7,027 research outputs found

    A new bandwidth selection criterion for using SVDD to analyze hyperspectral data

    Full text link
    This paper presents a method for hyperspectral image classification that uses support vector data description (SVDD) with the Gaussian kernel function. SVDD has been a popular machine learning technique for single-class classification, but selecting the proper Gaussian kernel bandwidth to achieve the best classification performance is always a challenging problem. This paper proposes a new automatic, unsupervised Gaussian kernel bandwidth selection approach which is used with a multiclass SVDD classification scheme. The performance of the multiclass SVDD classification scheme is evaluated on three frequently used hyperspectral data sets, and preliminary results show that the proposed method can achieve better performance than published results on these data sets

    Interpretable multiclass classification by MDL-based rule lists

    Get PDF
    Interpretable classifiers have recently witnessed an increase in attention from the data mining community because they are inherently easier to understand and explain than their more complex counterparts. Examples of interpretable classification models include decision trees, rule sets, and rule lists. Learning such models often involves optimizing hyperparameters, which typically requires substantial amounts of data and may result in relatively large models. In this paper, we consider the problem of learning compact yet accurate probabilistic rule lists for multiclass classification. Specifically, we propose a novel formalization based on probabilistic rule lists and the minimum description length (MDL) principle. This results in virtually parameter-free model selection that naturally allows to trade-off model complexity with goodness of fit, by which overfitting and the need for hyperparameter tuning are effectively avoided. Finally, we introduce the Classy algorithm, which greedily finds rule lists according to the proposed criterion. We empirically demonstrate that Classy selects small probabilistic rule lists that outperform state-of-the-art classifiers when it comes to the combination of predictive performance and interpretability. We show that Classy is insensitive to its only parameter, i.e., the candidate set, and that compression on the training set correlates with classification performance, validating our MDL-based selection criterion

    Sub-Classifier Construction for Error Correcting Output Code Using Minimum Weight Perfect Matching

    Full text link
    Multi-class classification is mandatory for real world problems and one of promising techniques for multi-class classification is Error Correcting Output Code. We propose a method for constructing the Error Correcting Output Code to obtain the suitable combination of positive and negative classes encoded to represent binary classifiers. The minimum weight perfect matching algorithm is applied to find the optimal pairs of subset of classes by using the generalization performance as a weighting criterion. Based on our method, each subset of classes with positive and negative labels is appropriately combined for learning the binary classifiers. Experimental results show that our technique gives significantly higher performance compared to traditional methods including the dense random code and the sparse random code both in terms of accuracy and classification times. Moreover, our method requires significantly smaller number of binary classifiers while maintaining accuracy compared to the One-Versus-One.Comment: 7 pages, 3 figure

    Convex Optimization for Binary Classifier Aggregation in Multiclass Problems

    Full text link
    Multiclass problems are often decomposed into multiple binary problems that are solved by individual binary classifiers whose results are integrated into a final answer. Various methods, including all-pairs (APs), one-versus-all (OVA), and error correcting output code (ECOC), have been studied, to decompose multiclass problems into binary problems. However, little study has been made to optimally aggregate binary problems to determine a final answer to the multiclass problem. In this paper we present a convex optimization method for an optimal aggregation of binary classifiers to estimate class membership probabilities in multiclass problems. We model the class membership probability as a softmax function which takes a conic combination of discrepancies induced by individual binary classifiers, as an input. With this model, we formulate the regularized maximum likelihood estimation as a convex optimization problem, which is solved by the primal-dual interior point method. Connections of our method to large margin classifiers are presented, showing that the large margin formulation can be considered as a limiting case of our convex formulation. Numerical experiments on synthetic and real-world data sets demonstrate that our method outperforms existing aggregation methods as well as direct methods, in terms of the classification accuracy and the quality of class membership probability estimates.Comment: Appeared in Proceedings of the 2014 SIAM International Conference on Data Mining (SDM 2014
    • …
    corecore