3 research outputs found

    Multidevice Map-Constrained Fingerprint-Based Indoor Positioning Using 3-D Ray Tracing

    Get PDF
    This paper studies the use of deterministic channel modelling through 3D Ray Tracing (RT) for constructing deviceindependent radiomaps for Wi–Fi RSSI–based fingerprinting indoor positioning, applicable to different devices. Device heterogeneity constitutes a limitation in fingerprint–based approaches and also constructing radiomaps through extensive in-situ measurement campaigns is laborious and time-consuming even with a single device let alone the need for radiomaps constructed using multiple different devices. This work tackles both challenges through the use of 3D RT for radiomap generation in conjunction with data calibration using a small set of device-specific measurements to make the radiomap device–independent. The efficiency of this approach is evaluated using simulations and measurements in terms of the time spent to generate the radiomap, the amount of device-specific data required for calibration and in terms of the achievable positioning accuracy. Potential accuracy improvements in the RT-based indoor positioning processes are further investigated, by studying the use of map constraints into the algorithm in the form of a–priori probabilities. In this approach, a Route Probability Factor (RPF), which reflects the likelihood of a user being in various locations inside the environment is used. The outcome of the evaluation process which includes a study of different RPF distributions, indicates the validity of the approach, demonstrated by a reduction in the positioning error for various devices. The versatility of this approach is also demonstrated for different scenarios, different devices and by considering different device-handling conditions

    PINSPOT: An oPen platform for INtelligent context-baSed Indoor POsiTioning

    Get PDF
    This work proposes PINSPOT; an open-access platform for collecting and sharing of context, algorithms and results in the cutting-edge area of indoor positioning. It is envisioned that this framework will become reference point for knowledge exchange which will bring the research community even closer and potentially enhance collaboration towards more effective and efficient creation of indoor positioning-related knowledge and innovation. Specifically, this platform facilitates the collection of sensor data useful for indoor positioning experimentation, the development of novel, self-learning, indoor positioning algorithms, as well as the enhancement and testing of existing ones and the dissemination and sharing of the proposed algorithms along with their configuration, the data used, and with their results

    A Survey of 3D Indoor Localization Systems and Technologies

    Get PDF
    Indoor localization has recently and significantly attracted the interest of the research community mainly due to the fact that Global Navigation Satellite Systems (GNSSs) typically fail in indoor environments. In the last couple of decades, there have been several works reported in the literature that attempt to tackle the indoor localization problem. However, most of this work is focused solely on two-dimensional (2D) localization, while very few papers consider three dimensions (3D). There is also a noticeable lack of survey papers focusing on 3D indoor localization; hence, in this paper, we aim to carry out a survey and provide a detailed critical review of the current state of the art concerning 3D indoor localization including geometric approaches such as angle of arrival (AoA), time of arrival (ToA), time difference of arrival (TDoA), fingerprinting approaches based on Received Signal Strength (RSS), Channel State Information (CSI), Magnetic Field (MF) and Fine Time Measurement (FTM), as well as fusion-based and hybrid-positioning techniques. We provide a variety of technologies, with a focus on wireless technologies that may be utilized for 3D indoor localization such as WiFi, Bluetooth, UWB, mmWave, visible light and sound-based technologies. We critically analyze the advantages and disadvantages of each approach/technology in 3D localization
    corecore