20 research outputs found

    Multiclass Learning with Simplex Coding

    Get PDF
    In this paper we discuss a novel framework for multiclass learning, defined by a suitable coding/decoding strategy, namely the simplex coding, that allows to generalize to multiple classes a relaxation approach commonly used in binary classification. In this framework, a relaxation error analysis can be developed avoiding constraints on the considered hypotheses class. Moreover, we show that in this setting it is possible to derive the first provably consistent regularized method with training/tuning complexity which is independent to the number of classes. Tools from convex analysis are introduced that can be used beyond the scope of this paper

    Dirichlet-based Gaussian Processes for Large-scale Calibrated Classification

    Get PDF
    This paper studies the problem of deriving fast and accurate classification algorithms with uncertainty quantification. Gaussian process classification provides a principled approach, but the corresponding computational burden is hardly sustainable in large-scale problems and devising efficient alternatives is a challenge. In this work, we investigate if and how Gaussian process regression directly applied to classification labels can be used to tackle this question. While in this case training is remarkably faster, predictions need to be calibrated for classification and uncertainty estimation. To this aim, we propose a novel regression approach where the labels are obtained through the interpretation of classification labels as the coefficients of a degenerate Dirichlet distribution. Extensive experimental results show that the proposed approach provides essentially the same accuracy and uncertainty quantification as Gaussian process classification while requiring only a fraction of computational resources

    Convex Learning of Multiple Tasks and their Structure

    Get PDF
    Reducing the amount of human supervision is a key problem in machine learning and a natural approach is that of exploiting the relations (structure) among different tasks. This is the idea at the core of multi-task learning. In this context a fundamental question is how to incorporate the tasks structure in the learning problem.We tackle this question by studying a general computational framework that allows to encode a-priori knowledge of the tasks structure in the form of a convex penalty; in this setting a variety of previously proposed methods can be recovered as special cases, including linear and non-linear approaches. Within this framework, we show that tasks and their structure can be efficiently learned considering a convex optimization problem that can be approached by means of block coordinate methods such as alternating minimization and for which we prove convergence to the global minimum.Comment: 26 pages, 1 figure, 2 table

    On the Generalization of the C-Bound to Structured Output Ensemble Methods

    No full text
    This paper generalizes an important result from the PAC-Bayesian literature for binary classification to the case of ensemble methods for structured outputs. We prove a generic version of the \Cbound, an upper bound over the risk of models expressed as a weighted majority vote that is based on the first and second statistical moments of the vote's margin. This bound may advantageously (i)(i) be applied on more complex outputs such as multiclass labels and multilabel, and (ii)(ii) allow to consider margin relaxations. These results open the way to develop new ensemble methods for structured output prediction with PAC-Bayesian guarantees

    Leveraging Low-Rank Relations Between Surrogate Tasks in Structured Prediction

    Get PDF
    We study the interplay between surrogate methods for structured prediction and techniques from multitask learning designed to leverage relationships between surrogate outputs. We propose an efficient algorithm based on trace norm regularization which, differently from previous methods, does not require explicit knowledge of the coding/decoding functions of the surrogate framework. As a result, our algorithm can be applied to the broad class of problems in which the surrogate space is large or even infinite dimensional. We study excess risk bounds for trace norm regularized structured prediction, implying the consistency and learning rates for our estimator. We also identify relevant regimes in which our approach can enjoy better generalization performance than previous methods. Numerical experiments on ranking problems indicate that enforcing low-rank relations among surrogate outputs may indeed provide a significant advantage in practice.Comment: 42 pages, 1 tabl

    A Consistent Regularization Approach for Structured Prediction

    Get PDF
    We propose and analyze a regularization approach for structured prediction problems. We characterize a large class of loss functions that allows to naturally embed structured outputs in a linear space. We exploit this fact to design learning algorithms using a surrogate loss approach and regularization techniques. We prove universal consistency and finite sample bounds characterizing the generalization properties of the proposed methods. Experimental results are provided to demonstrate the practical usefulness of the proposed approach.Comment: 39 pages, 2 Tables, 1 Figur

    Improved Multi-Class Cost-Sensitive Boosting via Estimation of the Minimum-Risk Class

    Get PDF
    We present a simple unified framework for multi-class cost-sensitive boosting. The minimum-risk class is estimated directly, rather than via an approximation of the posterior distribution. Our method jointly optimizes binary weak learners and their corresponding output vectors, requiring classes to share features at each iteration. By training in a cost-sensitive manner, weak learners are invested in separating classes whose discrimination is important, at the expense of less relevant classification boundaries. Additional contributions are a family of loss functions along with proof that our algorithm is Boostable in the theoretical sense, as well as an efficient procedure for growing decision trees for use as weak learners. We evaluate our method on a variety of datasets: a collection of synthetic planar data, common UCI datasets, MNIST digits, SUN scenes, and CUB-200 birds. Results show state-of-the-art performance across all datasets against several strong baselines, including non-boosting multi-class approaches
    corecore