466 research outputs found

    Multiclass Learning with Simplex Coding

    Get PDF
    In this paper we discuss a novel framework for multiclass learning, defined by a suitable coding/decoding strategy, namely the simplex coding, that allows to generalize to multiple classes a relaxation approach commonly used in binary classification. In this framework, a relaxation error analysis can be developed avoiding constraints on the considered hypotheses class. Moreover, we show that in this setting it is possible to derive the first provably consistent regularized method with training/tuning complexity which is independent to the number of classes. Tools from convex analysis are introduced that can be used beyond the scope of this paper

    Differential geometric regularization for supervised learning of classifiers

    Full text link
    We study the problem of supervised learning for both binary and multiclass classification from a unified geometric perspective. In particular, we propose a geometric regularization technique to find the submanifold corresponding to an estimator of the class probability P(y|\vec x). The regularization term measures the volume of this submanifold, based on the intuition that overfitting produces rapid local oscillations and hence large volume of the estimator. This technique can be applied to regularize any classification function that satisfies two requirements: firstly, an estimator of the class probability can be obtained; secondly, first and second derivatives of the class probability estimator can be calculated. In experiments, we apply our regularization technique to standard loss functions for classification, our RBF-based implementation compares favorably to widely used regularization methods for both binary and multiclass classification.http://proceedings.mlr.press/v48/baia16.pdfPublished versio

    Cost-sensitive Multiclass Classification Risk Bounds

    Get PDF
    International audienceA commonly used approach to multiclass classification is to replace the 0-1 loss with a convex surrogate so as to make empirical risk minimization computationally tractable. Previous work has uncovered sufficient and necessary conditions for the consistency of the resulting procedures. In this paper, we strengthen these results by showing how the 0-1 excess loss of a predictor can be upper bounded as a function of the excess loss of the predictor measured using the convex surrogate. The bound is developed for the case of cost-sensitive multiclass classification and a convex surrogate loss that goes back to the work of Lee, Lin and Wahba. The bounds are as easy to calculate as in binary classification. Furthermore, we also show that our analysis extends to the analysis of the recently introduced "Simplex Coding" scheme

    A Unifying Framework in Vector-valued Reproducing Kernel Hilbert Spaces for Manifold Regularization and Co-Regularized Multi-view Learning

    Get PDF
    This paper presents a general vector-valued reproducing kernel Hilbert spaces (RKHS) framework for the problem of learning an unknown functional dependency between a structured input space and a structured output space. Our formulation encompasses both Vector-valued Manifold Regularization and Co-regularized Multi-view Learning, providing in particular a unifying framework linking these two important learning approaches. In the case of the least square loss function, we provide a closed form solution, which is obtained by solving a system of linear equations. In the case of Support Vector Machine (SVM) classification, our formulation generalizes in particular both the binary Laplacian SVM to the multi-class, multi-view settings and the multi-class Simplex Cone SVM to the semi-supervised, multi-view settings. The solution is obtained by solving a single quadratic optimization problem, as in standard SVM, via the Sequential Minimal Optimization (SMO) approach. Empirical results obtained on the task of object recognition, using several challenging datasets, demonstrate the competitiveness of our algorithms compared with other state-of-the-art methods.Comment: 72 page

    GenSVM: a generalized multiclass support vector machine

    Get PDF
    Traditional extensions of the binary support vector machine (SVM) to multiclass problems are either heuristics or require solving a large dual optimization problem. Here, a generalized multiclass SVM is proposed called GenSVM. In this method classification boundaries for a K-class problem are constructed in a (K - 1)-dimensional space using a simplex encoding. Additionally, several different weightings of the misclassification errors are incorporated in the loss function, such that it generalizes three existing multiclass SVMs through a single optimization problem. An iterative majorization algorithm is derived that solves the optimization problem without the need of a dual formulation. This algorithm has the advantage that it can use warm starts during cross validation and during a grid search, which signifficantly speeds up the training phase. Rigorous numerical experiments compare linear GenSVM with seven existing multiclass SVMs on both small and large data sets. These comparisons show that the proposed method is competitive with existing methods in both predictive accuracy and training time, and that it signiffcantly outperforms several existing methods on these criteria
    corecore