MFNU can be modified so that the kernel matrix can be

87

used for classification too.

In traditional SVMs the kernel is chosen ad-hoc and the goal is to find a hyperplane

that can linearly separate the classes. The kernel is chosen in such a way that it lifts

the data in a high-dimensional space, hoping that data would be linearly separable.

In our approach we have the hyperplane given and we are trying to find the kernel

matrix that separates the data along the hyperplane. Finding a kernel matrix to

satisfy that condition is trivial, as it suffices to add one extra dimension on the data

that will be either -1 or 1. What is interesting though is to find a mapping to a (higher

or lower) dimensional space that keeps data points linearly separable and preserves

the local isometry. As we will see later, depending on the structure of the classes, it

is likely to end up in a higher dimensional space. We are interested in the minimum

dimension of that space.

The solution of the problem is the following. We pick one of the data points xA

to be normal to the separating hyperplane. The choice of the point does not matter

since it will just change the orientation of the points in space. The manifold consists

of two classes C1 and C2. Let xi ∈ C1 be the points that belong in the same class

with xA, then k(xA, xi) ≥ 0, where k(xA, xi) is the generalized dot product between

xA and xi. For points that belong to the opposite class xi ∈ C2, k(xA, xi) ≤ 0. Now

the problem of MVU/MFNU with linear separability constraints can be cast as the

following Semidefinite Program:

max
K

N∑
i=1

Bi •K (1.90)

subject to

Aij •K = dij ∀j ∈ Ii

KA,i ≥ 0, ∀i ∈ C1

KA,i ≤ 0, ∀i ∈ C2

K º 0

88

Using the same formulation as in chapter 3 (also published in [92]) we can solve the

above problem in a non-convex framework that scales better. Extending the problem

for more classes is pretty straightforward. The only modification is to use more anchor

points that will serve as normal vectors to the separating hyperplanes. The problem

is always feasible provided that k ¿ N . As long as the k neighbors belong to the

tangent space and the manifold is smooth, a folding (locally isometric transform) of

the manifold along a hyperplane always exists [58]. If all pair distances are given

then the Gram matrix is uniquely defined and the problem might be infeasible. In

the trivial case where k = 1, meaning that each point has exactly one neighbor then

the problem is always feasible. In general there is a maximum k where the problem

might become infeasible. That means there is always a k where the training error is

zero which means we can always find a dimensional space where the manifold can be

embedded isometrically.

If some of the data points are labeled (training data) and some are not (test data),

then the above method can be used as an SVM-like classifier that always achieves

zero training error in contrast to other algorithms proposed for learning the kernel

in SVM (mentioned in section 5 , where the kernel is learnt as a convex combination

of preselected kernels). This might sound like over-fitting on the training data. In

reality though this is not true since the test data participate during training glued on

the training data with the distance constraints. Another remark on the ISM is that it

is not a max margin classifier because it does not regularize the norm of the normal

vector. It is not possible to do it since we need to also preserve the local distances.

5.2 Dimensionality Minimization with ISM

In order to verify ISM on dimensionality adjustment we tested it on the Swiss roll

dataset (1500 points). Two classes were defined on the Swiss roll that were not

linearly separable. ISM was performed on the dataset. Embedding in 2 dimensions

89

was not possible, as the isometry cannot be preserved (the algorithm terminated

with 2% error on local distances). Embedding was possible in 3 dimensions where

the algorithm terminated with 0.01% error in the local distance constraints. In both

cases the classification error was zero. As we see in Figure 39, MVU unfolds the

dataset in a strip where the classes are not linearly separable. The ISM on the

other hand transforms the manifold in a set that preserves the local distances (k

neighborhood=5) and divides the two classes in a linearly separable way. In order to

further demonstrate the power of ISM, we test it in two even more complex cases.

In Figure 40 we generated 3 classes on a Swiss roll. Clearly MVU/MFNU unfolds

the manifold in a non-separable way. ISM was able to map the swiss roll in a 12-

dimensional space where the 3 classes are completely linearly separable.

In Figure 41, the Principal Component Analysis (PCA) spectrum of the 12-

dimensional Swiss roll is shown. The spectrum is quite rich. ISM can handle

even more complicated cases. In Figure 42 we show 3 classes lying randomly on

a Swiss roll. ISM was able to map the manifold in a 12-dimensional space, keeping

the 3 classes linearly separable. In Figure 43 the PCA spectrum is depicted. The

algorithm terminated with a very low feasibility error of 0.4% for distance preservation

and 0.16% for linear separability. Further improvement of the feasibility error was

possible, but L-BFGS becomes slow as it goes close to the optimum. In general

the algorithm converges very quickly to 1% feasibility error. Further improvement is

possible but takes time.

5.3 Transductive SVMs

The method described above can also be used as a transductive SVM in a semi-

supervised setting. Transductive SVMs are in general difficult problems. If the kernel

is preselected, then a mixed integer problem has to be solved. If the kernel is learned

from the data as we mentioned earlier no guarantee can be given that the training

90

data will be linearly separable. In ISM the kernel is trained over all data, using all

neighborhood information. After solving the optimization problem, the classification

information for the test data will be on the sign of KA,i ∀i ∈ T , where T is the test

set. In other words, the SVM will try to find a hyperplane that separates the data

in the best way. ISM will pick a hyperplane and it will try to find a homeomorphic

(unfolding or folding) transformation of the data such that all the positive classes are

on the same part of the hyperplane and the negatives on the other one, Figure ??.

In order to evaluate ISM as an SVM classifier, we chose a publicly available dataset

and compared it versus traditional SVMs in two different modes. We used the publicly

available SVM-light [41] software for traditional SVM classification. In the first

experiment we picked 1000 points from the magic gamma telescope dataset, publicly

available at the UCI repository [38]. We chose 50 points as training points and used

the other 950 as test points. For traditional SVM classification we tested the linear,

Gaussian and polynomial kernel, with different parameters for the bandwidth and the

polynomial order. We also tuned the regularization factor so that the test error was

minimized. In other words we pushed traditional SVMs to their best performance.

The critical parameter for ISM SVM is the k-neighborhood. Usually, small values

of k allow embedding in lower dimensional spaces, while large k allow embedding in

higher dimensional ones. In tables 4 and 5 the results are summarized. We tested

several k-neighborhoods for ISM and different kernels for traditional SVMs. From

the results we observe that ISM behaves slightly better that SVM (73.68% versus

70.32%). This is mainly because the training set is small and SVM cannot capture

the geometry very well.

In the second experiment we use the whole dataset. The training set contains

12080 datapoints and the test set 6340. Although the dataset is 10 dimensional, it

is possible to reduce its dimension with MVU/MFNU down to 5. In order to make

it linearly separable though with ISM, it was necessary to use more than 10. In

91

tables 6 and 7 the results are summarized. As we can see, SVM performs slightly

better than ISM (83.28% versus 81.00%). Another remark in both cases is that ISM

always behaves better than the linear kernel. Gaussian SVM performance has the best

performance. This is expected since Gaussian matrices are usually full rank. ISM

uses kernel matrices of much smaller rank and they achieve equivalent performance.

The results don’t necessarily demonstrate a big difference between SVMs and

ISM. We also experimented with some toy datasets, such as the half moon dataset

presented in [6] and a Swiss roll, where one data point is given per class. ISM obviously

behaves better than SVM, but this is trivial and not a fair comparison. In general the

differences between ISM and traditional SVMs are on the same levels with the results

reported in other transductive SVM papers [6, 53]. In practice ISMs are slower than

SVMs since they are semidefinite problems contrary to SVMs that solve quadratic

problems. It is interesting that they provide a tool to associate the dimensionality of

the dataset with the classification score and linear separability. The more we increase

the dimensionality of the dataset with ISM, the better the classification score. In

fact, k acts as a regularizer. Large values of k correspond to better generalization of

the SVM as the test error drops.

5.4 Summary

In this chapter we presented a new Manifold Learning method the Isometric

Separation Maps. This method is ideal for reducing the dimension of the manifold

with the class information associated with them. We also showed how ISM can be

used as semi-supervised (transductive) classifiers. Although they don’t have superior

performance compared to traditional max margin SVMs, they are a useful tool for

determining the dimensionality of the kernel space that is necessary for achieving

linear separability. We believe that some improvement of the objective function is

necessary so that generalization is improved. Probably a term minimizing the norm

92

Table 4: ISM SVM classification score versus k-neighborhood for the First
Experiment

k-NEIGHBORS DIMENSION SCORE

5 50 70.10%
8 10 68.73%
10 12 70.63%
15 8 70.42%
15 12 69.05%
20 8 71.68%
20 12 71.68%
20 40 73.37
25 8 72.63%
25 12 71.89%
30 40 73.68%

Table 5: Traditional SVM Classification Score versus k-neighborhood

KERNEL PARAMETER SCORE

Gaussian 0.1 69.89%
Gaussian 0.5 70.00%
Gaussian 1.0 70.11%
Gaussian 1.5 70.00%
Gaussian 2.0 70.11%
Gaussian 4.0 70.21%
Gaussian 5.0 70.32%
Gaussian 6.0 70.21%
Gaussian 8.0 70.11%
linear - 69.89%
polynomial 1 69.89%
polynomial 2 69.68%
polynomial 3 69.58%
polynomial 4 69.84%
polynomial 5 68.84%
polynomial 6 68.84%
polynomial 8 68.95%

93

Table 6: ISM SVM Classification Score versus k-neighborhood For the Whole
Dataset

k-NEIGHBORS DIMENSION SCORE

12 30 80.22%
12 35 79.97%
12 40 80.47%
12 45 79.76%
12 50 79.81%
12 55 81.00%
15 40 80.39%
15 45 79.40%
15 50 79.07%
15 55 79.82%
20 40 78.96%
20 45 79.68%
20 50 80.13%
20 55 78.42%

Table 7: ISM SVM Classification Score versus k-neighborhood For the Whole
Dataset

KERNEL PARAMETER SCORE

Gaussian 8 83.28%
Gaussian 6 82.77%
linear - 78.64%
polynomial 2 81.62%
polynomial 3 82.07%
polynomial 5 81.26%

94

of the vector normal to the hyperplane (as in SVMs) can be used.

95

a b

c d

e f

g h

Figure 39: a)A three dimensional swiss roll painted with color gradient. b)The
same swiss roll with two classes on it, black and green c)Unfolded swiss roll (a) with
MVU/MFNU (no class information). The color gradient shows that local distances
has been preserved. d) Unfolded swiss roll (b) with MVU/MFNU. The two classes are
not linearly separable. e,f) Views of the swiss roll (a) with ISM. The class structure
was taken from (b). The intension of this Figure is to show how the points are
mapped so that the local neighborhoods are preserved. g,h)Views of the (b) manifold
after ISM. Now points are painted with the class colors to show that they are linearly
separable 96

Figure 40: Top: Three classes laying on a swiss roll. Bottom: After unfolding them
with MVU the classes are not linearly separable. Isometric Separation Maps managed
to map this manifold in a 12-dimensional space such that the classes were linearly
separable by 3 hyperplanes 100% of the time and the 5-neighborhood distances were
preserved with 0.1% relative root mean square error

97

2 4 6 8 10 12
4

5

6

7

8

9

10

11

12

13

14

dimension

S
V

D
 m

ag
ni

tu
de

Figure 41: In this Figure we illustrate the PCA (SVD) spectrum of the unfolded
swiss roll of Figure 40. As we can see it is pretty rich.

98

Figure 42: Top: Three classes laying randomly on a swiss roll. Bottom: After
unfolding them with MVU the classes are not linearly separable. Isometric Separation
Maps managed to map this manifold in a 12-dimensional space such that the classes
were linearly separable by 3 hyperplanes. The optimization algorithm terminated
with feasibility error 0.4% for 5-neighborhood distance preservation, while 99.83%
of the points were correctly classified. The goal of this experiment was to verify
experimentally that ISM can lift any strange dataset to a high dimensional space,
such that classes are linearly separable

99

2 4 6 8 10 12
4

5

6

7

8

9

10

11

12

dimension

S
V

D
 m

ag
ni

tu
de

Figure 43: In this Figure we illustrate the PCA (SVD) spectrum of the unfolded
swiss roll of Figure 42. As we can see it is pretty rich. Despite the bad structure of
the classes, the ISM algorithm was able to map it on a 12 dimensional space.

100

(a)

(b)

(c)

Figure 44: (a) A trivial one dimensional manifold (b) The separation hyperplane
from an SVM with a gaussian kernel (c) ISM will do a homeomorphic transformation
on the manifold so that a linear hyperplane can do perfect separation

101

CHAPTER VI

NONLINEAR MATRIX FACTORIZATIONS, A GENERAL

FRAMEWORK FOR DIMENSIONALITY REDUCTION

102

In the previous chapters we examined two dimensionality reduction techniques

MVU and NMF along with different extensions. In this chapter we will show how

it is possible to put all of them under a general framework of nonlinear matrix

factorizations with the use of sequential convex optimization.

6.1 Matrix factorizations and dimensionality reduction

A matrix V ∈ <N×m, N > m represents a collection of N m−dimensional points on

a Euclidean space, where the basis vectors are orthogonal. We can always express

V as a product of two matrices V = WH where W = V and H = I (I is the

identity matrix). Linear dimensionality reduction methods either try to find an exact

factorization of the form

V = WH (1.91)

or an approximate one

V ' WH (1.92)

so that W ∈ <N×k, H ∈ <k×m where k < m. The H matrix carries the information

about the prototypes (also known as basis vectors) and the W matrix is the new

coordinate vectors.

Nonlinear dimensionality reduction methods apply a nonlinear transformation

f : <N×m → <M×l on the initial matrix V and then apply a nonlinear operator

g : <N×m → <M×l on the exact factorization:

f(V) = g(W,H) (1.93)

or in the case of approximation:

||f(V)− g(W,H)||L ≤ ε (1.94)

where || · ||L is a Euclidean norm and ε is user defined.

For example in Collaborative Filtering [61, 85, 84] not all entries of V are known,

so the operator f selects the given ones. In this case g ≡ f . Moreover in this case there

103

is not a unique solution but a set of matrices (W,H) that satisfy either equation 1.93

or 1.94. In practice (W,H) are found through an optimization program that tries to

optimize other properties of (W,H) in order to get an improved and unique solution.

Another example is MVU, where operator f constructs a distance matrix out of

V and selects only the local distances. Operator g solves a Semidefinite program that

tries to find a Gram matrix that matches the selected distances and then by using

SVD it finds W and assumes H to be the identity matrix I. All manifold methods

use the same model with only difference that the g operator is a linear one. MVU and

its variants are an exception because they use a sophisticated optimization program.

6.2 Casting MVU, NMF and more as a general rank-
constrained semidefinite program

In this section we will show how MVU, NMF and a big family of nonlinear

factorizations can be cast as the same rank-constrained semidefinite program.

Consider the following positive semidefinite matrix:

Z =

Ik W T HT

W W VT

H V H

º 0 (2.95)

if we constraint Z to have rank(Z) = k then

W = WW T , H = HHT , V = WHT (2.96)

If the nonlinear transformations f, g can be cast as linear constraints or convex

inequalities on the Z matrix then the factorization

f(V) = g(W,H) (2.97)

can be expressed and found through the following algorithm.

As we show in chapter 4 given any convex constraints on Z such that rank(Z) ≤ k,

Z can be found with the algorithm presented by Dattorro [19]. The general form of

a k−rank factorization is:

104

min
Z

h(Z) (2.98)

such that:

li(Z) ≤ 0

A • Z = 0

Z º 0

rank(Z) ≤ k

where h(Z), li(Z) are convex functions that admit a conic representation. This

problem is not convex due to the rank constraint but a local solution can be found if

the problem is feasible with the algorithm shown in 45.

105

1. set G∗ = I, ε = ε0 and α = 1e− 4

2. Solve the following optimization program:

min
Z

Z •G∗ (2.99)

such that:

h(Z) ≤ ε

li(Z) ≤ 0

A • Z = bi

Z º 0

rank(Z) ≤ k

3. Let Z∗ be the optimal Z, then solve the following program:

min
G

Z∗ •G (2.100)

such that:

I º G º 0

Trace(G) = N + m

4. Let G∗ be the optimal G, then if:

|G∗ • Z∗| ≤ α (2.101)

terminate, Z∗ is the solution of the problem else if:

|G∗ • Z∗| ≥ α (2.102)

and no significant improvement has been done in reducing the G∗ • Z∗ from
the previous problem has been done, then the problem is infeasible, go to step
1 and increase ε. Otherwise go to step 2.

Figure 45: Nonlinear Convex Factorization

6.2.1 MVU as a special case

It is straight forward to see that the MVU can now be expressed in the following way

1. set G∗ = I, ε = ε0 and α = 1e− 4

106

2. Solve the following optimization program:

min
Z

Z •G∗ (2.103)

such that:

−Trace(Z(k + 1 : k + N, k + 1 : k + N)) ≤ −ε

∑
Z(k + 1 : k + N, k + 1 : k + N) = 0

Aij • Z(k + 1 : k + N, k + 1 : k + N) = dij
1

Z º 0

rank(Z) ≤ k

3. Let Z∗ be the optimal Z, then solve the following program:

min
G

Z∗ •G (2.104)

such that:

I º G º 0

Trace(G) = N + m

4. Let G∗ be the optimal G, then if:

|G∗ • Z∗| ≤ α (2.105)

terminat, Z∗ is the solution of the problem else if:

|G∗ • Z∗| ≥ α (2.106)

and no significant improvement has been done in reducing the G∗ •Z∗ from the

previous problem has been done, then the problem is probably infeasible, go to

step 1 and decrease ε. Otherwise go to step 2.

1dij are the distances between nearest neighbors

107

The above problem might be infeasible if k is too small. Typically one should start

with large k, no more than m and reduce it until the above problem becomes infeasible.

This is the minimum k. Of course this formulation is more complicated than the

original MVU [97] one since is requires the solution of more than one semidefinite

programs. On the other hand we should not forget that maximization of variance is

just a heuristic to reduce the rank. As Dattorro [19] suggested isometric embedding

can be done straight forward with the above algorithm without the maximization of

the variance. A similar approach for rank reduction of the dot product matrix WW T

was suggsted in [78] where a heuristic for reducing the rank was introduced.

6.2.2 LOOCV unfolding as a special case

In section 3.6.1 we presented an algorithm for maximizing the cross-validation for

maximizing the Leave One Out Cross Validation (LOOCV). Here we present how

this algorithm can be a special form of the general factorization:

1. set G∗ = I, ε = ε0 and α = 1e− 4

2. Solve the following optimization program:

min
Z

Z •G∗ (2.107)

such that:

− N

√√√√
N∏

i=1

∑

j 6=i

Z(k + i, k + i) ≤ −ε 2

Z(k + 1 : k + N, k + 1 : k + N) ≥ 0

Aij • Z(k + 1 : k + N, k + 1 : k + N) = dij
3

Z º 0

rank(Z) ≤ k

3In order to represent this constraint with positive semidefinite constraints we need to introduce approximately
log2 N auxiliary variables t.

3dij are the distances between nearest neighbors

108

3. Let Z∗ be the optimal Z, then solve the following program:

min
G

Z∗ •G (2.108)

such that:

I º G º 0

Trace(G) = N + m

4. Let G∗ be the optimal G, then if:

|G∗ • Z∗| ≤ α (2.109)

terminat, Z∗ is the solution of the problem else if:

|G∗ • Z∗| ≥ α (2.110)

and no significant improvement has been done in reducing the G∗ •Z∗ from the

previous problem has been done, then the problem is probably infeasible, go to

step 1 and decrease ε. Otherwise go to step 2.

6.2.3 NMF as a special case

We have already shown in chapter 4 how NMF can fit in that framework. For the

shake of completeness we repeat the algorithm here:

1. set G∗ = I, ε = ε0 and α = 1e− 4

109

2. Solve the following optimization program:

min
Z

Z •G∗ (2.111)

such that:

||Z(k + 1 : k + N, k + N + 1 : k + N + m)− V ||22 ≤ ε

Z(k + 1 : k + N, 1 : k) ≥ 0

Z(k + N + 1 : k + N + m, 1 : k) ≥ 0

Z º 0

rank(Z) ≤ k

3. Let Z∗ be the optimal Z, then solve the following program:

min
G

Z∗ •G (2.112)

such that:

I º G º 0

Trace(G) = N + m

4. Let G∗ be the optimal G, then if:

|G∗ • Z∗| ≤ α (2.113)

terminat, Z∗ is the solution of the problem else if:

|G∗ • Z∗| ≥ α (2.114)

and no significant improvement has been done in reducing the G∗ •Z∗ from the

previous problem has been done, then the problem is probably infeasible, go to

step 1 and increase ε. Otherwise go to step 2

110

6.3 Extending to factorizations with any nonlinear dot
product or even divergence

In this section we show how it is possible to solve factorization problems of the form

1.93 or 1.94 when g admits a polynomial approximation:

g(Wi, Hj) =
n∑

i=1

∑
∑

ak+bk=i

m∏

k=1

wak
ik

m∏

k=1

hbk
kj (3.115)

where Wi, Hj are rows of the columns of the corresponding matrices and wik, hkj are

matrix elements.
In chapter 4 section 4.2 we show a trick for constructing a semidefinite matrix that

has all possible terms up to second order. Consider the following example positive
semidefinite matrix:

Z =

1 w11 w12 w13 w21 w22 w23 w31 w32 w33 h11 h12 h21 h22

w11 w11
2 w11 w12 w11 w13 w11 w21 w11 w22 w11 w23 w11 w31 w11 w32 w11 w33 w11 h11 w11 h12 w11 h21 w11 h22

w12 w11 w12 w12
2 w12 w13 w12 w21 w12 w22 w12 w23 w12 w31 w12 w32 w12 w33 w12 h11 w12 h12 w12 h21 w12 h22

w13 w11 w13 w12 w13 w13
2 w13 w21 w13 w22 w13 w23 w13 w31 w13 w32 w13 w33 w13 h11 w13 h12 w13 h21 w13 h22

w21 w11 w21 w12 w21 w13 w21 w21
2 w21 w22 w21 w23 w21 w31 w21 w32 w21 w33 w21 h11 w21 h12 w21 h21 w21 h22

w22 w11 w22 w12 w22 w13 w22 w21 w22 w22
2 w22 w23 w22 w31 w22 w32 w22 w33 w22 h11 w22 h12 w22 h21 w22 h22

w23 w11 w23 w12 w23 w13 w23 w21 w23 w22 w23 w23
2 w23 w31 w23 w32 w23 w33 w23 h11 w23 h12 w23 h21 w23 h22

w31 w11 w31 w12 w31 w13 w31 w21 w31 w22 w31 w23 w31 w31
2 w31 w32 w31 w33 w31 h11 w31 h12 w31 h21 w31 h22

w32 w11 w32 w12 w32 w13 w32 w21 w32 w22 w32 w23 w32 w31 w32 w32
2 w32 w33 w32 h11 w32 h12 w32 h21 w32 h22

w33 w11 w33 w12 w33 w13 w33 w21 w33 w22 w33 w23 w33 w31 w33 w32 w33 w33
2 w33 h11 w33 h12 w33 h21 w33 h22

h11 w11 h11 w12 h11 w13 h11 w21 h11 w22 h11 w23 h11 w31 h11 w32 h11 w33 h11 h11
2 h11 h12 h11 h21 h11 h22

h12 w11 h12 w12 h12 w13 h12 w21 h12 w22 h12 w23 h12 w31 h12 w32 h12 w33 h12 h11 h12 h12
2 h12 h21 h12 h22

h21 w11 h21 w12 h21 w13 h21 w21 h21 w22 h21 w23 h21 w31 h21 w32 h21 w33 h21 h11 h21 h12 h21 h21
2 h21 h22

h22 w11 h22 w12 h22 w13 h22 w21 h22 w22 h22 w23 h22 w31 h22 w32 h22 w33 h22 h11 h22 h12 h22 h21 h22 h22
2

(3.116)

if the rank of Z is one then:

Z = zzT (3.117)

111

where

z =

1

w11

w12

w13

w21

w22

w23

w31

w32

w33

h11

h12

h21

h22

(3.118)

The iterative algorithm described in 45 can be applied for this matrix Z and

the rank constraint is equal to 1. The matrix contains all the monomials up to

order 2 and with the appropriate linear constraints we construct all the values of

g(W,H). In general if V is N × m and the factorization is of order k, then Z is

(N+m)k+1×(N+m)k+1 matrix. If we want to add terms of higher order we need to

construct an auxiliary positive semidefinite matrix Z ′ ((N+m)2k2+1×(N+m)2k2+1)

that is rank one, the extra constraints for Z ′ are that

Z ′(1, i(N + m) + j) = Z(i, j), 1 ≤ i, j ≤ (N + m)k + 1 (3.119)

In other words the first row/column of Z ′ is Z unfolded. With this trick we can

construct super large matrices that contain any monomial orders we want. Of course

the size of the matrix grows very quickly.

6.4 Moving even further, automatic construction of the
nonlinear operator g

Up to now we have shown how a factorization of the form:

||f(V)− g(W,H)||L ≤ ε

112

where g is known and can be approximated with a polynomial expansion. The

polynomial expansion can either be Taylor or a different one. What is more interesting

though is to find g along with W,H on the same time. The requirement is that g has

a polynomial expansion approximation.

This can actually be done using the algorithm described in 45. All we need is to

define the constraint on the optimization matrices. We show in the previous section

how to construct matrices that contain polynomial terms of W,H. For simplicity we

will consider order 2 polynomials defined. The PSD matrix Z has been defined in

equation 3.116. We know define the PSD matrix Z ′ ((N +m)2k2+p×(N +m)2k2+p),

where p is the number of the coefficients required for the polynomial expansion. The

necessary constraint is that:

Z ′(1, i ∗ (N + m) + j) = Z(i, j), 1 ≤ i, j ≤ (N + m)k + 1 (4.120)

In other words the first line of Z ′ contains Z unfolded into a vector, plus the

coefficients of the polynomial. As with Z, Z ′ has to be constrained to have rank

one. Inside Z ′ products between the coefficients and the monomials can be found and

they can be selected with linear constraints so that they sum up to the desired value.

6.5 Summary

In this chapter we gave a universal framework for non-linear factorizations, based on

sequential convex programming. The theoretical approach shows that it is possible

to do matrix factorizations with any nonlinear function that admits polynomial

expansion. In fact it is possible to find the nonlinear mapping and the factors at

the same time. Although only local convergence can be guaranteed the heuristic for

rank reduction seems to work well in practice. The algorithms are based on convex

programs which have polynomial complexity in terms of computation and in terms of

memory, they are impractical. More research has to be done towards approximations

that can make the solution of the optimization programs computationally feasible in

113

practice.

114

CHAPTER VII

DIMENSIONALITY REDUCTION OF LARGE SPEECH

CORPORA

115

Much of research has been done in speech recognition over the last three decades

and several schemes have been proposed. Most of the speech recognition engines

share a common representation for speech, the Mel-Frequency Cepstrum Coefficients

(MFCC). It is the most popular feature for speech recognition for over 20 years.

In practice 13 MFCCs are extracted on a time window of 10-20msec and their

first and second delta coefficients with smoothing are computed [71]. In total the

dimensionality of the features used in speech recognition is around the value of

39. Despite its success, there is not much work done on its statistical properties,

such as its dimensionality over large speech datasets, such as TIMIT [77]. Only

recently some researchers have presented theoretical [45] and experimental [5, 81]

work on embedding speech in a lower dimensional space. Unfortunately most of the

experiments were performed on small speech datasets (few hundred data points). It is

expected that speech data points coming from a few sentences from the same speaker

will be highly correlated and they would lie on a lower dimensional manifold. Building

a graph from these data points results in a graph with at least two major clusters, due

to the voiced and unvoiced structure of speech. Moreover the methods that they used

[5] (Laplacian Eigenmaps) are not suitable for discovering the intrinsic dimension of

the data as indicated in a comparison of the methods in [97, 57]. It is shown in

[81] that it is possible to improve speech recognition results by nonlinearly projecting

speech features on a lower dimensional space. Motivated by these results we want to

investigate the performance of the state-of-the-art dimensionality reduction technique

on MFCC features. Our goal is to nonlinearly project the whole TIMIT dataset on a

lower dimensional space. The challenge is to estimate the intrinsic dimensionality of

the lower dimensional space and also recover the intrinsic dimensions. It is very

interesting to find out what kind of information about speech these dimensions

contain. The biggest challenge, though, is the computational part, since the dataset

a prohibitive n(i.e., 1.5 million 39-dimensional vectors).

116

In this chapter we apply the MFNU to a data set with 1 million datapoints from

the TIMIT speech recognition database. TIMIT contains 1.5M data points (train and

test set) and it is computationally heavy to apply any Manifold Learning method on

the whole dataset. The computation of local neighborhoods is the major bottleneck.

Applying the state-of-the-art all k-nearest neighbor method for 1M points took 3.5

days, while naive computation would take more than 100 days. Our results show

that the 300K and 1M point subsets of TIMIT can be embedded in 15 dimensions by

preserving 10-point neighborhoods. As a comparison to PCA we mention that the

first 15 components correspond to less than 50% percent of the spectral energy.

The chapter is organized in the following order. In section 7.1 we give information

about MFCC feature generation. In section 7.2 we discuss the dimensionality analysis

with Principal Component Analysis (PCA). Finally in Section 7.3 we discuss the

results of our experiments.

7.1 MFCC Features

In our implementation for MFCC computation the freely available code from Voicebox

was used [13]. The speech signal was divided into frames of length 25 msec, with 50%

overlap and 13 MFCC coefficients (without the zeroth coefficient) where extracted

from each frame. Twenty-seven filters were used to group the frequency bins into

critical bands. The delta and delta-delta components are also computed increasing

the dimensionality to 39. We examine both cases a)variance normalization on the

MFCC components on every sentence [59] b)no variance normalization at all.

7.2 Principal Component Analysis

PCA is a scalable technique that can detect components that are linearly dependent.

Given a set of N d−dimensional points X ∈ <N×d centered around zero, the

covariance matrix C ∈ <d×d is:

C = XT X (2.121)

117

The eigenvalue decomposition C = UT ΛU defines the minimum number of dimensions

to represent the dataset. PCA can be applied to any dataset regardless of its size since

its complexity is linear to the data size and cubic to the dimension. Unfortunately

very few datasets can be processed with PCA effectively because the dimensions of

real datasets are usually nonlinearly correlated. In Figure 47 we can see the PCA

spectrum of the TIMIT database (without variance normalization). It shows that 10-

components are sufficient to describe the data since almost 96% of the total energy is

contained in them. The same results are also true for a smaller subset of TIMIT. This

suggests that 10 is an upper bound for the intrinsic dimension of dataset. However the

answer is different when the dataset is normalized. Mean-Variance normalization1 is

a very common technique in speech recognition that improves the error rate [59]. The

PCA spectrum becomes more rich Figure 48 and all 39 components are important.

7.3 Experiments

The TIMIT dataset when transformed to MFCC on 25msec window and 50% overlap

consists of 1.5 million (train and test set), 39-dimensional vectors. Our goal is to

perform MFNU on the whole dataset.

7.3.1 Preliminary experiments

In our preliminary results we sampled randomly 20,000 and 100,000 points from the

dataset. Application of MFNU showed that the whole dataset (without variance

normalization) can be described with 3 dimensions only.2 The whole experiment

took 5 hours (for 100K points) where 95% of the time was spent in optimization and

only 5% in computing the neighborhoods. Experiments on subsets of TIMIT without

mean variance normalization showed that the embedding dimension never exceeded 3.

Running MVU for more than 100K points didn’t increase the embedding dimension.

1Every dimension of the MFCC vector is zero mean and unit variance over a sentence time period
2For a k-neighborhood equal to 7 and embedding dimension 3 the MFNU is feasible which means that the local

distances can be preserved

118

For mean variance normalized data things change as most of the time is spent

on the neighborhood computation rather than in optimization. For a 20,000 random

subset of TIMIT (with variance normalization) 3 dimensions where not sufficient to

represent the set. Repeated experiments with MFNU revealed that the set can be

represented with 5 which is a significant improvement to the original 39-dimension.

The results (without variance normalization) are depicted in Figure 49a. In Figure 49b

the dataset is projected on the first 3 principal components from PCA.

7.3.2 300K points experiments

TIMIT features without mean variance normalization are not particularly interesting

since their statistical properties didn’t change from 20K to 100K points. For

the mean variance normalized MFCCs things change. Computing all 10-nearest

neighborhood took 9 hours while running the optimization took about 2 hours.

Repeated experiments showed that the problem becomes feasible (all the distance

constraints can be satisfied) after 15 dimensions3. The feasibility error becomes less

than 1% so it makes sense to claim that the true dimension should be around that

value. Principal Component Analysis on the 15-dimensional projection showed that

all components have equal energy, indicating that the spectrum is flat. If we compare

our results with PCA shown on Figure 7.4, we see that the first 15 components of

PCA correspond to 53% of the energy of the total spectrum.

It is also interesting to see how the Probability Density Function (PDF) changes

with the non-linear projection. Our experiments show that each of the 39 dimensions

follows a gaussian distribution. There are only 2 dimensions that deviate from that

rule. The projected dimensions follow the Gaussian distribution too. In Figure 51

the PDFs of the 39 dimensions and the projected 15 are shown for the whole dataset.

In Figure 52 and 53 we show show the PDFs for the uh and sh phonemes. Again

3By setting the dimension less than 15 it was not possible to get feasibility error close to 0. That means the data
cannot be embedded in less than 15 dimensions

119

some of the 39 dimensions are not Gaussians, while all of the 15 are. In general it is

safe to conclude that the MVU preserved the original PDFs.

One critical question is how we chose the k-neighborhood for the points. Using a

k-nearest neighbor classifier, we found out that for k=10 the points have 98.5% of the

time a neighbor that belongs to the same class. A 10-nearest neighbor classification

gives 70% accuracy. The fact that almost every point is connected to phonemes of the

same class might lead to the conclusion that a k-nearest neighbor classifier is powerful

method for doing phoneme classification. If we examine the nearest neighbors we will

see that most of the time they come from the same sentence. This has to do with the

way the data are generated, since the MFCCs are computed on a slowly sliding

window, adjacent windows are strongly correlated. In fact we run the following

experiment. We found the 10-nearest neighbors of a test set of 400K points in a

training set containing points 1.1M points. This experiment took 1.5 days. In this

experiment, the 10-nearest neighborhood of every test point contained a neighbor

belonging in the same class 80% of the time. It is still high, but now the 10-nearest

neighbor classification score is 46.7%.

7.3.3 1 Million points experiments

Our ultimate goal is to apply MVU/MFNU on the whole dataset 1.5M points. From

our experience in dealing with large datasets it is critical to scale the experiments

gradually. After 300K points the next milestone was the 1M points. Computing all

nearest neighbors was the biggest challenge as it took 3.5 days while optimization

terminated with error 2% after 1.5 days. Considering the scale of the problem (15

million variables and approximately 10 million constraints) the time is considered

reasonable. All k-nearest neighborhood computation seems to dominate and this

is due to the bad dimensionality properties of MFCCs. The goal of scaling up

to 1M points was not to study further the statistical properties of TIMIT since

120

300K is a sufficient sample. It is considered as an intermediate step for full throttle

MVU/MFNU on the whole dataset. Once this is done, then the unfolded features

can be used for Speech recognition in a state-of-the-art speech recognizer.

7.3.4 Weaknesses, limitations of MVU/MFNU

Although MVU has shown some promising results on medium/large scale datasets as

seen in chapter 3 there are some limitations as the number of data points increases.

The first problem is the choice of the k-neighborhood. If k is very small then

the intrinsic dimension found will be small too and far from the reality. Up to now

there is no theory for the choice of k in MVU. In [82] the authors gave an estimate

of k ∼ N
1

d+1 where d is the intrinsic dimension, that is unknown. But still the result

is significant, since it states that as the collection of the data increases, k should

increase too.

Another problem is that after building the k-neighborhood graph, some nodes

tend to have high degree and some not. In other words some points tend to connect

to everything. It is very common when points are images for example, that a

blurry image tends to be nearest neighbor with almost every point. In general high

concentration of neighbors spoils the manifold assumption. The graph can still be

embedded in a low dimensional space but the maximization of variance doesn’t work

[78]. Dattorro’s algorithm for rank reduction works but it is not scalable. Minimum

Volume Embedding is a similar algorithm using a heuristic, but again it is not scalable.

In [44] an algorithm is presented for evening the distribution of the links in the graph.

Finally, the major problem of wrong choice of k or poor graph construction is

the preservation of ranks between neighbors. In other words MVU guarantees that

it will preserve the distances of the k-nearest neighbors for every point. What it

doesn’t guarantee though is that these points will still remain the nearest neighbors.

We tested the results of our experiments on speech and we show that although the

121

algorithm preserves the distances of the k-nearest neighbors (computed on the 39-

dimensional points), but when we run nearest neighbors again on the 15-dimensional

points we got different points as nearest neighbors Figure 7.3.4. In theory this could be

solved by adding rank constraints. Instead of just preserving distances, also preserve

ranks between distances. This is impractical though, since it would require O(N2)

constraints. Instead a more practical solution would be to run all k-nearest neighbors

every 10 or twenty iterations of the optimization process and add penalty constraints

on points that appear to be nearest neighbors and they shouldn’t be. The extra cost

is relatively small since all k-nn is relatively cheap in lower dimensions.

Figure 46:

7.3.5 Future work

Running MFNU on such a large dataset is a big challenge. Up to now in our

preliminary examples we used Fastlib [25], a C++ framework for implementing large

scale Machine Learning Algorithms in C++. Our implementation is single threaded.

Parallel implementation is one of our future plans.

122

7.4 Summary

In this chapter a modern manifold learning method MVU/MFNU was for the first

time applied on a large sample (1 million points4) of TIMIT, dealing with several

computational challenges in all nearest neighbor computations and optimization. The

results show significant improvement of the dimensionality from 39 to 15. The scale

of the problem revealed weaknesses and limitations of MVU and gave insight for

further improvement. This work stands as an intermediate step for applying non-

linear projections for speech recognition

4This corresponds to a 15 million dimensional problem with approximately 10 million equality constraints

123

(a)
0 10 20 30 40

0

1

2

3

4

5

6

7
x 10

7

eigenvalue number

ei
ge

nv
al

ue
 m

ag
ni

tu
de

(b)
0 10 20 30 40

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

eigenvalue number

cu
m

ul
at

iv
e

en
er

gy

Figure 47: (a) The magnitude of the principal components for the whole TIMIT
dataset (b) Cumulative percentage energy of the eigenvalues.

124

(a)
0 10 20 30 40

0

2

4

6

8
x 10

4

eigenvalue number

ei
ge

nv
al

ue
 m

ag
ni

tu
de

(b)
0 10 20 30 40

0

0.2

0.4

0.6

0.8

1

eigenvalue number

cu
m

ul
at

iv
e

en
er

gy

Figure 48: (a) The magnitude of the principal components for the 20,000 TIMIT
dataset (with variance normalization) (b) Cumulative percentage energy of the
eigenvalues.

125

(a)
−10

−5
0

5

x 10
8

−5

0

5

x 10
5

−1

0

1
x 10

5

(b)

−2

0

2

x 10
8

−2 0 2 4
x 10

7

−2

0

2

4

x 10
6

Figure 49: (a) Embedding of the 100,000 TIMIT dataset (without variance
normalization) with the MFNU method. (b) Embedding of the same dataset with
PCA

126

0 5 10 15 20 25 30 35 40
200

300

400

500

600

700

800

900

1000

dimensions

sv
d

m
ag

ni
tu

de

0 5 10 15
56

58

60

62

64

66

68

70

72

dimensions

sv
d

m
ag

ni
tu

de

Figure 50: Left: PCA of the 39 dimensional TIMIT datapoints, Right: PCA
spectrum of the 15 dimensional unfolded

127

Figure 51: Left:PDFs of the 39 dimensional TIMIT data points, Right: PDFs of
the of the 15 dimensional Unfolded

Figure 52: Left:PDFs of the 39 dimensional TIMIT data points for uh, Right: PDFs
of the of the 15 dimensional Unfolded uh

128

Figure 53: Right:PDFs of the 39 dimensional TIMIT data points for sh, Left: PDFs
of the of the 15 dimensional Unfolded sh

129

CHAPTER VIII

CONCLUSION

In this dissertation we presented a series of algorithms for dimensionality reduction

that can be cast as a sequence of convex optimization programs. Emphasis was given

on the scalability of the algorithms. Semidefinite Programming remains the most

important bottleneck, because of the O(N2) semidefinite matrix it requires. In order

to scale MVU, the basic algorithm of this dissertation, it was necessary to sacrifice

the convexity of the original formulation. Our experiments indicated that with the

appropriate heuristics it is possible to achieve equivalent performance with the convex

solver. Sacrificing non-convexity for scalability is one direction [18]. We conjecture

that speedup of semidefinite programming can be achieved with approximations of

the matrix with a ball tree. The results from [35] indicate that there is room for

improving the complexity of representing a semidefinite matrix with the cosine tree.

Another important outcome of this thesis is that Nonnegative Matrix Factorization

can be cast as a convex problem that guarantees global solution. We showed several

convex relaxations along with a rank constrained formulation based on sequential

convex programming. A global optimization technique was also presented that was

not scalable. In the case of NMF it was necessary to sacrifice the convexity for

scalability. A byproduct of our research on NMF was an algorithm for solving the

problem of Completely Positive Factorization with sequential Convex programming.

The theoretical analysis of chapter 6 gives a unified framework for designing

new more powerful dimensionality reduction algorithms that use more complex dot

products than the the linear dot product. Despite its polynomial complexity that

prevents scalability, appropriate approximations can make it scalable. We believe

130

that the theoretical results create more motivation for computational approximations

on semidefinite programming as mentioned in the first paragraph.

An attempt was made to apply MVU on real speech datasets. The preliminary

results didn’t show any interesting property of the given intrinsic dimensions. Due to

the data volume it was not practical to tune the parameters of MVU so as to get the

best possible performance. The experiments gave us the opportunity to locate the

problems and limitations of MVU and its variants.

8.1 Directions for future research

Although a lot of effort was put on scaling MVU on large datasets there is still

a lot of work that has to be done to reach the demand of the big industries that

generate terabytes of data. If I would start my PhD tomorrow I would spend time

in parallel implementation of the algorithms presented here. Another promising

direction is giving up determinism in the computations, by sampling the data. All

the computations in this dissertation were exact (nearest neighbors, gradient, etc.).

Recent work [35], has shown that approximations with Monte Carlo Sampling give

tremendous speedups. There is no doubt that Semidefinite Programming (SDP) is a

great tool for many machine learning applications. The main bottleneck of (SDP) is

the representation of the positive semidefinite matrix that is of O(N2). We believe

that trees can be used to approximate the matrix and compress it to O(N).

131

CHAPTER IX

AUTHOR’S PUBLICATIONS

132

1. ”Hyperkernel Based Density Estimation”, Ravi S. Ganti, Nikolaos Vasiloglou

and Alexander Gray, NIPS 2009 workshop on kernel learning

2. ”Learning the Intrinsic Dimensions of the Timit Speech Database with Maxi-

mum Variance Unfolding”, N. Vasiloglou, D V. Anderson, Alexander G. Gray.

to appear in the 13th DSP workshop.

3. ”Learning Isometric Separation Maps”, N. Vasiloglou, A. Gray, D. Anderson.

NIPS workshop on kernel learning, available at arxiv.org

4. ”Non-Negative Matrix Factorization, Convexity and Isometry”, N. Vasiloglou,

A. Gray, D. Anderson, to appear in SIAM data mining 2009, available at

arxiv.org

5. ”Scalable Semidefnite Manifold Learning”, N. Vasiloglou, A. Gray, D. Anderson,

The 2008 IEEE Machine Learning in Signal Processing, Cancun, Mexico

6. ”Parameter Estimation for Manifold Learning, Through Density Estimation” N.

Vasiloglou, A. Gray, D. Anderson, The 2006 IEEE Machine Learning in Signal

Processing, Maynooth Ireland

7. ”Towards high quality region-of interest medical video over wireless networks

using motion compensated temporal filtering” S. Rao, N. Vasiloglou, The

5th IEEE International Symposium on Signal Processing and Information

Technology December 2005, Athens, Greece

8. ”Isolated word, speaker dependent recognition under the presence of noise,

based on an audio retrieval algorithm” N. Vasiloglou, R.W. Schafer, M.C. Hans,

Signals, Systems and Computers, 2004. Conference Record of the Thirty-Eighth

Asilomar Conference.

133

9. ”Design and optimization of 3D RF modules, microsystems and packages using

electromagnetic, statistical and genetic tools [mm-wave interdigitated passband

filter application]” N. Bushyager, D. Staiculescu, L. Martin, J.-H. Lee, N.

Vasiloglou, M.M Tentzeris. Electronic Components and Technology, 2004.

ECTC 04. Proceedings

10. ”Fast hybrid electromagnetic/statistical approach for design and optimization of

RF systems and packages” N. Bushyager, D. Staiculescu, L. Martin, J.-H. Lee,

N. Vasiloglou, M.M Tentzeris. M.M. Advanced Packaging Materials: Processes,

Properties and Interfaces, 2004.

11. ”Investigation of the Effect of Fractal Shapes on the Broadband Behavior

of One-Dimensional Optimized Antennas”,N. Vasiloglou, D.Staiculescu and

M.M.Tentzeris, Proc. of the 2004 URSI Symposium, p.69, Monterey, CA, June

2004.

12. ”Lossless audio coding with MPEG-4 structured audio” N. Vasiloglou, R.W.

Schafer, M.C. Hans, Web Delivering of Music, 2002 Proceedings.

134

REFERENCES

[1] Agarwal, S., Lanckriet, G., Wills, J., Imageworks, S., Cayton, L.,
and Belongie, S., “Generalized Non-metric Multidimensional Scaling,” To
Appear, AISTATS, 2007.

[2] Agrafiotis, D., “Stochastic proximity embedding,” Journal of Computational
Chemistry, vol. 24, no. 10, pp. 1215–1221, 2003.

[3] An, L. and Tao, P., “DC Programming Approach and Solution Algorithm
to the Multidimensional Scaling Problem,” From Local to Global Optimization,
pp. 231–276, 2001.

[4] Anstreicher, K. and Burer, S., “Computable representations for convex
hulls of low-dimensional quadratic forms,” Manuscript, University of Iowa,
February, 2007.

[5] Belkin, M. and Niyogi, P., “Laplacian Eigenmaps for Dimensionality
Reduction and Data Representation,” 2003.

[6] Belkin, M., Niyogi, P., and Sindhwani, V., “On manifold regularization,”
in Proceedings of the Tenth International Workshop on Artificial Intelligence
and Statistics (AISTAT 2005), 2005.

[7] Bennett, K. and Demiriz, A., “Semi-Supervised Support Vector Machines,”
NIPS, 1999.

[8] Bentley, J., “Binary Search Trees Used for Associative Searching,” Commu-
nications, 1975.

[9] Berman, A. and Shaked-Monderer, N., Completely Positive Matrices.
World Scientific, 2003.

[10] Bishop, C. and service), S. O., Pattern recognition and machine learning.
Springer, 2006.

[11] Boutsidis, C. and Gallopoulos, E., “SVD based initialization: A head
start for nonnegative matrix factorization,” Pattern Recognition, 2007.

[12] Boyd, S. and Vandenberghe, L., Convex Optimization. Cambridge Univer-
sity Press, 2004.

[13] Brookes, M., “VOICEBOX: Speech Processing Toolbox for MATLAB,”
World Wide Web, http://www. ee. ic. ac. uk/hp/staff/dmb/voicebox/voicebox.
html, 2000.

135

[14] Burer, S., “On the copositive representation of binary and continuous non-
convex quadratic programs,” Mathematical Programming, Series A, vol. 115,
2008.

[15] Burer, S. and Letchford, A., “On Non-Convex Quadratic Programming
with Box Constraints,”

[16] Burer, S. and Monteiro, R., “A nonlinear programming algorithm for solv-
ing semidefinite programs via low-rank factorization,” Mathematical Program-
ming, vol. 95, no. 2, pp. 329–357, 2003.

[17] Coifman, R. and Lafon, S., “Diffusion maps,” Applied and Computational
Harmonic Analysis, vol. 21, no. 1, pp. 5–30, 2006.

[18] Collobert, R., Sinz, F., Weston, J., and Bottou, L., “1 Trading
Convexity for Scalability,”

[19] Dattorro, J., Convex Optimization & Euclidean Distance Geometry. Lulu.
Com, 2006.

[20] Donoho, D. and Grimes, C., “Hessian eigenmaps: Locally linear embedding
techniques for high-dimensional data,” Proceedings of the National Academy of
Sciences, vol. 100, no. 10, pp. 5591–5596, 2003.

[21] Dür, “Interior Points of the Completely Positive Cone,”

[22] Fazel, M., Hindi, H., and Boyd, S., “A rank minimization heuristic
with application to minimum order system approximation,” American Control
Conference, 2001. Proceedings of the 2001, vol. 6, 2001.

[23] Floudas, C., Deterministic Global Optimization: Theory, Methods and
Applications. Kluwer Academic Pub, 2000.

[24] Friedman, J., Bentley, J., and Finkel, R., “An Algorithm for Finding
Best Matches in Logarithmic Expected Time,” ACM Transactions on Mathe-
matical Software, vol. 3, no. 3, pp. 209–226, 1977.

[25] Garry, B., Ryan, R., Nikolaos, V., and Alexander, G., “FASTlib
Design and Development Manual, Version 0.1,” tech. rep., Georgia Institute
of Technology, 2008.

[26] Gonzalez Teofilo, F., “Clustering to minimize the maximum intercluster
distance,” Theoretical Computer Science, vol. 38, pp. 293 – 306, 1985.

[27] Gray, A. and Moore, A., “N-Body problems in statistical learning,”
Advances in Neural Information Processing Systems, vol. 13, 2001.

[28] Györfi, L., A Distribution-Free Theory of Nonparametric Regression.
Springer, 2002.

136

[29] Hair Jr, J., Anderson, R., Tatham, R., and Black, W., Multivariate
data analysis: with readings. Prentice-Hall, Inc. Upper Saddle River, NJ, USA,
1995.

[30] Ham, J., Lee, D., Mika, S., and Schölkopf, B., “A kernel view of
the dimensionality reduction of manifolds,” in Proceedings of the twenty-first
international conference on Machine learning, ACM New York, NY, USA, 2004.

[31] Hastie, T., Tibshirani, R., and Friedman, J., The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer, 2001.

[32] Heiler, M. and Schnorr, C., “Learning Non-Negative Sparse Image Codes
by Convex Programming,” in Computer Vision, 2005. ICCV 2005. Tenth IEEE
International Conference on, vol. 2, 2005.

[33] Heiler, M. and Schnorr, C., “Reverse-Convex Programming for Sparse
Image Codes,” LECTURE NOTES IN COMPUTER SCIENCE, vol. 3757,
p. 600, 2005.

[34] Heiler, M. and Schnorr, C., “Controlling Sparseness in Non-negative Ten-
sor Factorization,” LECTURE NOTES IN COMPUTER SCIENCE, vol. 3951,
p. 56, 2006.

[35] Holmes, M., Gray, A., and Charles, I., “QUIC-SVD: Fast SVD Using
Cosine Trees,” NIPS, 2008.

[36] Horst, R. and Tuy, H., Global Optimization: Deterministic Approaches.
Springer, 1996.

[37] Hoyer, P., “Non-negative Matrix Factorization with Sparseness Constraints,”
The Journal of Machine Learning Research, vol. 5, pp. 1457–1469, 2004.

[38] http://archive.ics.uci.edu/ml/datasets.html.

[39] http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html.

[40] http://isomap.stanford.edu/face data.mat.Z.

[41] http://svmlight.joachims.org/.

[42] http://www.cl.cam.ac.uk/research/dtg/
attarchive/facedatabase.html.

[43] http://www.cs.helsinki.fi/u/phoyer/software.html.

[44] Huang, B. and Jebara, T., “Maximum likelihood graph structure estimation
with degree distributions,” in Analyzing Graphs: Theory and Applications,
NIPS Workshop, 2008.

137

[45] Jansen, A. and Niyogi, P., “Intrinsic Fourier analysis on the manifold of
speech sounds,” ICASSP 2006 Proceedings.

[46] Kaykobad, M., “On nonnegative factorization of matrices,” Linear Algebra
and its Applications, vol. 96, pp. 27–33, 1987.

[47] Kim, H. and Park, H., “Non-Negative Matrix Factorization Based on Alter-
nating Non-Negativity Constrained Least Squares and Active Set Method,”

[48] Kim, S., Magnani, A., Koh, A., and Boyd, S., “Learning the kernel
via convex optimization,” in Acoustics, Speech and Signal Processing, 2008.
ICASSP 2008. IEEE International Conference on, pp. 1997–2000, 2008.

[49] Kruskal, J., “Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis,” Psychometrika, vol. 29, no. 1, pp. 1–27, 1964.

[50] Kruskal, J. and Wish, M., Multidimensional Scaling. Sage Publications,
1978.

[51] Kulis, B., Surendran, A., and Platt, J., “Fast Low-Rank Semidefinite
Programming for Embedding and Clustering,” Proc. 11th Intl. AISTATS
Conference, 2007.

[52] Kulis B., Sra S., J. e. S. D. I., “Scalable Semidefinite Programming using
Convex Perturbation,” UTCS Technical Report, TR-07-47, September, 2007.

[53] Lanckriet, G., Cristianini, N., Bartlett, P., El Ghaoui, L., and
Jordan, M., “Learning the Kernel Matrix with Semidefinite Programming,”
The Journal of Machine Learning Research, vol. 5, pp. 27–72, 2004.

[54] Langville, A., Meyer, C., and Albright, R., “Initializations for the
nonnegative matrix factorization,” Proc. of the 12 ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2006.

[55] Lee, D. and Seung, H., “Learning the parts of objects by non-negative matrix
factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.

[56] Lee, D. and Seung, H., “Algorithms for Non-negative Matrix Factoriza-
tion,” ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS,
pp. 556–562, 2001.

[57] Lee, J. and Verleysen, M., Nonlinear dimensionality reduction. Springer.

[58] Lee, J., Introduction to Smooth Manifolds. Springer, 2003.

[59] Liu, D. and Nocedal, J., “On the limited memory BFGS method for large
scale optimization,” Mathematical Programming, vol. 45, no. 1, pp. 503–528,
1989.

138

[60] Liu, F., Stern, R., Huang, X., Acero, A., and SCIENCE, C.-M.
U. P. P. S. O. C., Efficient CEPSTRAL Normalization for Robust Speech
Recognition. Defense Technical Information Center, 1993.

[61] Marlin, B., Collaborative Filtering: A Machine Learning Perspective. PhD
thesis, University of Toronto, 2004.

[62] Minc, H., Nonnegative matrices. Wiley New York, 1988.

[63] Moore, A., The Anchors Hierarchy: Using the Triangle Inequality to Survive
High Dimensional Data. Carnegie Mellon University, the Robotics Institute,
2000.

[64] Nemirovski A, Lectures on Modern Convex Optimization.

[65] Nocedal, J. and Wright, S., Numerical Optimization. Springer, 1999.

[66] Ouyang, H. and Gray, A., “Learning dissimilarities by ranking: from SDP to
QP,” in Proceedings of the 25th international conference on Machine learning,
pp. 728–735, ACM New York, NY, USA, 2008.

[67] Ozakin, A. and Gray, A., “Density preserving maps,” AI & Statistics
(submitted), 2009.

[68] Paatero, P. and Tapper, U., “Positive Matrix Factorization: A Non-
negative Factor Model with Optimal Utilization of Error Estimates of Data
Values,” Environmetrics, vol. 5, no. 2, pp. 111–126, 1994.

[69] Pinkowski, B., “Principal component analysis of speech spectrogram images,”
Pattern Recognition, vol. 30, no. 5, pp. 777–787, 1997.

[70] Quatieri, T. and Quatieri, T., Discrete-time speech signal processing:
principles and practice. Prentice Hall PTR, 2001.

[71] Rabiner, L. and Juang, B., Fundamentals of speech recognition. Prentice-
Hall, 1993.

[72] Recht, B., Fazel, M., and Parrilo, P., “Guaranteed Minimum-Rank
Solutions of Linear Matrix Equations via Nuclear Norm Minimization,” Arxiv
preprint arXiv:0706.4138, 2007.

[73] Rosales, R. and Fung, G., “Learning sparse metrics via linear program-
ming,” in Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 367–373, ACM New York, NY, USA,
2006.

[74] Roweis, S. and Saul, L., “Nonlinear Dimensionality Reduction by Locally
Linear Embedding,” 2000.

139

[75] Schoelkopf, B., Smola, A., and Mueller, K., “Kernel Principal Compo-
nent Analysis,” LECTURE NOTES IN COMPUTER SCIENCE, pp. 583–588,
1997.

[76] Schölkopf, B. and Smola, A., Learning with kernels. The MIT Press, 2002.

[77] Seneff, S. and Zue, V., “Transcription and alignment of the TIMIT
database,” Symposium on Advanced Man-Machine Interface through Spoken
Language, 1988.

[78] Shaw, B. and Jebara, T., “Minimum volume embedding,” in Artificial
Intelligence and Statistics, 2007.

[79] Shawe-Taylor, J. and Cristianini, N., Kernel Methods for Pattern Anal-
ysis. Cambridge University Press New York, NY, USA, 2004.

[80] Silverman, B., Density Estimation for Statistics and Data Analysis. Chapman
& Hall/CRC, 1986.

[81] Singh-Miller, N., Collins, M., and Hazen, T., “Dimensionality Reduc-
tion for Speech Recognition Using Neighborhood Components Analysis,” Inter-
speech 2007.

[82] Smith, A., Huo, X., and Zha, H., “Convergence and rate of convergence
of a manifold-based dimension reduction algorithm,” in Advances in Neural
Information Processing Systems 21 (Koller, D., Schuurmans, D., Bengio,
Y., and Bottou, L., eds.), 2009.

[83] Song, L., Smola, A., Borgwardt, K., and Gretton, A., “Colored
Maximum Variance Unfolding,” NIPS, 2008.

[84] Srebro, N., “Learning with Matrix Factorizations,” 2004.

[85] Srebro, N., Rennie, J., and Jaakkola, T., “Maximum-margin matrix
factorization,” Advances in Neural Information Processing Systems, vol. 17,
pp. 1329–1336, 2005.

[86] Sturm, J., “Using SeDuMi 1.02, A Matlab toolbox for optimization over
symmetric cones,” Optimization Methods and Software, vol. 11, no. 1, pp. 625–
653, 1999.

[87] Talwalkar A., K. S. and H., R., “Large-Scale Manifold Learning,” IEEE
International Conference on Vision and Pattern Recognition, 2008.

[88] Tao, P. and An, L., “Difference of convex functions optimization algorithms
(DCA) for globally minimizing nonconvex quadratic forms on Euclidean balls
and spheres,” Operations Research Letters, vol. 19, no. 5, pp. 207–216, 1996.

[89] Tenenbaum, J., Silva, V., and Langford, J., “A Global Geometric
Framework for Nonlinear Dimensionality Reduction,” 2000.

140

[90] Vandenberghe, L. and Boyd, S., “Semidefinite Programming,” SIAM
Review, vol. 38, no. 1, pp. 49–95, 1996.

[91] Vasiloglou, N., Gray, A., and Anderson, D., “Parameter Estimation for
Manifold Learning, Through Density Estimation,” Machine Learning for Signal
Processing, 2006. Proceedings of the 2006 16th IEEE Signal Processing Society
Workshop on, pp. 211–216, 2006.

[92] Vasiloglou, N., Gray, A., and Anderson, D., “Scalable Semidefinite
Manifold Learning,” MLSP, 2008.

[93] Weinberger, K., Blitzer, J., and Saul, L., “Distance Metric Learning
for Large Margin Nearest Neighbor Classification,” ADVANCES IN NEURAL
INFORMATION PROCESSING SYSTEMS, vol. 18, p. 1473, 2006.

[94] Weinberger, K., Packer, B., and Saul, L., “Nonlinear dimensionality
reduction by semidefinite programming and kernel matrix factorization,” in
Proceedings of the Tenth International Workshop on Artificial Intelligence and
Statistics, pp. 381–388, 2005.

[95] Weinberger, K. and Saul, L., “An Introduction to Nonlinear Dimen-
sionality Reduction by Maximum Variance Unfolding,” in PROCEEDINGS
OF THE NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE,
vol. 21, p. 1683, Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT
Press; 1999, 2006.

[96] Weinberger, K. and Saul, L., “Unsupervised Learning of Image Manifolds
by Semidefinite Programming,” International Journal of Computer Vision,
vol. 70, no. 1, pp. 77–90, 2006.

[97] Weinberger, K., Sha, F., and Saul, L., “Learning a kernel matrix
for nonlinear dimensionality reduction,” in Proceedings of the twenty-first
international conference on Machine learning, ACM New York, NY, USA, 2004.

[98] Weinberger, K., Sha, F., Zhu, Q., and Saul, L., “Graph Laplacian
Regularization for Large-Scale Semidefinite Programming,” ADVANCES IN
NEURAL INFORMATION PROCESSING SYSTEMS, vol. 19, p. 1489, 2007.

[99] Wolkowicz, H., Saigal, R., and Vandenberghe, L., Handbook of
Semidefinite Programming: Theory, Algorithms, and Applications. Kluwer
Academic Publishers, 2000.

[100] Wright, S., Primal-Dual Interior-Point Methods. Society for Industrial
Mathematics, 1997.

[101] Zhang, Z. and Zha, H., “Principal Manifolds and Nonlinear Dimension
Reduction via Local Tangent Space Alignment,” Arxiv preprint cs.LG/0212008,
2002.

141

VITA

Nikolaos Vasiloglou also known as Nick the Greek in the scientific community was

born in Lesbos Greece in 1976. He graduated from the National Technical University

of Athens in 2000 with a bachelor’s in Electrical and Computer Engineering. He

received his MsE from Georgia Institute of Technology under the supervision of the

DSP grandfather Ronald Schafer. He received his PhD from the same institute in

2009 under the special care of David Anderson and the supervision of Alexander the

Gray(t).

142

