
Journal of Machine Learning Research 17 (2016) 1-42 Submitted 12/14; Revised 11/16; Published 12/16

GenSVM: A Generalized Multiclass Support Vector Machine

Gerrit J.J. van den Burg burg@ese.eur.nl

Patrick J.F. Groenen groenen@ese.eur.nl

Econometric Institute

Erasmus University Rotterdam

P.O. Box 1738

3000 DR Rotterdam

The Netherlands

Editor: Sathiya Keerthi

Abstract

Traditional extensions of the binary support vector machine (SVM) to multiclass problems
are either heuristics or require solving a large dual optimization problem. Here, a general-
ized multiclass SVM is proposed called GenSVM. In this method classification boundaries
for a K-class problem are constructed in a (K − 1)-dimensional space using a simplex
encoding. Additionally, several different weightings of the misclassification errors are in-
corporated in the loss function, such that it generalizes three existing multiclass SVMs
through a single optimization problem. An iterative majorization algorithm is derived that
solves the optimization problem without the need of a dual formulation. This algorithm has
the advantage that it can use warm starts during cross validation and during a grid search,
which significantly speeds up the training phase. Rigorous numerical experiments compare
linear GenSVM with seven existing multiclass SVMs on both small and large data sets.
These comparisons show that the proposed method is competitive with existing methods
in both predictive accuracy and training time, and that it significantly outperforms several
existing methods on these criteria.

Keywords: support vector machines, SVM, multiclass classification, iterative majoriza-
tion, MM algorithm, classifier comparison

1. Introduction

For binary classification, the support vector machine has shown to be very successful (Cortes
and Vapnik, 1995). The SVM efficiently constructs linear or nonlinear classification bound-
aries and is able to yield a sparse solution through the so-called support vectors, that is,
through those observations that are either not perfectly classified or are on the classifica-
tion boundary. In addition, by regularizing the loss function the overfitting of the training
data set is curbed. Due to its desirable characteristics several attempts have been made to
extend the SVM to classification problems where the number of classes K is larger than
two. Overall, these extensions differ considerably in the approach taken to include multiple
classes. Three types of approaches for multiclass SVMs (MSVMs) can be distinguished.

First, there are heuristic approaches that use the binary SVM as an underlying classifier
and decompose the K-class problem into multiple binary problems. The most commonly
used heuristic is the one-vs-one (OvO) method where decision boundaries are constructed

c©2016 Gerrit J.J. van den Burg and Patrick J.F. Groenen.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/154416562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Van den Burg and Groenen

x1

x2

(a) One vs. One

x1

x2

(b) One vs. All

x1

x2

(c) Non-heuristic

Figure 1: Illustration of ambiguity regions for common heuristic multiclass SVMs. In the
shaded regions ties occur for which no classification rule has been explicitly
trained. Figure (c) corresponds to an SVM where all classes are considered si-
multaneously, which eliminates any possible ties. Figures inspired by Statnikov
et al. (2011).

between each pair of classes (Kreßel, 1999). OvO requires solving K(K − 1) binary SVM
problems, which can be substantial if the number of classes is large. An advantage of OvO is
that the problems to be solved are smaller in size. On the other hand, the one-vs-all (OvA)
heuristic constructs K classification boundaries, one separating each class from all the other
classes (Vapnik, 1998). Although OvA requires fewer binary SVMs to be estimated, the
complete data set is used for each classifier, which can create a high computational burden.
Another heuristic approach is the directed acyclic graph (DAG) SVM proposed by Platt
et al. (2000). DAGSVM is similar to the OvO approach except that the class prediction is
done by successively voting away unlikely classes until only one remains. One problem with
the OvO and OvA methods is that there are regions of the space for which class predictions
are ambiguous, as illustrated in Figures 1a and 1b.

In practice, heuristic methods such as the OvO and OvA approaches are used more
often than other multiclass SVM implementations. One of the reasons for this is that
there are several software packages that efficiently solve the binary SVM, such as LibSVM
(Chang and Lin, 2011). This package implements a variation of the sequential minimal
optimization algorithm of Platt (1999). Implementations of other multiclass SVMs in high-
level (statistical) programming languages are lacking, which reduces their use in practice.1

The second type of extension of the binary SVM use error correcting codes. In these
methods the problem is decomposed into multiple binary classification problems based on
a constructed coding matrix that determines the grouping of the classes in a specific binary
subproblem (Dietterich and Bakiri, 1995; Allwein et al., 2001; Crammer and Singer, 2002b).
Error correcting code SVMs can thus be seen as a generalization of OvO and OvA. In
Dietterich and Bakiri (1995) and Allwein et al. (2001), a coding matrix is constructed that
determines which class instances are paired against each other for each binary SVM. Both
approaches require that the coding matrix is determined beforehand. However, it is a priori

1. An exception to this is the method of Lee et al. (2004), for which an R implementation exists. See
http://www.stat.osu.edu/~yklee/software.html.

2

Generalized Multiclass Support Vector Machine

unclear how such a coding matrix should be chosen. In fact, as Crammer and Singer (2002b)
show, finding the optimal coding matrix is an NP-complete problem.

The third type of approaches are those that optimize one loss function to estimate all
class boundaries simultaneously, the so-called single machine approaches (Rifkin and Klau-
tau, 2004). In the literature, such methods have been proposed by, among others, Weston
and Watkins (1998), Bredensteiner and Bennett (1999), Crammer and Singer (2002a), Lee
et al. (2004), and Guermeur and Monfrini (2011). The method of Weston and Watkins
(1998) yields a fairly large quadratic problem with a large number of slack variables, that
is, K − 1 slack variables for each observation. The method of Crammer and Singer (2002a)
reduces this number of slack variables by only penalizing the largest misclassification er-
ror. In addition, their method does not include a bias term in the decision boundaries,
which is advantageous for solving the dual problem. Interestingly, this approach does not
reduce parsimoniously to the binary SVM for K = 2. The method of Lee et al. (2004)
uses a sum-to-zero constraint on the decision functions to reduce the dimensionality of the
problem. This constraint effectively means that the solution of the multiclass SVM lies
in a (K − 1)-dimensional subspace of the full K dimensions considered. The size of the
margins is reduced according to the number of classes, such that asymptotic convergence is
obtained to the Bayes optimal decision boundary when the regularization term is ignored
(Rifkin and Klautau, 2004). Finally, the method of Guermeur and Monfrini (2011) is a
quadratic extension of the method developed by Lee et al. (2004). This extension keeps the
sum-to-zero constraint on the decision functions, drops the nonnegativity constraint on the
slack variables, and adds a quadratic function of the slack variables to the loss function.
This means that at the optimum the slack variables are only positive on average, which
differs from common SVM formulations.

The existing approaches to multiclass SVMs suffer from several problems. All current
single machine multiclass extensions of the binary SVM rely on solving a potentially large
dual optimization problem. This can be disadvantageous when a solution has to be found in
a small amount of time, since iteratively improving the dual solution does not guarantee that
the primal solution is improved as well. Thus, stopping early can lead to poor predictive
performance. In addition, the dual of such single machine approaches should be solvable
quickly in order to compete with existing heuristic approaches.

Almost all single machine approaches rely on misclassifications of the observed class
with each of the other classes. By simply summing these misclassification errors (as in Lee
et al., 2004) observations with multiple errors contribute more than those with a single
misclassification do. Consequently, observations with multiple misclassifications have a
stronger influence on the solution than those with a single misclassification, which is not a
desirable property for a multiclass SVM, as it overemphasizes objects that are misclassified
with respect to multiple classes. Here, it is argued that there is no reason to penalize certain
misclassification regions more than others.

Single machine approaches are preferred for their ability to capture the multiclass classi-
fication problem in a single model. A parallel can be drawn here with multinomial regression
and logistic regression. In this case, multinomial regression reduces exactly to the binary
logistic regression method when K = 2, both techniques are single machine approaches, and
many of the properties of logistic regression extend to multinomial regression. Therefore,

3

Van den Burg and Groenen

it can be considered natural to use a single machine approach for the multiclass SVM that
reduces parsimoniously to the binary SVM when K = 2.

The idea of casting the multiclass SVM problem to K−1 dimensions is appealing, since
it reduces the dimensionality of the problem and is also present in other multiclass classifi-
cation methods such as multinomial regression and linear discriminant analysis. However,
the sum-to-zero constraint employed by Lee et al. (2004) creates an additional burden on
the dual optimization problem (Dogan et al., 2011). Therefore, it would be desirable to
cast the problem to K − 1 dimensions in another manner. Below a simplex encoding will
be introduced to achieve this goal. The simplex encoding for multiclass SVMs has been
proposed earlier by Hill and Doucet (2007) and Mroueh et al. (2012), although the method
outlined below differs from these two approaches. Note that the simplex coding approach by
Mroueh et al. (2012) was shown to be equivalent to that of Lee et al. (2004) by Ávila Pires
et al. (2013). An advantage of the simplex encoding is that in contrast to methods such
as OvO and OvA, there are no regions of ambiguity in the prediction space (see Figure
1c). In addition, the low dimensional projection also has advantages for understanding
the method, since it allows for a geometric interpretation. The geometric interpretation of
existing single machine multiclass SVMs is often difficult since most are based on a dual
optimization approach with little attention for a primal problem based on hinge errors.

A new flexible and general multiclass SVM is proposed, called GenSVM. This method
uses the simplex encoding to formulate the multiclass SVM problem as a single optimization
problem that reduces to the binary SVM when K = 2. By using a flexible hinge function and
an `p norm of the errors the GenSVM loss function incorporates three existing multiclass
SVMs that use the sum of the hinge errors, and extends these methods. In the linear
version of GenSVM, K − 1 linear combinations of the features are estimated next to the
bias terms. In the nonlinear version, kernels can be used in a similar manner as can be done
for binary SVMs. The resulting GenSVM loss function is convex in the parameters to be
estimated. For this loss function an iterative majorization (IM) algorithm will be derived
with guaranteed descent to the global minimum. By solving the optimization problem in
the primal it is possible to use warm starts during a hyperparameter grid search or during
cross validation, which makes the resulting algorithm very competitive in total training
time, even for large data sets.

To evaluate its performance, GenSVM is compared to seven of the multiclass SVMs
described above on several small data sets and one large data set. The smaller data sets
are used to assess the classification accuracy of GenSVM, whereas the large data set is
used to verify feasibility of GenSVM for large data sets. Due to the computational cost of
these rigorous experiments only comparisons of linear multiclass SVMs are performed, and
experiments on nonlinear MSVMs are considered outside the scope of this paper. Existing
comparisons of multiclass SVMs in the literature do not determine any statistically signif-
icant differences in performance between classifiers, and resort to tables of accuracy rates
for the comparisons (for instance Hsu and Lin, 2002). Using suggestions from the bench-
marking literature predictive performance and training time of all classifiers is compared
using performance profiles and rank tests. The rank tests are used to uncover statistically
significant differences between classifiers.

This paper is organized as follows. Section 2 introduces the novel generalized multiclass
SVM. In Section 3, features of the iterative majorization theory are reviewed and a number

4

Generalized Multiclass Support Vector Machine

of useful properties are highlighted. Section 4 derives the IM algorithm for GenSVM, and
presents pseudocode for the algorithm. Extensions of GenSVM to nonlinear classification
boundaries are discussed in Section 5. A numerical comparison of GenSVM with existing
multiclass SVMs on empirical data sets is done in Section 6. Section 7 concludes the paper.

2. GenSVM

Before introducing GenSVM formally, consider a small illustrative example of a hypothetical
data set of n = 90 objects with K = 3 classes and m = 2 attributes. Figure 2a shows the
data set in the space of these two attributes x1 and x2, with different classes denoted by
different symbols. Figure 2b shows the (K − 1)-dimensional simplex encoding of the data
after an additional RBF kernel transformation has been applied and the mapping has been
optimized to minimize misclassification errors. In this figure, the triangle shown in the center
corresponds to a regular K-simplex in K − 1 dimensions, and the solid lines perpendicular
to the faces of this simplex are the decision boundaries. This (K − 1)-dimensional space
will be referred to as the simplex space throughout this paper. The mapping from the
input space to this simplex space is optimized by minimizing the misclassification errors,
which are calculated by measuring the distance of an object to the decision boundaries in
the simplex space. Prediction of a class label is also done in this simplex space, by finding
the nearest simplex vertex for the object. Figure 2c illustrates the decision boundaries in
the original space of the input attributes x1 and x2. In Figures 2b and 2c, the support
vectors can be identified as the objects that lie on or beyond the dashed margin lines of
their associated class. Note that the use of the simplex encoding ensures that for every
point in the predictor space a class is predicted, hence no ambiguity regions can exist in
the GenSVM solution.

The misclassification errors are formally defined as follows. Let xi ∈ Rm be an object
vector corresponding to m attributes, and let yi denote the class label of object i with
yi ∈ {1, . . . ,K}, for i ∈ {1, . . . , n}. Furthermore, let W ∈ Rm×(K−1) be a weight matrix,
and define a translation vector t ∈ RK−1 for the bias terms. Then, object i is represented in
the (K − 1)-dimensional simplex space by s′i = x′iW + t′. Note that here the linear version
of GenSVM is described, the nonlinear version is described in Section 5.

To obtain the misclassification error of an object, the corresponding simplex space vector
s′i is projected on each of the decision boundaries that separate the true class of an object
from another class. For the errors to be proportional with the distance to the decision
boundaries, a regular K-simplex in RK−1 is used with distance 1 between each pair of
vertices. Let UK be the K × (K − 1) coordinate matrix of this simplex, where a row u′k
of UK gives the coordinates of a single vertex k. Then, it follows that with k ∈ {1, . . . ,K}
and l ∈ {1, . . . ,K − 1} the elements of UK are given by

ukl =

− 1√

2(l2+l)
if k ≤ l

l√
2(l2+l)

if k = l + 1

0 if k > l + 1.

(1)

See Appendix A for a derivation of this expression. Figure 3 shows an illustration of how the
misclassification errors are computed for a single object. Consider object A with true class

5

Van den Burg and Groenen

x1

x2

(a) Input space

s1

s2

(b) Simplex space

x1

x2

(c) Input space with bound-
aries

Figure 2: Illustration of GenSVM for a 2D data set with K = 3 classes. In (a) the orig-
inal data is shown, with different symbols denoting different classes. Figure (b)
shows the mapping of the data to the (K − 1)-dimensional simplex space, after
an additional RBF kernel mapping has been applied and the optimal solution
has been determined. The decision boundaries in this space are fixed as the
perpendicular bisectors of the faces of the simplex, which is shown as the gray
triangle. Figure (c) shows the resulting boundaries mapped back to the original
input space, as can be seen by comparing with (a). In Figures (b) and (c) the
dashed lines show the margins of the SVM solution.

yA = 2. It is clear that object A is misclassified as it is not located in the shaded area that
has Vertex u2 as the nearest vertex. The boundaries of the shaded area are given by the
perpendicular bisectors of the edges of the simplex between Vertices u2 and u1 and between
Vertices u2 and u3, and form the decision boundaries for class 2. The error for object A is
computed by determining the distance from the object to each of these decision boundaries.

Let q
(21)
A and q

(23)
A denote these distances to the class boundaries, which are obtained by

projecting s′A = x′AW + t′ on u2 − u1 and u2 − u3 respectively, as illustrated in the figure.

Generalizing this reasoning, scalars q
(kj)
i can be defined to measure the projection distance

of object i onto the boundary between class k and j in the simplex space, as

q
(kj)
i = (x′iW + t′)(uk − uj). (2)

It is required that the GenSVM loss function is both general and flexible, such that it
can easily be tuned for the specific data set at hand. To achieve this, a loss function is
constructed with a number of different weightings, each with a specific effect on the object

distances q
(kj)
i . In the proposed loss function, flexibility is added through the use of the

Huber hinge function instead of the absolute hinge function, and by using the `p norm of
the hinge errors instead of the sum. The motivation for these choices follows.

As is customary for SVMs a hinge loss is used to ensure that instances that do not cross
their class margin will yield zero error. Here, the flexible and continuous Huber hinge loss

6

Generalized Multiclass Support Vector Machine

s1

s2

u′
3

u′
1 u′

2

q
(21)

A

q
(23)

A

A

u′
2 − u′

1

u′
2 − u′

3

Figure 3: Graphical illustration of the calculation of distances q
(yAj)
i for an object A with

yA = 2 and K = 3. The figure shows the situation in the (K − 1)-dimensional

space. The distance q
(21)
A is calculated by projecting s′A = x′AW + t′ on u2 − u1,

and the distance q
(23)
A is found by projecting s′A on u2−u3. The boundary between

the class 1 and class 3 regions has been omitted for clarity, but lies along u2.

is used (after the Huber error in robust statistics, see Huber, 1964), which is defined as

h(q) =

1− q − κ+1

2 if q ≤ −κ
1

2(κ+1)(1− q)2 if q ∈ (−κ, 1]

0 if q > 1,

(3)

with κ > −1. The Huber hinge loss has been independently introduced in Chapelle (2007),
Rosset and Zhu (2007), and Groenen et al. (2008). This hinge error is zero when an instance
is classified correctly with respect to its class margin. However, in contrast to the absolute
hinge error, it is continuous due to a quadratic region in the interval (−κ, 1]. This quadratic
region allows for a softer weighting of objects close to the decision boundary. Additionally,
the smoothness of the Huber hinge error is a desirable property for the iterative majorization
algorithm derived in Section 4.1. Note that the Huber hinge error approaches the absolute
hinge for κ ↓ −1, and the quadratic hinge for κ→∞.

The Huber hinge error is applied to each of the distances q
(yij)
i , for j 6= yi. Thus, no

error is counted when the object is correctly classified. For each of the objects, errors with
respect to the other classes are summed using an `p norm to obtain the total object error K∑

j=1
j 6=yi

hp
(
q
(yij)
i

)
1/p

.

7

Van den Burg and Groenen

The `p norm is added to provide a form of regularization on Huber weighted errors for
instances that are misclassified with respect to multiple classes. As argued in the Introduc-
tion, simply summing misclassification errors can lead to overemphasizing of instances with
multiple misclassification errors. By adding an `p norm of the hinge errors the influence
of such instances on the loss function can be tuned. With the addition of the `p norm on
the hinge errors it is possible to illustrate how GenSVM generalizes existing methods. For
instance, with p = 1 and κ ↓ −1, the loss function solves the same problem as the method
of Lee et al. (2004). Next, for p = 2 and κ ↓ −1 it resembles that of Guermeur and Monfrini
(2011). Finally, for p = ∞ and κ ↓ −1 the `p norm reduces to the max norm of the hinge
errors, which corresponds to the method of Crammer and Singer (2002a). Note that in
each case the value of κ can additionally be varied to include an even broader family of loss
functions.

To illustrate the effects of p and κ on the total object error, refer to Figure 4. In Figures
4a and 4b, the value of p is set to p = 1 and p = 2 respectively, while maintaining the
absolute hinge error using κ = −0.95. A reference point is plotted at a fixed position in the
area of the simplex space where there is a nonzero error with respect to two classes. It can
be seen from this reference point that the value of the combined error is higher when p = 1.
With p = 2 the combined error at the reference point approximates the Euclidean distance
to the margin, when κ ↓ −1. Figures 4a, 4c, and 4d show the effect of varying κ. It can
be seen that the error near the margin becomes more quadratic with increasing κ. In fact,
as κ increases the error approaches the squared Euclidean distance to the margin, which
can be used to obtain a quadratic hinge multiclass SVM. Both of these effects will become
stronger when the number of classes increases, as increasingly more objects will have errors
with respect to more than one class.

Next, let ρi ≥ 0 denote optional object weights, which are introduced to allow flexibility
in the way individual objects contribute to the total loss function. With these individual
weights it is possible to correct for different group sizes, or to give additional weights to
misclassifications of certain classes. When correcting for group sizes, the weights can be
chosen as

ρi =
n

nkK
, i ∈ Gk, (4)

where Gk = {i : yi = k} is the set of objects belonging to class k, and nk = |Gk|. The
complete GenSVM loss function combining all n objects can now be formulated as

LMSVM(W, t) =
1

n

K∑
k=1

∑
i∈Gk

ρi

∑
j 6=k

hp
(
q
(kj)
i

)1/p

+ λ tr W′W, (5)

where λ tr W′W is the penalty term to avoid overfitting, and λ > 0 is the regularization
parameter. Note that for the case where K = 2, the above loss function reduces to the loss
function for binary SVM given in Groenen et al. (2008), with Huber hinge errors.

The outline of a proof for the convexity of the loss function in (5) is given. First,

note that the distances q
(kj)
i in the loss function are affine in W and t. Hence, if the loss

function is convex in q
(kj)
i it is convex in W and t as well. Second, the Huber hinge function

is trivially convex in q
(kj)
i , since each separate piece of the function is convex, and the Huber

8

Generalized Multiclass Support Vector Machine

0

8

s2
s1

(a) p = 1 and κ = −0.95

0

8

s2
s1

(b) p = 2 and κ = −0.95

0

8

s2
s1

(c) p = 1 and κ = 1.0

0

8

s2
s1

(d) p = 1 and κ = 5.0

Figure 4: Illustration of the `p norm of the Huber weighted errors. Comparing figures (a)
and (b) shows the effect of the `p norm. With p = 1 objects that have errors
w.r.t. both classes are penalized more strongly than those with only one error,
whereas with p = 2 this is not the case. Figures (a), (c), and (d) compare the
effect of the κ parameter, with p = 1. This shows that with a large value of κ,
the errors close to the boundary are weighted quadratically. Note that s1 and s2
indicate the dimensions of the simplex space.

hinge is continuous. Third, the `p norm is a convex function by the Minkowski inequality,
and it is monotonically increasing by definition. Thus, it follows that the `p norm of the
Huber weighted instance errors is convex (see for instance Rockafellar, 1997). Next, since it
is required that the weights ρi are non-negative, the sum in the first term of (5) is a convex
combination. Finally, the penalty term can also be shown to be convex, since tr W′W is
the square of the Frobenius norm of W, and it is required that λ > 0. Thus, it holds that
the loss function in (5) is convex in W and t.

Predicting class labels in GenSVM can be done as follows. Let (W∗, t∗) denote the
parameters that minimize the loss function. Predicting the class label of an unseen sample
x′n+1 can then be done by first mapping it to the simplex space, using the optimal projection:
s′n+1 = x′n+1W

∗ + t′∗. The predicted class label is then simply the label corresponding to

9

Van den Burg and Groenen

the nearest simplex vertex as measured by the squared Euclidean norm, or

ŷn+1 = arg min
k
‖s′n+1 − u′k‖2, for k = 1, . . . ,K. (6)

3. Iterative Majorization

To minimize the loss function given in (5), an iterative majorization (IM) algorithm will
be derived. Iterative majorization was first described by Weiszfeld (1937), however the
first application of the algorithm in the context of a line search comes from Ortega and
Rheinboldt (1970, p. 253—255). During the late 1970s, the method was independently
developed by De Leeuw (1977) as part of the SMACOF algorithm for multidimensional
scaling, and by Voss and Eckhardt (1980) as a general minimization method. For the
reader unfamiliar with the iterative majorization algorithm a more detailed description has
been included in Appendix B and further examples can be found in for instance Hunter and
Lange (2004).

The asymptotic convergence rate of the IM algorithm is linear, which is less than that
of the Newton-Raphson algorithm (De Leeuw, 1994). However, the largest improvements
in the loss function will occur in the first few steps of the iterative majorization algorithm,
where the asymptotic linear rate does not apply (Havel, 1991). This property will become
very useful for GenSVM as it allows for a quick approximation to the exact SVM solution
in few iterations.

There is no straightforward technique for deriving the majorization function for any
given function. However, in the next section the derivation of the majorization function for
the GenSVM loss function is presented using an “outside-in” approach. In this approach,
each function that constitutes the loss function is majorized separately and the majorization
functions are combined. Two properties of majorization functions that are useful for this
derivation are now formally defined. In these expressions, x is a supporting point, as defined
in Appendix B.

P1. Let f1 : Y → Z, f2 : X → Y, and define f = f1 ◦ f2 : X → Z, such that for
x ∈ X , f(x) = f1(f2(x)). If g1 : Y × Y → Z is a majorization function of f1, then
g : X ×X → Z defined as g = g1◦f2 is a majorization function of f . Thus for x, x ∈ X
it holds that g(x, x) = g1(f2(x), f2(x)) is a majorization function of f(x) at x.

P2. Let fi : X → Z and define f : X → Z such that f(x) =
∑

i aifi(x) for x ∈ X , with
ai ≥ 0 for all i. If gi : X × X → Z is a majorization function for fi at a point x ∈ X ,
then g : X × X → Z given by g(x, x) =

∑
i aigi(x, x) is a majorization function of f .

Proofs of these properties are omitted, as they follow directly from the requirements for a
majorization function given in Appendix B. The first property allows for the use of the
“outside-in” approach to majorization, as will be illustrated in the next section.

4. GenSVM Optimization and Implementation

In this section, a quadratic majorization function for GenSVM will be derived. Although it
is possible to derive a majorization algorithm for general values of the `p norm parameter,2

2. For a majorization algorithm of the `p norm with p ≥ 2, see Groenen et al. (1999).

10

Generalized Multiclass Support Vector Machine

the following derivation will restrict this value to the interval p ∈ [1, 2] since this simplifies
the derivation and avoids the issue that quadratic majorization can become slow for p > 2.
Pseudocode for the derived algorithm will be presented, as well as an analysis of the com-
putational complexity of the algorithm. Finally, an important remark on the use of warm
starts in the algorithm is given.

4.1 Majorization Derivation

To shorten the notation, define

V = [t W′]′,

z′i = [1 x′i],

δkj = uk − uj ,

such that q
(kj)
i = z′iVδkj . With this notation it becomes sufficient to optimize the loss

function with respect to V. Formulated in this manner (5) becomes

LMSVM(V) =
1

n

K∑
k=1

∑
i∈Gk

ρi

∑
j 6=k

hp
(
q
(kj)
i

)1/p

+ λ tr V′JV, (7)

where J is an m+ 1 diagonal matrix with Ji,i = 1 for i > 1 and zero elsewhere. To derive a
majorization function for this expression the “outside-in” approach will be used, together
with the properties of majorization functions. In what follows, variables with a bar denote
supporting points for the IM algorithm. The goal of the derivation is to find a quadratic
majorization function in V such that

LMSVM(V) ≤ tr V′Z′AZ′V − 2 tr V′Z′B + C, (8)

where A, B, and C are coefficients of the majorization depending on V. The matrix Z is
simply the n× (m+ 1) matrix with rows z′i.

Property P2 above means that the summation over instances in the loss function can be
ignored for now. Moreover, the regularization term is quadratic in V, and thus requires no
majorization. The outermost function for which a majorization function has to be found is
thus the `p norm of the Huber hinge errors. Hence it is possible to consider the function
f(x) = ‖x‖p for majorization. A majorization function for f(x) can be constructed, but a
discontinuity in the derivative at x = 0 will remain (Tsutsu and Morikawa, 2012).

To avoid the discontinuity in the derivative of the `p norm, the following inequality is
needed (Hardy et al., 1934, eq. 2.10.3)∑

j 6=k
hp
(
q
(kj)
i

)1/p

≤
∑
j 6=k

h
(
q
(kj)
i

)
.

This inequality can be used as a majorization function only if equality holds at the sup-
porting point ∑

j 6=k
hp
(
q
(kj)
i

)1/p

=
∑
j 6=k

h
(
q
(kj)
i

)
.

11

Van den Burg and Groenen

It is not difficult to see that this only holds if at most one of the h
(
q
(kj)
i

)
errors is nonzero

for j 6= k. Thus an indicator variable εi is introduced which is 1 if at most one of these
errors is nonzero, and 0 otherwise. Then it follows that

LMSVM(V) ≤ 1

n

K∑
k=1

∑
i∈Gk

ρi

εi∑
j 6=k

h
(
q
(kj)
i

)
+ (1− εi)

∑
j 6=k

hp
(
q
(kj)
i

)1/p
 (9)

+ λ tr V′JV.

Now, the next function for which a majorization needs to be found is f1(x) = x1/p.
From the inequality aαbβ < αa + βb, with α + β = 1 (Hardy et al., 1934, Theorem 37), a
linear majorization inequality can be constructed for this function by substituting a = x,
b = x, α = 1/p and β = 1− 1/p (Groenen and Heiser, 1996). This yields

f1(x) = x1/p ≤ 1

p
x1/p−1x+

(
1− 1

p

)
x1/p = g1(x, x).

Applying this majorization and using property P1 gives∑
j 6=k

hp
(
q
(kj)
i

)1/p

≤ 1

p

∑
j 6=k

hp
(
q
(kj)
i

)1/p−1∑
j 6=k

hp
(
q
(kj)
i

)
+

(
1− 1

p

)∑
j 6=k

hp
(
q
(kj)
i

)1/p

.

Plugging this into (9) and collecting terms yields

LMSVM(V) ≤ 1

n

K∑
k=1

∑
i∈Gk

ρi

εi∑
j 6=k

h
(
q
(kj)
i

)
+ (1− εi)ωi

∑
j 6=k

hp
(
q
(kj)
i

)
+ Γ(1) + λ tr V′JV,

with

ωi =
1

p

∑
j 6=k

hp
(
q
(kj)
i

)1/p−1

. (10)

The constant Γ(1) contains all terms that only depend on previous errors q
(kj)
i . The next

majorization step by the “outside-in” approach is to find a quadratic majorization function
for f2(x) = hp(x), of the form

f2(x) = hp(x) ≤ a(x, p)x2 − 2b(x, p)x+ c(x, p) = g2(x, x).

Since this derivation is mostly an algebraic exercise it has been moved to Appendix C. In

the remainder of this derivation, a
(p)
ijk will be used to abbreviate a(q

(kj)
i , p), with similar

12

Generalized Multiclass Support Vector Machine

abbreviations for b and c. Using these majorizations and making the dependence on V

explicit by substituting q
(kj)
i = z′iVδkj gives

LMSVM(V) ≤ 1

n

K∑
k=1

∑
i∈Gk

ρiεi
∑
j 6=k

[
a
(1)
ijkz

′
iVδkjδ

′
kjV

′zi − 2b
(1)
ijkz

′
iVδkj

]

+
1

n

K∑
k=1

∑
i∈Gk

ρi(1− εi)ωi
∑
j 6=k

[
a
(p)
ijkz

′
iVδkjδ

′
kjV

′zi − 2b
(p)
ijkz

′
iVδkj

]
+ Γ(2) + λ tr V′JV,

where Γ(2) again contains all constant terms. Due to dependence on the matrix δkjδ
′
kj ,

the above majorization function is not yet in the desired quadratic form of (8). However,
since the maximum eigenvalue of δkjδ

′
kj is 1 by definition of the simplex coordinates, it

follows that the matrix δkjδ
′
kj − I is negative semidefinite. Hence, it can be shown that

the inequality z′i(V −V)(δkjδ
′
kj − I)(V −V)′zi ≤ 0 holds (Bijleveld and De Leeuw, 1991,

Theorem 4). Rewriting this gives the majorization inequality

z′iVδkjδ
′
kjV

′zi ≤ z′iVV′zi − 2z′iV(I− δkjδ
′
kj)Vzi + z′iV(I− δkjδ

′
kj)V

′
zi.

With this inequality the majorization inequality becomes

LMSVM(V) ≤ 1

n

K∑
k=1

∑
i∈Gk

ρiz
′
iV(V′ − 2V

′
)zi
∑
j 6=k

[
εia

(1)
ijk + (1− εi)ωia(p)ijk

]
(11)

− 2

n

K∑
k=1

∑
i∈Gk

ρiz
′
iV
∑
j 6=k

[
εi

(
b
(1)
ijk − a

(1)
ijkq

(kj)
i

)
+(1− εi)ωi

(
b
(p)
ijk − a

(p)
ijkq

(kj)
i

)]
δkj

+ Γ(3) + λ tr V′JV,

where q
(kj)
i = z′iVδkj . This majorization function is quadratic in V and can thus be used

in the IM algorithm. To derive the first-order condition used in the update step of the IM
algorithm (step 2 in Appendix B), matrix notation for the above expression is introduced.
Let A be an n× n diagonal matrix with elements αi, and let B be an n× (K − 1) matrix
with rows β′i, where

αi =
1

n
ρi
∑
j 6=k

[
εia

(1)
ijk + (1− εi)ωia(p)ijk

]
, (12)

β′i =
1

n
ρi
∑
j 6=k

[
εi

(
b
(1)
ijk − a

(1)
ijkq

(kj)
i

)
+ (1− εi)ωi

(
b
(p)
ijk − a

(p)
ijkq

(kj)
i

)]
δ′kj . (13)

Then the majorization function of LMSVM(V) given in (11) can be written as

LMSVM(V) ≤ tr (V − 2V)′Z′AZV − 2 tr B′ZV + Γ(3) + λ tr V′JV

= tr V′(Z′AZ + λJ)V − 2 tr (V
′
Z′A + B′)ZV + Γ(3).

13

Van den Burg and Groenen

This majorization function has the desired functional form described in (8). Differentiation
with respect to V and equating to zero yields the linear system

(Z′AZ + λJ)V = Z′AZV + Z′B. (14)

The update V+ that solves this system can then be calculated efficiently by Gaussian
elimination.

4.2 Algorithm Implementation and Complexity

Pseudocode for GenSVM is given in Algorithm 1. As can be seen, the algorithm simply
updates all instance weights at each iteration, starting by determining the indicator variable
εi. In practice, some calculations can be done efficiently for all instances by using matrix
algebra. When step doubling (see Appendix B) is applied in the majorization algorithm,
line 25 is replaced by V ← 2V+ − V. In the implementation step doubling is applied
after a burn-in of 50 iterations. The implementation used in the experiments described in
Section 6 is written in C, using the ATLAS (Whaley and Dongarra, 1998) and LAPACK
(Anderson et al., 1999) libraries. The source code for this C library is available under the
open source GNU GPL license, through an online repository. A thorough description of the
implementation is available in the package documentation.

The complexity of a single iteration of the IM algorithm is O(n(m + 1)2) assuming
that n > m > K. As noted earlier, the convergence rate of the general IM algorithm is
linear. Computational complexity of standard SVM solvers that solve the dual problem
through decomposition methods lies between O(n2) and O(n3) depending on the value of
λ (Bottou and Lin, 2007). An efficient algorithm for the method of Crammer and Singer
(2002a) developed by Keerthi et al. (2008) has a complexity of O(nmK) per iteration, where
m ≤ m is the average number of nonzero features per training instance. In the methods
of Lee et al. (2004) and Weston and Watkins (1998), a quadratic programming problem
with n(K − 1) dual variables needs to be solved, which is typically done using a standard
solver. An analysis of the exact convergence of GenSVM, including the expected number
of iterations needed to achieve convergence at a factor ε, is outside the scope of the current
work and a subject for further research.

4.3 Smart Initialization

When training machine learning algorithms to determine the optimal hyperparameters,
it is common to use cross validation (CV). With GenSVM it is possible to initialize the
matrix V such that the final result of a fold is used as the initial value for V0 for the next
fold. This same technique can be used when searching for the optimal hyperparameter
configuration in a grid search, by initializing the weight matrix with the outcome of the
previous configuration. Such warm-start initialization greatly reduces the time needed to
perform cross validation with GenSVM. It is important to note here that using warm starts
is not easily possible with dual optimization approaches. Therefore, the ability to use warm
starts can be seen as an advantage of solving the GenSVM optimization problem in the
primal.

14

Generalized Multiclass Support Vector Machine

Algorithm 1: GenSVM Algorithm

Input: X,y,ρ, p, κ, λ, ε
Output: V

1 K ← max(y)
2 t← 1
3 Z← [1 X]

4 Let V← V0

5 Generate J and UK

6 Lt = LMSVM(V)
7 Lt−1 = (1 + 2ε)Lt

8 while (Lt−1 − Lt)/Lt > ε do
9 for i← 1 to n do

10 Compute q
(yij)
i = z′iVδyij for all j 6= yi

11 Compute h
(
q
(yij)
i

)
for all j 6= yi by (3)

12 if εi = 1 then

13 Compute a
(1)
ijyi

and b
(1)
ijyi

for all j 6= yi according to Table 4 in Appendix C

14 else
15 Compute ωi following (10)

16 Compute a
(p)
ijyi

and b
(p)
ijyi

for all j 6= yi according to Table 4 in Appendix C

17 end
18 Compute αi by (12)
19 Compute βi by (13)

20 end
21 Construct A from αi

22 Construct B from βi

23 Find V+ that solves (14)

24 V← V
25 V← V+

26 Lt−1 ← Lt

27 Lt ← LMSVM(V)
28 t← t+ 1

29 end

5. Nonlinearity

One possible method to include nonlinearity in a classifier is through the use of spline
transformations (see for instance Hastie et al., 2009). With spline transformations each
attribute vector xj is transformed to a spline basis Nj , for j = 1, . . . ,m. The transformed
input matrix N = [N1, . . . ,Nm] is then of size n× l, where l depends on the degree of the
spline transformation and the number of interior knots chosen. An application of spline
transformations to the binary SVM can be found in Groenen et al. (2007).

A more common way to include nonlinearity in machine learning methods is through
the use of the kernel trick, attributed to Aizerman et al. (1964). With the kernel trick,
the dot product of two instance vectors in the dual optimization problem is replaced by
the dot product of the same vectors in a high dimensional feature space. Since no dot
products appear in the primal formulation of GenSVM, a different method is used here.

15

Van den Burg and Groenen

By applying a preprocessing step on the kernel matrix, nonlinearity can be included using
the same algorithm as the one presented for the linear case. Furthermore, predicting class
labels requires a postprocessing step on the obtained matrix V∗. A full derivation is given
in Appendix D.

6. Experiments

To assess the performance of the proposed GenSVM classifier, a simulation study was done
comparing GenSVM with seven existing multiclass SVMs on 13 small data sets. These
experiments are used to precisely measure predictive accuracy and total training time using
performance profiles and rank plots. To verify the feasibility of GenSVM for large data sets
an additional simulation study is done. The results of this study are presented separately in
Section 6.4. Due to the large number of data sets and methods involved, experiments were
only done for the linear kernel. Experiments on nonlinear multiclass SVMs would require
even more training time than for linear MSVMs and is considered outside the scope of this
paper.

6.1 Setup

Implementations of the heuristic multiclass SVMs (OvO, OvA, and DAG) were included
through LibSVM (v. 3.16, Chang and Lin, 2011). LibSVM is a popular library for binary
SVMs with packages for many programming languages, it is written in C++ and implements
a variation of the SMO algorithm of Platt (1999). The OvO and DAG methods are im-
plemented in this package, and a C implementation of OvA using LibSVM was created
for these experiments.3 For the single-machine approaches the MSVMpack package was
used (v. 1.3, Lauer and Guermeur, 2011), which is written in C. This package implements
the methods of Weston and Watkins (W&W, 1998), Crammer and Singer (C&S, 2002a),
Lee et al. (LLW, 2004), and Guermeur and Monfrini (MSVM2, 2011). Finally, to verify
if implementation differences are relevant for algorithm performance the LibLinear (Fan
et al., 2008) implementation of the method by Crammer and Singer (2002a) is also included
(denoted LL C&S). This implementation uses the optimization algorithm by Keerthi et al.
(2008).

To compare the classification methods properly, it is desirable to remove any bias that
could occur when using cross validation (Cawley and Talbot, 2010). Therefore, nested
cross validation is used (Stone, 1974), as illustrated in Figure 5. In nested CV, a data
set is randomly split in a number of chunks. Each of these chunks is kept apart from the
remaining chunks once, while the remaining chunks are combined to form a single data set.
A grid search is then applied to this combined data set to find the optimal hyperparameters
with which to predict the test chunk. This process is then repeated for each of the chunks.
The predictions of the test chunk will be unbiased since it was not included in the grid
search. For this reason, it is argued that this approach is preferred over approaches that
simply report maximum accuracy rates obtained during the grid search.

3. The LibSVM code used for DAGSVM is the same code as was used in Hsu and Lin (2002) and is available
at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools.

16

Generalized Multiclass Support Vector Machine

Combine chunks
Keep
apart

Grid search using 10-fold CV

Train at optimal configuration Test

Training Phase

Testing Phase

Figure 5: An illustration of nested cross validation. A data set is initially split in five chunks.
Each chunk is kept apart once, while a grid search using 10-fold CV is applied
to the combined data from the remaining 4 chunks. The optimal parameters
obtained there are then used to train the model one last time, and predict the
chunk that was kept apart.

For the experiments 13 data sets were selected from the UCI repository (Bache and
Lichman, 2013). The selected data sets and their relevant statistics are shown in Table 1.
All attributes were rescaled to the interval [−1, 1]. The image segmentation and vowel

data sets have a predetermined train and test set, and were therefore not used in the
nested CV procedure. Instead, a grid search was done on the provided training set for each
classifier, and the provided test set was predicted at the optimal hyperparameters obtained.
For the data sets without a predetermined train/test split, nested CV was used with 5 initial
chunks. Hence, 5 · 11 + 2 = 57 pairs of independent train and test data sets are obtained.

While running the grid search, it is desirable to remove any fluctuations that may result
in an unfair comparison. Therefore, it was ensured that all methods had the same CV split
of the training data for the same hyperparameter configuration (specifically, the value of the
regularization parameter). In practice, it can occur that a specific CV split is advantageous
for one classifier but not for others (either in time or performance). Thus, ideally the
grid search would be repeated a number of times with different CV splits, to remove this
variation. However, due to the size of the grid search this is considered to be infeasible.
Finally, it should be noted here that during the grid search 10-fold cross validation was
applied in a non-stratified manner, that is, without resampling of small classes.

The following settings were used in the numerical experiments. The regularization
parameter was varied on a grid with λ ∈ {2−18, 2−16, . . . , 218}. For GenSVM the grid
search was extended with the parameters κ ∈ {−0.9, 0.5, 5.0} and p ∈ {1.0, 1.5, 2.0}. The
stopping parameter for the GenSVM majorization algorithm was set at ε = 10−6 during
the grid search in the training phase and at ε = 10−8 for the final model in the testing
phase. In addition, two different weight specifications were used for GenSVM: the unit
weights with ρi = 1,∀i, as well as the group-size correction weights introduced in (4).
Thus, the grid search consists of 342 configurations for GenSVM, and 19 configurations

17

Van den Burg and Groenen

Data set Instances (n) Features (m) Classes (K) minnk maxnk
breast tissue 106 9 6 14 22
iris 150 4 3 50 50
wine 178 13 3 48 71
image segmentation∗ 210/2100 18 7 30 30
glass 214 9 6 9 76
vertebral 310 6 3 60 150
ecoli 336 8 8 2 143
vowel∗ 528/462 10 11 48 48
balancescale 625 4 3 49 288
vehicle 846 18 4 199 218
contraception 1473 9 3 333 629
yeast 1484 8 10 5 463
car 1728 6 4 65 1210

Table 1: Data set summary statistics. Data sets with an asterisk have a predetermined test
data set. For these data sets, the number of training instances is denoted for the
train and test data sets respectively. The final two columns denote the size of the
smallest and the largest class, respectively.

for the other methods. Since nested CV is used for most data sets, it is required to run
10-fold cross validation on a total of 28158 hyperparameter configurations. To enhance the
reproducibility of these experiments, the exact predictions made by each classifier for each
configuration were stored in a text file.

To run all computations in a reasonable amount of time, the computations were per-
formed on the Dutch National LISA Compute Cluster. A master-worker program was
developed using the message passing interface in Python (Dalćın et al., 2005). This allows
for efficient use of multiple nodes by successively sending out tasks to worker threads from
a single master thread. Since the total training time of a classifier is also of interest, it was
ensured that all computations were done on the exact same core type.4 Furthermore, train-
ing time was measured from within the C programs, to ensure that only the time needed for
the cross validation routine was measured. The total computation time needed to obtain
the presented results was about 152 days, using the LISA Cluster this was done in five and
a half days wall-clock time.

During the training phase it showed that several of the single machine methods im-
plemented through MSVMpack did not converge to an optimal solution within reasonable
amount of time.5 Instead of limiting the maximum number of iterations of the method,
MSVMpack was modified to stop after a maximum of 2 hours of training time per config-
uration. This results in 12 minutes of training time per cross validation fold. The solution
found after this amount of training time was used for prediction during cross validation.

4. The specific type of core used is the Intel Xeon E5-2650 v2, with 16 threads at a clock speed of 2.6 GHz.
At most 14 threads were used simultaneously, reserving one for the master thread and one for system
processes.

5. The default MSVMpack settings were used with a chunk size of 4 for all methods.

18

Generalized Multiclass Support Vector Machine

Whenever training was stopped prematurely, this was recorded.6 Of the 57 training sets,
24 configurations had prematurely stopped training in one or more CV splits for the LLW
method, versus 19 for W&W, 9 for MSVM2, and 2 for C&S (MSVMpack). For the LibSVM
methods, 13 optimal configurations for OvA reached the default maximum number of iter-
ations in one or more CV folds, versus 9 for DAGSVM, and 3 for OvO. No early stopping
was needed for GenSVM or for LL C&S.

Determining the optimal hyperparameters requires a performance measure on the ob-
tained predictions. For binary classifiers it is common to use either the hitrate or the area
under the ROC curve as a measure of classifier performance. The hitrate only measures
the percentage of correct predictions of a classifier and has the well known problem that
no correction is made for group sizes. For instance, if 90% of the observations of a test set
belong to one class, a classifier that always predicts this class has a high hitrate, regardless
of its discriminatory power. Therefore, the adjusted Rand index (ARI) is used here as a
performance measure (Hubert and Arabie, 1985). The ARI corrects for chance and can
therefore more accurately measure discriminatory power of a classifier than the hitrate can.
Using the ARI for evaluating supervised learning algorithms has previously been proposed
by Santos and Embrechts (2009).

The optimal parameter configurations for each method on each data set were chosen
such that the maximum predictive performance was obtained as measured with the ARI.
If multiple configurations obtained the highest performance during the grid search, the
configuration with the smallest training time was chosen. The results on the training data
show that during cross validation GenSVM achieved the highest classification accuracy on
41 out of 57 data sets, compared to 15 and 12 for DAG and OvO, respectively. However,
these are results on the training data sets and therefore can contain considerable bias.
To accurately assess the out-of-sample prediction accuracy the optimal hyperparameter
configurations were determined for each of the 57 training sets, and the test sets were
predicted with these parameters. To remove any variations due to random starts, building
the classifier and predicting the test set was repeated 5 times for each classifier.

Below the simulation results on the small data sets will be evaluated using performance
profiles and rank tests. Performance profiles offer a visual representation of classifier perfor-
mance, while rank tests allow for identification of statistically significant differences between
classifiers. For the sake of completeness tables of performance scores and computation times
for each method on each data set are provided in Appendix E. To promote reproducibility
of the empirical results, all the code used for the classifier comparisons and all the obtained
results will be released through an online repository.

6.2 Performance Profiles

One way to get insight in the performance of different classification methods is through
performance profiles (Dolan and Moré, 2002). A performance profile shows the empirical
cumulative distribution function of a classifier on a performance metric.

6. For the classifiers implemented through LibSVM very long training times were only observed for the
OvA method, however due to the nature of this method it is not trivial to stop the calculations after a
certain amount of time. This behavior was observed in about 1% of all configurations tested on all data
sets, and is therefore considered negligible. Also, for the LibSVM methods it was recorded whenever the
maximum number of iterations was reached.

19

Van den Burg and Groenen

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

η

Pc(η)

GenSVM

LL C&S

DAG

OvA

OvO

C&S

LLW

MSVM2

W&W

Figure 6: Performance profiles for classification accuracy created from all repetitions of the
test set predictions. The methods OvA, C&S, LL C&S, MSVM2, W&W, and
LLW will always have a smaller probability of being within a factor η of the
maximum performance than the GenSVM, OvO, or DAG methods.

Let D denote the set of data sets, and C denote the set of classifiers. Further, let pd,c
denote the performance of classifier c ∈ C on data set d ∈ D as measured by the ARI. Now
define the performance ratio vd,c as the ratio between the best performance on data set d
and the performance of classifier c on data set d, that is

vd,c =
max{pd,c : c ∈ C}

pd,c
.

Thus the performance ratio is 1 for the best performing classifier on a data set and increases
for classifiers with a lower performance. Then, the performance profile for classifier c is given
by the function

Pc(η) =
1

ND
|{d ∈ D : vd,c ≤ η}| ,

where ND = |D| denotes the number of data sets. Thus, the performance profile estimates
the probability that classifier c has a performance ratio below η. Note that Pc(1) denotes
the empirical probability that a classifier achieves the highest performance on a given data
set.

Figure 6 shows the performance profile for classification accuracy. Estimates of Pc(1)
from Figure 6 show that there is a 28.42% probability that OvO achieves the optimal
performance, versus 26.32% for both GenSVM and DAGSVM. Note that this includes
cases where each of these methods achieves the best performance. Figure 6 also shows that
although there is a small difference in the probabilities of GenSVM, OvO, and DAG within

20

Generalized Multiclass Support Vector Machine

100 101 102 103
0

0.2

0.4

0.6

0.8

1

τ

Tc(τ)

GenSVM

LL C&S

DAG

OvA

OvO

C&S

LLW

MSVM2

W&W

Figure 7: Performance profiles for training time. GenSVM has a priori about 40% chance
of requiring the smallest time to perform the grid search on a given method. The
methods implemented through MSVMpack always have a lower chance of being
within a factor τ of the smallest training time than any of the other methods.

a factor of 1.08 of the best predictive performance, for η ≥ 1.08 GenSVM almost always has
the highest probability. It can also be concluded that since the performance profiles of the
MSVMpack implementation and the LibLinear implementation of the method of Crammer
and Singer (2002a) nearly always overlap, implementation differences have a negligible effect
on the classification performance of this method. Finally, the figure shows that OvA and the
methods of Lee et al. (2004), Crammer and Singer (2002a), Weston and Watkins (1998),
and Guermeur and Monfrini (2011) always have a smaller probability of being within a
given factor of the optimal performance than GenSVM, OvO, or DAG do.

Similarly, a performance profile can be constructed for the training time necessary to do
the grid search. Let td,c denote the total training time for classifier c on data set d. Next,
define the performance ratio for time as

wd,c =
td,c

min{td,c : c ∈ C} .

Note that here the classifier with the smallest training time has preference. Therefore,
comparison of classifier computation time is done with the lowest computation time achieved
on a given data set d. Again, the ratio is 1 when the lowest training time is reached, and it
increases for higher computation time. Hence, the performance profile for time is defined
as

Tc(τ) =
1

ND
|{d ∈ D : wd,c ≤ τ}|.

21

Van den Burg and Groenen

The performance profile for time estimates the probability that a classifier c has a time
ratio below τ . Again, Tc(1) denotes the fraction of data sets where classifier c achieved the
smallest training time among all classifiers.

Figure 7 shows the performance profile for the time needed to do the grid search. Since
large differences in training time were observed, a logarithmic scale is used for the horizontal
axis. This performance profile clearly shows that all MSVMpack methods suffer from long
computation times. The fastest methods are GenSVM, OvO, and DAG, followed by the
LibLinear implementation of C&S. From the value of Tc(1) it is found that GenSVM has the
highest probability of being the fastest method for the total grid search, with a probability
of 40.35%, versus 22.81% for OvO, 19.30% for DAG, and 17.54% for LibLinear C&S. The
other methods never achieve the smallest grid search time. It is important to note here
that the grid search for GenSVM is 18 times larger than that of the other methods. These
results illustrate the incredible advantage GenSVM has over other methods by using warm
starts in the grid search.

In addition to the performance profile, the average computation time per hyperparam-
eter configuration was also examined. Here, GenSVM has an average training time of 0.97
seconds per configuration, versus 20.56 seconds for LibLinear C&S, 24.84 seconds for OvO,
and 25.03 seconds for DAGSVM. This is a considerable difference, which can be explained
again by the use of warm starts in GenSVM (see Section 4.3). When the total computation
time per data set is averaged, it is found that GenSVM takes on average 331 seconds per
data set, LibLinear C&S 391 seconds, OvO 472 seconds, and DAG 476 seconds. The dif-
ference between DAGSVM and OvO can be attributed to the prediction strategy used by
DAGSVM. Thus it can be concluded that on average GenSVM is the fastest method during
the grid search, despite the fact it has 18 times more hyperparameters to consider than the
other methods.

6.3 Rank Tests

Following suggestions from Demšar (2006), ranks are used to investigate significant differ-
ences between classifiers. The benefit of using ranks instead of actual performance metrics
is that ranks have meaning when averaged across different data sets, whereas average per-
formance metrics do not. Ranks are calculated for the performance as measured by the
ARI, the total training time needed to do the grid search, and the average time per hyper-
parameter configuration. When ties occur fractional ranks are used.

Figure 8 shows the average ranks for both classification performance and total and
average training time for all classifiers. From Figure 8a it can be seen that GenSVM is in
second place in terms of overall classification performance measured by the ARI. Only OvO
has higher performance than GenSVM on average. Similarly, Figure 8b shows the average
ranks for the total training time. Here, GenSVM is on average the fourth fastest method
for the complete grid search. When looking at the rank plot for the average training time
per hyperparameter configuration, it is clear that the warm starts used during training in
GenSVM are very useful as it ranks as the fastest method on this metric, as shown in Figure
8c.

As Demšar (2006) suggests, the Friedman rank test can be used to find significant
differences between classifiers (Friedman, 1937, 1940). If rcd denotes the fractional rank of

22

Generalized Multiclass Support Vector Machine

1 2 3 4 5 6 7 8 9

W&WDAG MSVM2LL C&S LLWGenSVM OvAOvO C&S

CD

(a) Classification Performance

1 2 3 4 5 6 7 8 9

OvO LL C&S C&S LLWW&WOvAGenSVM MSVM2DAG

CD

(b) Total training time

1 2 3 4 5 6 7 8 9

DAG LLWC&S W&WGenSVM OvALL C&SOvO MSVM2

CD

(c) Average training time

Figure 8: Figure (a) shows the average ranks for performance, (b) shows the average ranks
for the total computation time needed for the grid search, and (c) shows the
ranks for the average time per hyperparameter configuration. It can be seen that
GenSVM obtains the second overall rank in predictive performance, fourth overall
rank in total training time, and first overall rank in average training time. In all
figures, CD shows the critical difference of Holm’s procedure. Classifiers beyond
this CD differ significantly from GenSVM at the 5% significance level.

classifier c on data set d, then with NC classifiers and ND data sets the Friedman statistic
is given by

χ2
F =

12ND

NC(NC + 1)

[∑
c

R2
c −

NC(NC + 1)2

4

]
. (15)

Here, Rc = 1/ND
∑

d rcd denotes the average rank of classifier c. This test statistic is
distributed following the χ2 distribution with NC − 1 degrees of freedom. As Demšar
(2006) notes, Iman and Davenport (1980) showed that the Friedman statistic is undesirably
conservative and the F -statistic is to be used instead, which is given by

FF =
(ND − 1)χ2

F

ND(NC − 1)− χ2
F

,

and is distributed following the F -distribution with NC − 1 and (NC − 1)(ND − 1) degrees
of freedom. Under the null hypothesis of either test there is no significant difference in the
performance of any of the algorithms.

When performing the Friedman test, it is found that with the ranks for classifier per-
formance χ2

F = 116.3 (p < 10−16), and FF = 19.2 (p = 10−16). Hence, with both tests the

23

Van den Burg and Groenen

null hypothesis of equal classification accuracy can be rejected. Similarly, for training time
the test statistics are χ2

F = 384.8 (p < 10−16) and FF = 302.4 (p ≈ 10−16). Therefore, the
null hypothesis of equal training time can also be rejected. When significant differences are
found through the Friedman test, Demšar (2006) suggests to use Holm’s step-down proce-
dure as a post-hoc test, to find which classifiers differ significantly from a chosen reference
classifier (Holm, 1979). Here, GenSVM is used as a reference classifier, since comparing
GenSVM with existing methods is the main focus of these experiments.

Holm’s procedure is based on testing whether the z-statistic comparing classifier i with
classifier j is significant, while adjusting for the familywise error rate. Following Demšar
(2006), this z-statistic is given by

z = (RGenSVM −Ri)
√

6ND

NC(NC + 1)
, (16)

where RGenSVM is the average rank of GenSVM and Ri the average rank of another classifier,
for i = 1, . . . , NC − 1. Subsequently, the p-values computed from this statistic are sorted in
increasing order, as p1 < p2 < . . . < pNC−1. Then, the null hypothesis of equal classification
accuracy can be rejected if pi < α/(NC − i). If for some i the null hypothesis cannot be
rejected, all subsequent tests will also fail. By inverting this procedure, a critical difference
(CD) can be computed that indicates the minimal difference between the reference classifier
and the next best classifier.7 These critical differences are also illustrated in the rank plots
in Figure 8.

Using Holm’s procedure, it is found that for predictive performance GenSVM signifi-
cantly outperforms the method of Lee et al. (2004) (p < 10−14), the method of Guermeur
and Monfrini (2011) (p = 10−6), the MSVMpack implementation of Crammer and Singer
(2002a) (p = 4 · 10−5), and the LibLinear implementation of the same method (p = 0.0004)
at the 5% significance level. Note that since this last method is included twice these test
results are conservative. In terms of total training time, GenSVM is significantly faster
than all methods implemented through MSVMpack (C&S, W&W, MSVM2, and LLW) and
OvA at the 5% significance level. Recall that the hyperparameter grid for GenSVM is 18
times larger than that of the other methods. When looking at average training time per
hyperparameter configuration, GenSVM is significantly faster than all methods except OvO
and DAG, at the 1% significance level.

6.4 Large Data sets

The above results focus on the predictive performance of GenSVM as compared to other
multiclass SVM methods. To assess the practicality of GenSVM for large data sets addi-
tional simulations were done on three more data sets. The covtype data set (n = 581016,
m = 54, K = 7) and the kddcup99 data set (n = 494021, m = 116, K = 23) were se-
lected from the UCI repository (Bache and Lichman, 2013).8 Additionally, the fars data
set (n = 100968, m = 338, K = 8) was retrieved from the Keel repository (Alcalá et al.,

7. This is done by taking the smallest value of α/(NC − i) for which the null hypothesis is rejected, looking
up the corresponding z-statistic, and inverting (16).

8. For kddcup99 the 10% training data set and the corrected test data set are used here, both available
through the UCI repository.

24

Generalized Multiclass Support Vector Machine

Package Method Covtype Fars KDDCup-99

GenSVM GenSVM 0.3571∗∗ 0.8102∗∗∗ 0.9758
LibLinear L1R-L2L 0.3372 0.8080 0.9762
LibLinear L2R-L1L (D) 0.3405 0.7995 0.9789
LibLinear L2R-L2L 0.3383 0.8090∗∗ 0.9781
LibLinear L2R-L2L (D) 0.3393 0.8085∗ 0.9744
LibLinear C&S 0.3582∗∗∗ 0.8081 0.9758
LibSVM DAG 0.8056 0.9809∗∗∗

LibSVM OvA 0.7872 0.9800∗

LibSVM OvO 0.8055 0.9804∗∗

MSVMpack C&S 0.3432∗ 0.7996 0.9741
MSVMpack LLW 0.3117 0.7846 0.9660
MSVMpack MSVM2 0.3165 0.6567 0.9658
MSVMpack W&W 0.2848 0.7719 0.6446

Table 2: Overview of predictive performance on large data sets, as measured by the ARI.
Asterisks are used to mark the three best performing methods for each data set,
with three stars denoting the best performing method.

2010). For large data sets the LibLinear package (Fan et al., 2008) is often used, so the
SVM methods from this package were added to the list of alternative methods.9

LibLinear includes five different SVM implementations: a coordinate descent algorithm
for the `2-regularized `1-loss and `2-loss dual problems (Hsieh et al., 2008), a coordinate
descent algorithm for the `1-regularized `2-loss SVM (Yuan et al., 2010; Fan et al., 2008), a
Newton method for the primal `2-regularized `2-loss SVM problem (Lin et al., 2008), and
finally a sequential dual method for the multiclass SVM by Crammer and Singer (2002a)
introduced by Keerthi et al. (2008). This last method was again included to facilitate a
comparison between the implementations of LibLinear and MSVMpack. Note that with the
exception of this last method all methods in LibLinear are binary SVMs that implement
the one-vs-all strategy.

With the different variants of the linear multiclass SVMs included in LibLinear, a total of
13 methods were considered for these large data sets. Since training of the hyperparameters
for each method leads to a high computational burden the nested CV procedure was replaced
by a grid search using ten-fold CV on a training set of 80% of the data, followed by out-
of-sample prediction on the remaining 20% using the final model. The kddcup99 data set
comes with a separate test data set of 292302 instances, so this was used for the out-of-
sample predictions. The grid search on the training set used the same hyperparameter
configurations as for the small data sets above, with 342 configurations for GenSVM and 19

9. Yet another interesting SVM approach to multiclass classification is the Pegasos method by Shalev-
Shwartz et al. (2011). However, the LibLinear package includes five different approaches to SVM,
including a fast solver for the method by Crammer and Singer (2002a), which makes it more convenient
to include in the list of methods. Moreover, according to the LibLinear documentation (Fan et al.,
2008): “LibLinear is competitive or even faster than state of the art linear classifiers such as Pegasos
(Shalev-Shwartz et al., 2011) and SVMperf (Joachims, 2006)”.

25

Van den Burg and Groenen

Covtype Fars KDDCup-99
Package Method Total Mean Total Mean Total Mean

GenSVM GenSVM 166949 488 131174 384 1768303 5170
LibLinear L1R-L2L 69469 3656 4199 221 34517 1817
LibLinear L2R-L1L (D) 134908 7100 6995 368 16347 860
LibLinear L2R-L2L 4168 219 746 39 3084 162
LibLinear L2R-L2L (D) 159781 8410 7897 416 16974 893
LibLinear C&S 166719 8775 124764 6567 5425 286
LibSVM DAG 80410 40205 81557 8156 61111 3595
LibSVM OvA 77335 77335 54965 18322 73871 12312
LibSVM OvO 140826 46942 84580 8458 81023 4501
MSVMpack C&S 350397 18442 351664 18509 365733 19249
MSVMpack LLW 370790 19515 380943 20050 361329 19017
MSVMpack MSVM2 370736 19512 346140 18218 353479 18604
MSVMpack W&W 367245 19329 344880 18152 367685 19352

Table 3: Overview of training time for each of the large data sets. The average training
time per hyperparameter configuration is also shown. All values are reported in
seconds. For LibSVM the full grid search could never be completed, and results
are averaged only over the finished configurations.

configurations for the other methods. The only difference was that for GenSVM ε = 10−9

was used when training the final model. To accelerate the GenSVM computations, support
for sparse matrices was added.

Due to the large data set sizes, many methods had trouble converging within a rea-
sonable amount of time. Therefore, total computation time was limited to five hours per
hyperparameter configuration per method, both during CV and when training the final
model. Where possible this limitation was included in the main optimization routine of
each method, such that training was stopped when convergence was reached or when more
than five hours had passed. Additionally, for all methods the CV procedure was stopped
prematurely if more than five hours had passed after completion of a fold. In this case,
cross validation performance is only measured for the folds that were completed. These
computations were again performed on the Dutch National LISA Compute Cluster.

Table 2 shows the out-of-sample predictive performance of the different MSVMs on the
large data sets. It can be seen that GenSVM is the best performing method on the fars

data set and the second best method on the covtype data set, just after LL C&S. The
LibSVM methods outperform the other methods on the kddcup99 data set, with DAGSVM
having the highest performance. No results are available for LibSVM for the covtype data
set because convergence could not be reached within the five hour time limit during the
test phase.

Results on the computation time are reported in Table 3. The `2-regularized `2-loss
method by Lin et al. (2008) is clearly the fastest method. However, for the covtype data
set GenSVM total training time is competitive with some of the other LibLinear methods,
and outperforms these methods in terms of average training time. For the fars data set the

26

Generalized Multiclass Support Vector Machine

average training time of GenSVM is also competitive with some of the LibLinear methods,
most notably the method by Crammer and Singer (2002a). The MSVMpack methods seem
to be infeasible for such large data sets, as computations were stopped by the five hour
time limit for almost all hyperparameter configurations. Early stopping was also needed
for the LibLinear implementation of C&S on the covtype and fars data sets, and for the
LibSVM methods on all data sets. For GenSVM, early stopping was only needed for the
kddcup99 data set, which explains the high total computation time there. Especially on
these large data sets the advantage of using warm starts in GenSVM is visible: training
time was less than 30 seconds in 30% of hyperparameters on fars, 23% on covtype, and
11% on kddcup99.

7. Discussion

A generalized multiclass support vector machine has been introduced, called GenSVM.
The method is general in the sense that it subsumes three multiclass SVMs proposed in
the literature and it is flexible due to several different weighting options. The simplex
encoding of the multiclass classification problem used in GenSVM is intuitive and has an
elegant geometrical interpretation. An iterative majorization algorithm has been derived
to minimize the convex GenSVM loss function in the primal. This primal optimization
approach has computational advantages due to the possibility to use warm starts, and
because it can be easily understood. The ability to use warm starts contributes to small
training time during cross validation in a grid search, and allows GenSVM to perform
competitively on large data sets.

Rigorous computational tests of linear multiclass SVMs on small data sets show that
GenSVM significantly outperforms three existing multiclass SVMs (four implementations)
on predictive performance at the 5% significance level. On this metric, GenSVM is the
second-best performing method overall and the best method among single-machine multi-
class SVMs, although the difference with the method of Weston and Watkins (1998) could
not be shown to be statistically significant. GenSVM outperforms five other methods on
total training time and has the smallest total training time when averaged over all data
sets, despite the fact that its grid of hyperparameters is 18 times larger than that of other
methods. Due to the possibility of warm starts it also has the smallest average training
time per hyperparameter and significantly outperforms all but two alternative methods in
this regard at the 1% significance level. For the large data sets, it was found that GenSVM
still achieves high classification accuracy and that total training time remains manageable
due to the warm starts. In practice, the number of hyperparameters could be reduced if
smaller training time is desired. Since GenSVM outperforms existing methods on a number
of data sets and achieves fast training time it is a worthwhile addition to the collection of
methods available to the practitioner.

In the comparison tests MSVMpack (Lauer and Guermeur, 2011) was used to access four
single machine multiclass SVMs proposed in the literature. A big advantage of using this
library is that it allows for a single straightforward C implementation, which greatly reduces
the programming effort needed for the comparisons. However, as is noted in the MSVMpack
documentation, slight differences exist between MSVMpack and method-specific implemen-
tations. For instance, on small data sets MSVMpack can be slower, due to working set

27

Van den Burg and Groenen

selection and shrinking procedures in other implementations. However, classification per-
formance is comparable between MSVMpack and method-specific implementations, as was
verified by adding the LibLinear implementation of the method of Crammer and Singer
(2002a) to the list of alternative methods. Thus, we argue that the results for predictive
accuracy presented above are accurate regardless of implementation, but small differences
can exist for training time when other implementations for single machine MSVMs are used.

Another interesting conclusion that can be drawn from the experimental results is that
the one-vs-all method never performs as good as one-vs-one, DAGSVM, or GenSVM. In fact,
the profile plot in Figure 6 shows that OvA always has a smaller probability of obtaining
the best classification performance as either of these three methods. These results are also
reflected in the classification accuracy of the LibLinear methods on the large data set. In
the literature, the paper by Rifkin and Klautau (2004) is often cited as evidence that OvA
performs well (see for instance Keerthi et al., 2008). However, the simulation results in this
paper suggest that OvA is in fact inferior to OvO, DAG, and GenSVM.

This paper was focused on linear multiclass SVMs. An obvious extension is to incorpo-
rate nonlinear multiclass SVMs through kernels. Due to the large number of data sets and
the long training time the numerical experiments were limited to linear multiclass SVM.
Nonlinear classification through kernels can be achieved by linear methods through a pre-
processing step of an eigendecomposition on the kernel matrix, which is a process of the
order O(n3). In this case, GenSVM will benefit from precomputing kernels before starting
the grid search, or using a larger stopping criterion in the IM algorithm by increasing ε in
Algorithm 1. In addition, approximations can be done by using rank approximated ker-
nel matrices, such as the Nyström method proposed by Williams and Seeger (2001). Such
enhancements are considered topics for further research.

Finally, the potential of using GenSVM in an online setting is recognized. Since the
solution can be found quickly when a warm-start is used, GenSVM may be useful in situ-
ations where new instances have to be predicted at a certain moment, and the true class
label arrives later. Then, re-estimating the GenSVM solution can be done as soon as the
true class label of an object arrives, and a previously known solution can be used as a warm
start. It is expected that in this scenario only a few iterations of the IM algorithm are
needed to arrive at a new optimal solution. This, too, is considered a subject for further
research.

Acknowledgments

The computational experiments of this work were performed on the Dutch National LISA
Compute Cluster, and supported by the Dutch National Science Foundation (NWO). The
authors thank SURFsara (www.surfsara.nl) for the support in using the LISA cluster.

Appendix A. Simplex Coordinates

The simplex used in the formulation of the GenSVM loss function is a regular K-simplex in
RK−1 with distance 1 between each pair of vertices, which is centered at the origin. Since
these requirements alone do not uniquely define the simplex coordinates in general, it will

28

Generalized Multiclass Support Vector Machine

be chosen such that at least one of the vertices lies on an axis. The 2-simplex in R1 is
uniquely defined with the coordinates −1

2 and +1
2 . Using these requirements, it is possible

to define a recursive formula for UK , the simplex coordinate matrix of the K-simplex in
RK−1 as

UK =

[
UK−1 1t

0′ s

]
, with U2 =

[
−1

2
1
2

]
.

Note that the matrix UK has K rows and K − 1 columns. Since the simplex is centered
at zero it holds that the elements in each column sum to 0, implying that s = −(K − 1)t.
Denote by u′i the i-th row of UK and by ũ′i the i-th row of UK−1, then it follows from the
edge length requirement that

‖u′i − u′K‖2 = ‖ũ′i − 0′ + t− s‖2 = ‖ũ′i‖2 + (t− s)2 = 1, ∀i 6= K.

From the requirement of equal distance from each vertex to the origin it follows that

‖u′i‖2 = ‖u′K‖2,
‖ũ′i‖2 + t2 = s2, ∀i 6= K.

Combining these two expressions yields the equation 2s2 − 2st − 1 = 0. Substituting
s = −(K − 1)t and choosing s > 0 and t < 0 gives

t =
−1√

2K(K − 1)
, s =

K − 1√
2K(K − 1)

.

Note that using K = 2 in these expressions gives t = −1
2 and s = 1

2 , as expected. The
recursive relationship defined above then reveals that the first K − 1 elements in column
K − 1 of the matrix are equal to t, and the K-th element in column K − 1 is equal to s.
This can then be generalized for an element ukl in row k and column l of UK , yielding the
expression given in (1).

Appendix B. Details of Iterative Majorization

In this section a brief introduction to iterative majorization is given, following the descrip-
tion of Voss and Eckhardt (1980). The section concludes with a note on step doubling, a
common technique to speed up quadratic majorization algorithms.

Given a continuous function f : X → R with X ⊆ Rd, construct a majorization function
g(x, x) such that

f(x) = g(x, x),

f(x) ≤ g(x, x) for all x ∈ X ,

with x ∈ X a so-called supporting point. In general, the majorization function is constructed
such that its minimum can easily be found, for instance by choosing it to be quadratic in x. If
f(x) is differentiable at the supporting point, the above conditions imply ∇f(x) = ∇g(x, x).
The following procedure can now be used to find a stationary point of f(x),

1. Let x = x0, with x0 a random starting point.

29

Van den Burg and Groenen

f(x0)

f(x1)

f(x2)

f(x∗)

x∗ x0x1x2

f(x)

g(x, x0)

g(x, x1)

f(x)
✻

x ✲

f(x)

Figure 9: One-dimensional graphical illustration of the iterative majorization algorithm,
adapted from De Leeuw (1988). The minimum of a majorization function g(x, xr)
provides the supporting point for the next majorization function g(x, xr+1). The
sequence of supporting points {xr} converges towards the stationary point x∗ if
f(x) is bounded from below, as is the case here.

2. Minimize g(x, x) with respect to x, such that x+ = arg min g(x, x).

3. If f(x)− f(x+) < εf(x+) stop, otherwise let x = x+ and go to step 2.

In this algorithm ε is a small constant. Note that f(x) must be bounded from below on
X for the algorithm to converge. In fact, the following sandwich inequality can be derived
(De Leeuw, 1993)

f(x+) ≤ g(x+, x) ≤ g(x, x) = f(x).

This inequality shows that if f(x) is bounded from below the iterative majorization algo-
rithm achieves global convergence to a stationary point of the function (Voss and Eckhardt,
1980). The iterative majorization algorithm is illustrated in Figure 9, where the majoriza-
tion functions are shown as a quadratic function. As can be seen from the illustration, the
sequence of supporting points {xr} converges to the stationary point x∗ of the function
f(x). In practical situations, this convergence is to a local minimum of f(x).

For quadratic majorization the number of iterations can often be reduced by using a
technique known as step doubling (De Leeuw and Heiser, 1980). Step doubling reduces the
number of iterations by using x = xr+1 = 2x+ − xr as the next supporting point in Step 3
of the algorithm, instead of x = xr+1 = x+. Intuitively, step doubling can be understood
as stepping over the minimum of the majorization function to the point lying directly

30

Generalized Multiclass Support Vector Machine

“opposite” the supporting point x (see also Figure 9). Note that the guaranteed descent of
the IM algorithm still holds when using step doubling, since f(2x+ − x) ≤ g(2x+ − x, x) =
g(x, x) = f(x). In practice, step doubling reduces the number of iterations by half. A
caveat of using step doubling is that the distance to the stationary point can be increased if
the initial point is far from this point. Therefore, in practical applications, a burn-in should
be used before step doubling is applied.

Appendix C. Huber Hinge Majorization

In this appendix, the majorization function will be derived of the Huber hinge error raised
to the power p. Thus, a quadratic function g(x, x) = ax2 − 2bx + c is required, which is a
majorization function of

f(x) = hp(x) =

(
1− x− κ+1

2

)p
if x ≤ −κ

1
(2(κ+1))p (1− x)2p if x ∈ (−κ, 1]

0 if x > 1,

with p ∈ [1, 2]. Each piece of f(x) provides a possible region for the supporting point x.
These regions will be treated separately, starting with x ∈ (−κ, 1].

Since the majorization function must touch f(x) at the supporting point, we can solve
f(x) = g(x, x) and f ′(x) = g′(x, x) for b and c to find

b = ax+
p

1− x

(
1− x√
2(κ+ 1)

)2p

, (17)

c = ax2 +

(
1 +

2px

1− x

)(
1− x√
2(κ+ 1)

)2p

, (18)

whenever x ∈ (−κ, 1]. Note that since p ∈ [1, 2] the function f(x) can become proportional
to a fourth power on the interval x ∈ (−κ, 1]. The upper bound of the second derivative of
f(x) on this interval is reached at x = −κ. Equating f ′′(−κ) to g ′′(−κ, x) = 2a and solving
for a yields

a = 1
4p(2p− 1)

(
κ+ 1

2

)p−2
. (19)

Figure 10a shows an illustration of the majorization function when x ∈ (−κ, 1].
For the interval x ≤ −κ the following expressions are found for b and c using similar

reasoning as above

b = ax+ 1
2p

(
1− x− κ+ 1

2

)p−1
, (20)

c = ax2 + px

(
1− x− κ+ 1

2

)p−1
+

(
1− x− κ+ 1

2

)p
. (21)

To obtain the largest possible majorization step it is desired that the minimum of the
majorization function is located at x ≥ 1, such that g(xmin, x) = 0. This requirement yields

31

Van den Burg and Groenen

x

f(x), g(x, x)

−5−10−15−20 0 5 10

10

20

30

40

(a)

x

f(x), g(x, x)

−20 −15 −10 −5 0 5 10

20

40

60

(b)

Figure 10: Graphical illustration of the majorization of the function f(x) = hp(x). Fig-
ure (a) shows the case where x ∈ (−κ, 1], whereas (b) shows the case where
x ≤ (p + κ − 1)/(p − 2). In both cases p = 1.5. It can be seen that in (b)
the minimum of the majorization function lies at x > 1, such that the largest
possible majorization step is obtained.

c = b2/a, which gives

a = 1
4p

2

(
1− x− κ+ 1

2

)p−2
. (22)

Note however that due to the requirement that f(x) ≤ g(x, x) for all x ∈ R, this majorization
is not valid for all values of x. Solving the requirement for the minimum of the majorization
function, g(xmin, x) = 0 for x yields

x ≤ p+ κ− 1

p− 2
.

Thus, if x satisfies this condition, (22) can be used for a, whereas for cases where x ∈
((p + κ − 1)/(p − 2),−κ], the value of a given in (19) can be used. Figure 10b shows an
illustration of the case where x ≤ (p+ κ− 1)/(p− 2).

Next, a majorization function for the interval x > 1 is needed. Since it has been derived
that for the interval x ≤ (p+ κ− 1)/(p− 2) the minimum of the majorization function lies
at x ≥ 1, symmetry arguments can be used to derive the majorization function for x > 1,
and ensure that it is also tangent at x = (px+ κ− 1)/(p− 2). This yields the coefficients

a = 1
4p

2

(
p

p− 2

(
1− x− κ+ 1

2

))p−2
, (23)

b = a

(
px+ κ− 1

p− 2

)
+ 1

2p

(
p

p− 2

(
1− x− κ+ 1

2

))p−1
, (24)

c = a

(
px+ κ− 1

p− 2

)2

+ p

(
px+ κ− 1

p− 2

)(
p

p− 2

(
1− x− κ+ 1

2

))p−1
+

(
p

p− 2

(
1− x− κ+ 1

2

))p
. (25)

32

Generalized Multiclass Support Vector Machine

Region a b c

x ≤ p+ κ− 1

p− 2
(22) (20) (21)

x ∈
(
p+ κ− 1

p− 2
,−κ

]
(19) (20) (21)

x ∈ (−κ, 1] (19) (17) (18)

x > 1, p 6= 2 (23) (24) (25)

x > 1, p = 2 (19) ax ax2

Table 4: Overview of quadratic majorization coefficients for different pieces of hp(x), de-
pending on x.

Finally, observe that some of the above coefficients are invalid if p = 2. However, since
the upper bound on the interval x ∈ (−κ, 1] given in (19) is still valid if p = 2, it is possible
to do a separate derivation with this value for a to find for x > 1, b = ax and c = ax2. For
the other regions the previously derived coefficients still hold. Table 4 gives an overview of
the various coefficients depending on the location of x.

Appendix D. Kernels in GenSVM

To include kernels in GenSVM a preprocessing step is needed on the kernel matrix, and
a postprocessing step is needed on the obtained parameters before doing class prediction.
Let k : Rm × Rm → R+ denote a positive definite kernel satisfying Mercer’s theorem, and
let Hk denote the corresponding reproducing kernel Hilbert space. Furthermore, define a
feature mapping φ : Rm → Hk as φ(x) = k(x, ·), such that by the reproducing property of
k it holds that k(xi,xj) = 〈φ(xi), φ(xj)〉Hk

.
Using this, the kernel matrix K is defined as the n × n matrix with elements k(xi,xj)

on the i-th row and j-th column. Thus, if Φ denotes the n× l matrix with rows φ(xi) for
i = 1, . . . , n and l ∈ [1,∞], then K = ΦΦ′. Note that it depends on the chosen kernel
whether Φ is finite dimensional. However, the rank of Φ can still be determined through
K, since r = rank(Φ) = rank(K) ≤ min(n, l).

Now, let the reduced singular value decomposition of Φ be given by

Φ = PΣQ′,

where P is n× r, Σ is r× r, and Q is l× r. Note that here, P′P = Ir, Q′Q = Ir, and Σ is
diagonal. Under the mapping X→ Φ it follows that the simplex space vectors become

S = ΦW + 1t′

= PΣQ′W + 1t′

= MQ′W + 1t′.

33

Van den Burg and Groenen

Here W is l× (K−1) to correspond to the dimensions of Φ, and the n× r matrix M = PΣ
has been introduced. In general W cannot be determined, since l might be infinite. This
problem can be solved as follows. Decompose W in two parts, W = W1 + W2, where W1

is in the linear space of Q and W2 is orthogonal to that space, thus

W1 = QQ′W,

W2 = (Il −QQ′)W.

Then it follows that

S = MQ′W + 1t′

= MQ′(W1 + W2) + 1t′

= MQ′(W1 + (Il −QQ′)W) + 1t′

= MQ′W1 + M(Q′ −Q′QQ′)W + 1t′

= MQ′W1 + M(Q′ −Q′)W + 1t′

= MQ′W1 + 1t′

= MQ′W1 + 1t′,

where it has been used that Q′Q = Ir. If the penalty term of the GenSVM loss function is
considered, it is found that

Pλ(W) = λ tr W′W = λ tr W′
1W1 + λ tr W′

2W2,

since

W′
1W2 = W′QQ′(Il −QQ′)W

= W′QQ′W −W′QQ′W

= O.

Here again it has been used that Q′Q = Ir, and O is defined as a (K − 1) × (K − 1)
dimensional matrix of zeroes. Note that the penalty term depends on W2 whereas the
simplex vectors S do not. Therefore, at the optimal solution it is required that W2 is zero,
to minimize the loss function.

Since W1 is still l×(K−1) dimensional with l possibly infinite, consider the substitution
W1 = QΩ, with Ω an r × (K − 1) matrix. The penalty term in terms of Ω then becomes

Pλ(W1) = λ tr W′
1W1 = λ tr Ω′Q′QΩ = λ tr Ω′Ω = Pλ(Ω).

Note also that

S = MQ′W1 + 1t′

= MQ′QΩ + 1t′

= MΩ + 1t′.

The question remains on how to determine the matrices P and Σ, given that the matrix
Φ cannot be determined explicitly. These matrices can be determined by the eigendecom-
position of K, where K = PΣ2P′. In the case where r < n, Σ2 contains only the first r

34

Generalized Multiclass Support Vector Machine

eigenvalues of K, and P the corresponding r columns. Hence, if K is not of full rank, a di-
mensionality reduction is achieved in Ω. The complexity of finding the eigendecomposition
of the kernel matrix is O(n3).

Since the distances q
(kj)
i in the GenSVM loss function can be written as q

(kj)
i = s′iδkj

it follows that the errors can again be calculated in this formulation. Finally, to predict
the simplex space vectors of a test set X2 the following is used. Let Φ2 denote the feature
space mapping of X2, then

S2 = Φ2W1 + 1t′

= Φ2QΩ + 1t′

= Φ2QΣP′PΣ−1Ω + 1t′

= Φ2Φ
′PΣ−1Ω + 1t′

= K2PΣ−1Ω + 1t′

= K2MΣ−2Ω + 1t′,

where K2 = Φ2Φ
′ is the kernel matrix between the test set and the training set, and it was

used that ΣP′PΣ−1 = Ir, and Φ′ = QΣP′ by definition.
With the above expressions for S and Pλ(Ω), it is possible to derive the majorization

function of the loss function for the nonlinear case. The first order conditions can then
again be determined, which yields the following system([

1′

M′

]
A
[
1 M

]
+ λ

[
0 0′

0 Ir

])[
t′

Ω

]
=

[
1′

M′

]
A
[
1 M

] [t′
Ω

]
+

[
1′

M′

]
B. (26)

This system is analogous to the system solved in linear GenSVM. In fact, it can be shown
that by writing Z = [1 M] and V = [t′ Ω]′, this system is equivalent to (14). This property
is very useful for the implementation of GenSVM, since nonlinearity can be included by
simply adding a preprocessing and postprocessing step to the existing GenSVM algorithm.

Appendix E. Additional Simulation Results

Tables 5 and 6 respectively show the predictive accuracy rates and ARI scores on each
data set averaged over each of the 5 test folds. For readability all scores are rounded
to four decimal digits, however identifying the classifier with the highest score was done
on the full precision scores. As can be seen, the choice of performance metric has an
effect on which classification method has the highest classification performance. Regardless
of the performance metric the tables show that MSVM2 and W&W never achieve the
maximum classification performance on a data set. Note that conclusions drawn from
tables of performance scores are quite limited and the results presented in Section 6 provide
more insight into the performance of the various classifiers.

Table 7 shows the computation time averaged over the five nested CV folds for each data
set and each method. In the grid search GenSVM considered 342 hyperparameter config-
urations versus 19 configurations for the other methods. Despite this difference GenSVM
outperformed the other methods on five data sets, DAG outperformed other methods on
four data sets, OvO on two, and LibLinear C&S was fastest on the remaining two data

35

Van den Burg and Groenen

sets. To illustrate the effect of the larger grid search in GenSVM on the computation time,
Table 8 shows the average computation time per hyperparameter configuration. This table
shows that GenSVM is faster than other methods on nine out of thirteen data sets, which
illustrates the influence of warm starts in the GenSVM grid search.

Data set GenSVM LL C&S DAG OvA OvO C&S LLW MSVM2 W&W

balancescale 0.9168 0.8883 0.9168 0.8928 0.9168 0.8922 0.8701 0.8714 0.9008
breasttissue 0.7113 0.7005 0.6515 0.7455 0.6515 0.6944 0.5391 0.6663 0.5711
car 0.8279 0.6185 0.8449 0.8131 0.8524 0.6489 0.7898 0.7855 0.8273
contraception 0.5027 0.4773 0.5017 0.4739 0.5010 0.4699 0.4751 0.4964 0.4972
ecoli 0.8630 0.8547 0.8629 0.8510 0.8659 0.8576 0.7450 0.8456 0.8098
glass 0.6448 0.5813 0.6542 0.5746 0.6450 0.6342 0.4504 0.5988 0.6215
imageseg 0.9169 0.9103 0.9162 0.9210 0.9219 0.9088 0.7741 0.8157 0.8962
iris 0.9600 0.8893 0.9533 0.9467 0.9533 0.8813 0.7640 0.8320 0.9253
vehicle 0.8016 0.7978 0.7955 0.7872 0.7990 0.7941 0.6870 0.7550 0.7993
vertebral 0.8323 0.8458 0.8355 0.8484 0.8419 0.8439 0.7890 0.8432 0.8426
vowel 0.4762 0.4242 0.4957 0.3398 0.5065 0.4221 0.2273 0.3277 0.5017
wine 0.9776 0.9841 0.9608 0.9775 0.9719 0.9775 0.9843 0.9775 0.9717
yeast 0.5343 0.5841 0.5748 0.5175 0.5802 0.5818 0.4217 0.5590 0.5811

Table 5: Predictive accuracy rates for each of the classification methods on all data sets. All
numbers are out-of-sample prediction accuracies averaged over the 5 independent
test folds. Maximum scores per data set are determined on the full precision scores
and are underlined.

Data set GenSVM LL C&S DAG OvA OvO C&S LLW MSVM2 W&W

balancescale 0.8042 0.7355 0.8042 0.7238 0.8042 0.7466 0.6634 0.6653 0.7698
breasttissue 0.5222 0.4964 0.4591 0.5723 0.4787 0.4755 0.4043 0.5585 0.4655
car 0.5381 0.3290 0.5545 0.5238 0.5491 0.3131 0.4874 0.4808 0.5337
contraception 0.0762 0.0532 0.0757 0.0535 0.0747 0.0525 0.0393 0.0658 0.0699
ecoli 0.7668 0.7606 0.7755 0.7652 0.7776 0.7578 0.6236 0.7499 0.7385
glass 0.2853 0.2478 0.2970 0.2346 0.2910 0.2792 0.1776 0.2494 0.2861
imageseg 0.8318 0.8221 0.8280 0.8402 0.8390 0.8193 0.6422 0.6810 0.7991
iris 0.8783 0.7057 0.8609 0.8384 0.8609 0.6879 0.5549 0.6057 0.7918
vehicle 0.6162 0.6009 0.6057 0.5979 0.6057 0.5925 0.4933 0.5397 0.6121
vertebral 0.6649 0.6797 0.6606 0.6862 0.6778 0.6742 0.6480 0.6859 0.6836
vowel 0.2472 0.2474 0.2895 0.1624 0.3218 0.2257 0.1425 0.2043 0.2767
wine 0.9320 0.9585 0.8848 0.9378 0.9200 0.9362 0.9498 0.9332 0.9250
yeast 0.2519 0.2501 0.2415 0.2419 0.2477 0.2534 0.1301 0.2235 0.2501

Table 6: Predictive ARI scores for each of the classification methods on all data sets. All
numbers are out-of-sample ARI scores averaged over the 5 independent test folds.
Maximum scores per data set are determined on the full precision scores and are
underlined.

36

Generalized Multiclass Support Vector Machine

Data set GenSVM LL C&S DAG OvA OvO C&S LLW MSVM2 W&W

balancescale 44.3 88.0 86.4 155.8 84.9 34549 73671 79092 35663
breasttissue 136.0 52.9 3.8 65.2 3.8 28782 74188 38625 81961
car 251.2 1239.1 1513.0 4165.2 1517.4 47408 95197 46978 85050
contraception 82.5 1128.5 1948.3 5079.1 1913.4 45163 88844 43402 40335
ecoli 603.0 88.9 34.7 183.2 34.8 28907 95989 39590 131571
glass 254.6 110.8 48.6 198.2 47.7 27938 89073 37194 108499
imageseg 558.2 67.1 2.4 151 3.2 32691 73300 48576 97218
iris 55.7 13.8 1.9 32.9 1.5 12822 47196 38060 77409
vehicle 186.4 376.8 307.9 1373.3 309.9 37605 49988 40665 43511
vertebral 23.5 66.6 24.4 63.1 24.3 24716 70798 36168 23888
vowel 1282.4 463.9 83.7 3900.2 86.1 36270 95036 49924 82990
wine 129.6 0.1 0.2 0.2 0.2 12854 70439 18389 41018
yeast 1643.3 1181.7 1434.6 4251.1 1423.6 44112 103240 56603 86802

Table 7: Computation time in seconds for each of the methods on all data sets. Values
are averaged over the five nested CV splits. Minimum values per data set are
underlined. Note that the size of the grid search is 18 times larger in GenSVM
than in other methods.

Data set GenSVM LL C&S DAG OvA OvO C&S LLW MSVM2 W&W

balancescale 0.130 4.632 4.546 8.199 4.468 1818 3877 4163 1877
breasttissue 0.398 2.785 0.201 3.434 0.201 1515 3905 2033 4314
car 0.734 65.217 79.629 219.221 79.863 2495 5010 2473 4476
contraception 0.241 59.396 102.544 267.319 100.704 2377 4676 2284 2123
ecoli 1.763 4.680 1.828 9.643 1.831 1521 5052 2084 6925
glass 0.744 5.832 2.559 10.432 2.511 1470 4688 1958 5710
imageseg 1.632 3.530 0.128 7.947 0.167 1721 3858 2557 5117
iris 0.163 0.725 0.101 1.729 0.081 675 2484 2003 4074
vehicle 0.545 19.830 16.206 72.282 16.308 1979 2631 2140 2290
vertebral 0.069 3.504 1.286 3.32 1.279 1301 3726 1904 1257
vowel 3.750 24.415 4.406 205.274 4.533 1909 5002 2628 4368
wine 0.379 0.003 0.010 0.011 0.010 677 3707 968 2159
yeast 4.805 62.197 75.506 223.74 74.925 2322 5434 2979 4569

Table 8: Average computation time in seconds per hyperparameter configuration for each
of the methods on all data sets. Values are averaged over the five nested CV splits.
Minimum values per data set are determined on the full precision values and are
underlined.

37

Van den Burg and Groenen

References

A. Aizerman, E.M. Braverman, and L.I. Rozoner. Theoretical foundations of the potential
function method in pattern recognition learning. Automation and Remote Control, 25:
821–837, 1964.

J. Alcalá, A. Fernández, J. Luengo, J. Derrac, S. Garćıa, L. Sánchez, and F. Herrera. Keel
data-mining software tool: data set repository, integration of algorithms and experimental
analysis framework. Journal of Multiple-Valued Logic and Soft Computing, 17(2-3):255–
287, 2010.

E.L. Allwein, R.E. Schapire, and Y. Singer. Reducing multiclass to binary: a unifying
approach for margin classifiers. The Journal of Machine Learning Research, 1:113–141,
2001.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ guide.
SIAM, third edition, 1999.

B. Ávila Pires, C. Szepesvari, and M. Ghavamzadeh. Cost-sensitive multiclass classification
risk bounds. In Proceedings of The 30th International Conference on Machine Learning,
pages 1391–1399, 2013.

K. Bache and M. Lichman. UCI machine learning repository, 2013. URL http://archive.

ics.uci.edu/ml.

C.C.J.H. Bijleveld and J. De Leeuw. Fitting longitudinal reduced-rank regression models
by alternating least squares. Psychometrika, 56(3):433–447, 1991.

L. Bottou and C.-J. Lin. Support vector machine solvers. In L. Bottou, O. Chapelle,
D. DeCoste, and J. Weston, editors, Large Scale Kernel Machines, pages 301–320. MIT
Press, Cambridge, MA., 2007.

E.J. Bredensteiner and K.P. Bennett. Multicategory classification by support vector ma-
chines. Computational Optimization and Applications, 12(1):53–79, 1999.

G.C. Cawley and N.L.C. Talbot. On over-fitting in model selection and subsequent selection
bias in performance evaluation. The Journal of Machine Learning Research, 11:2079–
2107, 2010.

C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology, 2(3):27:1–27:27, 2011.

O. Chapelle. Training a support vector machine in the primal. Neural Computation, 19(5):
1155–1178, 2007.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based
vector machines. The Journal of Machine Learning Research, 2:265–292, 2002a.

38

Generalized Multiclass Support Vector Machine

K. Crammer and Y. Singer. On the learnability and design of output codes for multiclass
problems. Machine Learning, 47(2-3):201–233, 2002b.

L. Dalćın, R. Paz, and M. Storti. MPI for Python. Journal of Parallel and Distributed
Computing, 65(9):1108–1115, 2005.

J. De Leeuw. Applications of convex analysis to multidimensional scaling. In J.R. Barra,
F. Brodeau, G. Romier, and B. Van Cutsem, editors, Recent Developments in Statistics,
pages 133–146. North Holland Publishing Company, Amsterdam, 1977.

J. De Leeuw. Convergence of the majorization method for multidimensional scaling. Journal
of Classification, 5(2):163–180, 1988.

J. De Leeuw. Fitting distances by least squares. Technical Report 130, Los Angeles:
Interdivisional Program in Statistics, UCLA, 1993.

J. De Leeuw. Block-relaxation algorithms in statistics. In H.-H. Bock, W. Lenski, and M.M.
Richter, editors, Information Systems and Data Analysis, pages 308–324. Springer Berlin
Heidelberg, 1994.

J. De Leeuw and W.J. Heiser. Multidimensional scaling with restrictions on the configura-
tion. Multivariate Analysis, 5:501–522, 1980.

J. Demšar. Statistical comparisons of classifiers over multiple data sets. The Journal of
Machine Learning Research, 7:1–30, 2006.

T.G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting
output codes. Journal of Artificial Intelligence Research, 2:263–286, 1995.

U. Dogan, T. Glasmachers, and C. Igel. Fast training of multi-class support vector machines.
Technical Report 03/2011, University of Copenhagen, Faculty of Science, 2011.

E.D. Dolan and J.J. Moré. Benchmarking optimization software with performance profiles.
Mathematical Programming, 91(2):201–213, 2002.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library
for large linear classification. The Journal of Machine Learning Research, 9:1871–1874,
2008.

M. Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis
of variance. Journal of the American Statistical Association, 32(200):675–701, 1937.

M. Friedman. A comparison of alternative tests of significance for the problem ofm rankings.
The Annals of Mathematical Statistics, 11(1):86–92, 1940.

P.J.F. Groenen and W.J. Heiser. The tunneling method for global optimization in multidi-
mensional scaling. Psychometrika, 61(3):529–550, 1996.

P.J.F. Groenen, W.J. Heiser, and J.J. Meulman. Global optimization in least-squares mul-
tidimensional scaling by distance smoothing. Journal of Classification, 16(2):225–254,
1999.

39

Van den Burg and Groenen

P.J.F. Groenen, G. Nalbantov, and J.C. Bioch. Nonlinear support vector machines through
iterative majorization and I-splines. In R. Decker and H.-J. Lenz, editors, Advances in
Data Analysis, pages 149–161. Springer Berlin Heidelberg, 2007.

P.J.F. Groenen, G. Nalbantov, and J.C. Bioch. SVM-Maj: a majorization approach to
linear support vector machines with different hinge errors. Advances in Data Analysis
and Classification, 2(1):17–43, 2008.

Y. Guermeur and E. Monfrini. A quadratic loss multi-class SVM for which a radius–margin
bound applies. Informatica, 22(1):73–96, 2011.

G.H. Hardy, J.E. Littlewood, and G. Pólya. Inequalities. Cambridge University Press, 1934.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer,
New York, 2nd edition, 2009.

T. F. Havel. An evaluation of computational strategies for use in the determination of pro-
tein structure from distance constraints obtained by nuclear magnetic resonance. Progress
in Biophysics and Molecular Biology, 56(1):43–78, 1991.

S.I. Hill and A. Doucet. A framework for kernel-based multi-category classification. Journal
of Artificial Intelligence Research, 30:525–564, 2007.

S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of
Statistics, 6(2):65–70, 1979.

C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S.S. Keerthi, and S. Sundararajan. A dual coordinate
descent method for large-scale linear SVM. In Proceedings of the 25th International
Conference on Machine Learning, pages 408–415, 2008.

C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass support vector machines.
IEEE Transactions on Neural Networks, 13(2):415–425, 2002.

P.J. Huber. Robust estimation of a location parameter. The Annals of Mathematical
Statistics, 35(1):73–101, 1964.

L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2(1):193–218,
1985.

D.R. Hunter and K. Lange. A tutorial on MM algorithms. The American Statistician, 58
(1):30–37, 2004.

R.L. Iman and J.M. Davenport. Approximations of the critical region of the Friedman
statistic. Communications in Statistics – Theory and Methods, 9(6):571–595, 1980.

T. Joachims. Training linear SVMs in linear time. In Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 217–226, 2006.

S.S. Keerthi, S. Sundararajan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. A sequential dual
method for large scale multi-class linear SVMs. In Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 408–416, 2008.

40

Generalized Multiclass Support Vector Machine

U.H.G. Kreßel. Pairwise classification and support vector machines. In B. Schölkopf, C.J.C.
Burges, and A.J. Smola, editors, Advances in Kernel Methods, pages 255–268. MIT Press,
1999.

F. Lauer and Y. Guermeur. MSVMpack: A multi-class support vector machine package.
The Journal of Machine Learning Research, 12:2269–2272, 2011.

Y. Lee, Y. Lin, and G. Wahba. Multicategory support vector machines: theory and appli-
cation to the classification of microarray data and satellite radiance data. Journal of the
American Statistical Association, 99(465):67–81, 2004.

C.-J. Lin, R.C. Weng, and S.S. Keerthi. Trust region Newton method for logistic regression.
The Journal of Machine Learning Research, 9:627–650, 2008.

Y. Mroueh, T. Poggio, L. Rosasco, and J. Slotine. Multiclass learning with simplex coding.
In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 25, pages 2789–2797. Curran Associates, Inc.,
2012.

J.M. Ortega and W.C. Rheinboldt. Iterative Solutions of Nonlinear Equations in Several
Variables. New York: Academic Press, 1970.

J.C. Platt. Fast training of support vector machines using sequential minimal optimization.
In B. Schölkopf, C.J.C. Burges, and A.J. Smola, editors, Advances in Kernel Methods,
pages 185–208. MIT press, 1999.

J.C. Platt, N. Cristianini, and J. Shawe-Taylor. Large margin DAGs for multiclass classifi-
cation. In S.A. Solla, T.K. Leen, and K. Müller, editors, Advances in Neural Information
Processing Systems 12, pages 547–553. MIT Press, 2000.

R. Rifkin and A. Klautau. In defense of one-vs-all classification. The Journal of Machine
Learning Research, 5:101–141, 2004.

R.T. Rockafellar. Convex Analysis. Princeton University Press, 1997.

S. Rosset and J. Zhu. Piecewise linear regularized solution paths. The Annals of Statistics,
35(3):1012–1030, 2007.

J.M. Santos and M. Embrechts. On the use of the adjusted Rand index as a metric for
evaluating supervised classification. In Proceedings of the 19th International Conference
on Artificial Neural Networks: Part II, pages 175–184. Springer-Verlag, 2009.

S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: Primal Estimated sub-
GrAdient SOlver for SVM. Mathematical Programming, 127(1):3–30, 2011.

A. Statnikov, C.F. Aliferis, D.P. Hardin, and I. Guyon. A Gentle Introduction to Support
Vector Machines in Biomedicine: Theory and Methods. World Scientific, 2011.

M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal of the
Royal Statistical Society. Series B (Methodological), 36(2):111–147, 1974.

41

Van den Burg and Groenen

H. Tsutsu and Y. Morikawa. An lp norm minimization using auxiliary function for com-
pressed sensing. In Proceedings of the International MultiConference of Engineers and
Computer Scientists, volume 1, 2012.

V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

H. Voss and U. Eckhardt. Linear convergence of generalized Weiszfeld’s method. Computing,
25(3):243–251, 1980.

E. Weiszfeld. Sur le point pour lequel la somme des distances de n points donnés est
minimum. Tohoku Mathematical Journal, 43:355–386, 1937.

J. Weston and C. Watkins. Multi-class support vector machines. Technical Report CSD-
TR-98-04, University of London, Royal Holloway, Department of Computer Science, 1998.

R.C. Whaley and J.J. Dongarra. Automatically tuned linear algebra software. In Proceedings
of the 1998 ACM/IEEE conference on Supercomputing, pages 1–27. IEEE Computer
Society, 1998.

C.K.I. Williams and M. Seeger. Using the Nyström method to speed up kernel machines.
In T.K. Leen, T.G. Dietterich, and V. Tresp, editors, Advances in Neural Information
Processing Systems 13, pages 682–688. MIT Press, 2001.

G.-X. Yuan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. A comparison of optimization
methods and software for large-scale L1-regularized linear classification. The Journal of
Machine Learning Research, 11:3183–3234, 2010.

42

