1,744 research outputs found

    Compensation of Laser Phase Noise Using DSP in Multichannel Fiber-Optic Communications

    Get PDF
    One of the main impairments that limit the throughput of fiber-optic communication systems is laser phase noise, where the phase of the laser output drifts with time. This impairment can be highly correlated across channels that share lasers in multichannel fiber-optic systems based on, e.g., wavelength-division multiplexing using frequency combs or space-division multiplexing. In this thesis, potential improvements in the system tolerance to laser phase noise that are obtained through the use of joint-channel digital signal processing are investigated. To accomplish this, a simple multichannel phase-noise model is proposed, in which the phase noise is arbitrarily correlated across the channels. Using this model, high-performance pilot-aided phase-noise compensation and data-detection algorithms are designed for multichannel fiber-optic systems using Bayesian-inference frameworks. Through Monte Carlo simulations of coded transmission in the presence of moderate laser phase noise, it is shown that joint-channel processing can yield close to a 1 dB improvement in power efficiency. It is further shown that the algorithms are highly dependent on the positions of pilots across time and channels. Hence, the problem of identifying effective pilot distributions is studied.The proposed phase-noise model and algorithms are validated using experimental data based on uncoded space-division multiplexed transmission through a weakly-coupled, homogeneous, single-mode, 3-core fiber. It is found that the performance improvements predicted by simulations based on the model are reasonably close to the experimental results. Moreover, joint-channel processing is found to increase the maximum tolerable transmission distance by up to 10% for practical pilot rates.Various phenomena decorrelate the laser phase noise between channels in multichannel transmission, reducing the potency of schemes that exploit this correlation. One such phenomenon is intercore skew, where the spatial channels experience different propagation velocities. The effect of intercore skew on the performance of joint-core phase-noise compensation is studied. Assuming that the channels are aligned in the receiver, joint-core processing is found to be beneficial in the presence of skew if the linewidth of the local oscillator is lower than the light-source laser linewidth.In the case that the laser phase noise is completely uncorrelated across channels in multichannel transmission, it is shown that the system performance can be improved by applying transmitter-side multidimensional signal rotations. This is found by numerically optimizing rotations of four-dimensional signals that are transmitted through two channels. Structured four-dimensional rotations based on Hadamard matrices are found to be near-optimal. Moreover, in the case of high signal-to-noise ratios and high signal dimensionalities, Hadamard-based rotations are found to increase the achievable information rate by up to 0.25 bits per complex symbol for transmission of higher-order modulations

    ECFA Detector R&D Panel, Review Report

    Full text link
    Two special calorimeters are foreseen for the instrumentation of the very forward region of an ILC or CLIC detector; a luminometer (LumiCal) designed to measure the rate of low angle Bhabha scattering events with a precision better than 103^{-3} at the ILC and 102^{-2} at CLIC, and a low polar-angle calorimeter (BeamCal). The latter will be hit by a large amount of beamstrahlung remnants. The intensity and the spatial shape of these depositions will provide a fast luminosity estimate, as well as determination of beam parameters. The sensors of this calorimeter must be radiation-hard. Both devices will improve the e.m. hermeticity of the detector in the search for new particles. Finely segmented and very compact electromagnetic calorimeters will match these requirements. Due to the high occupancy, fast front-end electronics will be needed. Monte Carlo studies were performed to investigate the impact of beam-beam interactions and physics background processes on the luminosity measurement, and of beamstrahlung on the performance of BeamCal, as well as to optimise the design of both calorimeters. Dedicated sensors, front-end and ADC ASICs have been designed for the ILC and prototypes are available. Prototypes of sensor planes fully assembled with readout electronics have been studied in electron beams.Comment: 61 pages, 51 figure

    Characteristics of homogeneous multi-core fibers for SDM transmission

    Get PDF
    We describe optical data transmission systems using homogeneous, single-mode, multi-core fibers (MCFs). We first briefly discuss space-division multiplexing (SDM) fibers, observing that no individual SDM fiber offers overwhelming advantages over bundles of single-mode fiber (SMF) across all transmission regimes. We note that for early adoption of SDM fibers, uncoupled or weakly coupled fibers which are compatible with existing SDM infrastructure have a practical advantage. Yet, to be more attractive than parallel SMF, it is also necessary to demonstrate benefits beyond improved spatial spectral efficiency. It is hoped that the lower spread of propagation delays (skew) between spatial channels in some fibers can be exploited for improved performance and greater efficiency from hardware sharing and joint processing. However, whether these benefits can be practically harnessed and outweigh impairments or effort to mitigate cross talk between spatial channels is not yet clear. Hence, focusing on homogeneous MCFs, we first describe measurements and simulations on the impact of inter-core cross talk in such fibers before reporting experimental investigation into the spatial channel skew variation with a series of the experimental results including a comparison with SMF in varying environmental conditions. Finally, we present some system and transmission experiments using parallel recirculating loops that enable demonstration of both multi-dimensional modulation and joint digital processing techniques across three MCF cores. Both techniques lead to increased transmission reach but highlight the need for further experimental analysis to properly characterize the potential benefits of correlated propagation delays in such fibers

    Multipurpose self-configuration of programmable photonic circuits

    Full text link
    [EN] Programmable integrated photonic circuits have been called upon to lead a new revolution in information systems by teaming up with high speed digital electronics and in this way, adding unique complementary features supported by their ability to provide bandwidthunconstrained analog signal processing. Relying on a common hardware implemented by two-dimensional integrated photonic waveguide meshes, they can provide multiple functionalities by suitable programming of their control signals. Scalability, which is essential for increasing functional complexity and integration density, is currently limited by the need to precisely control and configure several hundreds of variables and simultaneously manage multiple configuration actions. Here we propose and experimentally demonstrate two different approaches towards management automation in programmable integrated photonic circuits. These enable the simultaneous handling of circuit self-characterization, auto-routing, self-configuration and optimization. By combining computational optimization and photonics, this work takes an important step towards the realization of high-density and complex integrated programmable photonics.D.P.L. acknowledges funding through the Spanish MINECO Juan de la Cierva program. J.C. acknowledges funding from the ERC Advanced Grant ERC-ADG-2016-741415 UMWP-Chip and ERC-2019-POC-859927. Authors also acknowledge funding from Future MWP technologies and applications PROMETEO/2017/103, Advanced Instrumentation for World Class Microwave Photonics Research IDIFEDER/2018/031, EUIMWP CA16220, Infraestructura para caracterizacion de Chips Fotonicos EQC2018-004683-P.Pérez-López, D.; López-Hernández, A.; Dasmahapatra, P.; Capmany Francoy, J. (2020). Multipurpose self-configuration of programmable photonic circuits. Nature Communications. 11(1):1-11. https://doi.org/10.1038/s41467-020-19608-w111111Chrostowski, L. & Hochberg, M. Silicon Photonics Design (Cambridge University Press, 2015).Lin, Y. et al. Characterization of hybrid InP-TriPleX photonic integrated tunable lasers based on silicon nitride (Si 3N4/SiO2) microring resonators for optical coherent system. IEEE Photonics J. 10, 1400108 (2018).Bogaerts, W. et al. Proc. Integrated Design for Integrated Photonics: from the Physical to the Circuit Level and Back (SPIE Optics and Optoelectronics, Prague, Czech Republic, 2013).Inniss, D. & Rubenstein, R. Silicon Photonics: Fueling the Next Information Revolution (Elsevier Science, 2016).Streshinsky, M. et al. The road to affordable, large-scale silicon photonics. Opt. Photonics News 24, 32–39, (2013).Carrol, L. et al. Photonic packaging: transforming silicon photonic integrated circuits into photonic devices. Appl. Sci. 6, 426 (2016).Capmany, J. & Pérez, D. Programmable Integrated Photonics (Oxford University Press, 2019).Lyke, J. et al. An introduction to reconfigurable systems. Proc. IEEE 103, 291–317 (2015).Capmany, J., Gasulla, I. & Pérez, D. The programmable processor. Nat. Photonics 10, 6–8 (2015).Carolan, J. et al. Universal linear optics. Science 349, 711 (2015).Ribeiro, A. et al. Demonstration of a 4×4-port universal linear circuit. Optica 3, 1348–1357 (2016).Annoni, A. Unscrambling light—automatically undoing strong mixing between modes. Light Sci. Appl. 6, e17110 (2017).Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017).Mennea, P. L. et al. Modular linear optical circuits. Optica 5, 1087–1090 (2018).Zheng, D. et al. Low-loss broadband 5×5 non-blocking Si3N4 optical switch matrix. Opt. Lett. 44, 2629–2632 (2019).Zhuang, L. et al. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015).Pérez, D. et al. Multipurpose silicon photonics signal processor core. Nat. Commun. 8, 636 (2017).Zhang, W. & Yao, J. Photonic integrated field-programmable disk array signal processor. Nat. Commun. 11, 406 (2020).Eberhart, J. K. R. A new optimizer using particle swarm theory. In MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (IEEE, Nagoya, Japan, 1995).Whitley, D. A genetic algorithm tutorial. Stat. Comput. 4, 65–85 (1994).Zibar, D., Wymeersch, H. & Lyubomirsky, I. Machine Learning under the spotlight. Nat. Photonics 11, 749–751 (2017).Pérez, D. Programmable integrated silicon photonics waveguide meshes: optimized designs and control algorithms. In IEEE Journal of Selected Topics in Quantum Electronics, Vol. 26 (IEEE, 2019).Pérez, D., Gasulla, I. & Capmany, J. Field-programmable photonic arrays. Opt. Express 26, 27265–27278 (2018).Pérez, D., Gasulla, I., Soref, R. & Capmany, J. Reconfigurable lattice mesh designs for programmable photonic processors. Opt. Express 24, 12093–12106 (2016).Pérez-López, D., Sánchez, E. & Capmany, Y. J. Programmable true time delay lines using integrated waveguide meshes. J. Lightwave Technol. 36, 4591–4601 (2018).López, A. et al. Auto-routing algorithm for field-programmable photonic gate arrays. Opt. Express 28, 737–752 (2020).Chen, X. & Boggaerts, W. A graph-based design and programming strategy for reconfigurable photonic circuits. In IEEE Photonics Society Summer Topical Meeting Series (SUM) (IEEE, Fort Lauderdale, FL, USA, 2019).Pérez, D., López, A., DasMahapatra, P. & Capmany, J. Field-Programmable Photonic Array for multipurpose microwave photonic applications. In IEEE International Topical Meeting on Microwave Photonics (MWP) (IEEE, Ottawa, Canada, 2019).Pérez, D. & Capmany, J. Scalable analysis for arbitrary photonic integrated waveguide meshes. Optica 6, 19–27 (2019).Yegnanarayanan, S. et al. Automated initialization of reconfigurable silicon-nitride (SiNx) filters. In Conference on Lasers and Electro-Optics (IEEE, San José, CA, 2018).Milanizadeh, M. et al. Cancelling thermal cross-talk effects in photonic integrated circuits. J. Light. Tech. 37, 1325–1332 (2019).Xie, Y., Zhuang, L. & Lowery, A. J. Picosecond optical pulse processing using a terahertz-bandwidth reconfigurable photonic integrated circuit. Nanophotonics 7, 837–852 (2018).Guan, B. et al. CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing. IEEE J. Sel. Top. Quantum Electron. 20, 359–368 (2014).Doylend, J. K. et al. Hybrid III/V silicon photonic source with integrated 1D free-space beam steering. Opt. Lett. 37, 4257–4259 (2012).Burla, M. Advanced integrated optical beam forming networks for broadband phased array antenna systems, Telecommunication Engineering Faculty of Electrical Engineering, Mathematics and Computer Science. PhD. Thesis, University of Twente (2013).Wang, J. et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip, Nat. Commun. 6, 5957 (2015).Dumais, P. et al. Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package. J. Lightwave Technol. 36, 233–238 (2018).Tanizawa, K. et al. 32×32 strictly non-blocking Si-wire optical switch on ultra-small die of 11×25 mm2. In Optical Fiber Communications Conference (IEEE, Los Angeles, CA, USA, 2015).Miller, D. A. B. Perfect optics with imperfect components. Optica 2, 747–750 (2015).Gazman, A. et al. Tapless and topology agnostic calibration solution for silicon photonic switches. Opt. Express 26, 347241 (2018).Cheng, Q. et al. First demonstration of automated control and assessment of a dynamically reconfigured monolithic 8 × 8 wavelength-and-space switch. IEEE J. Opt. Commun. Netw. 7, 388–395 (2015).Tait, A. N. et al. Continuous calibration of microring weights for analog optical networks. IEEE Photonics Technol. Lett. 28, 887–890 (2016).Carolan, J. et al. Scalable feedback control of single photon sources for photonic quantum technologies. Optica 6, 335–341 (2019).Tait, A. N. et al. Multi-channel control for microring weightbanks. Opt. Express 24, 8895 (2016).Jiang, H. et al. Chip-based arbitrary radio-frequency photonic filter with algorithm-driven reconfigurable resolution. Opt. Lett. 43, 415–418 (2018).Jayatilleka, H. Automatic configuration and wavelength locking of coupled silicon ring resonators. J. Lightwave Technol. 36, 210–218 (2018).Choo, G. Automatic monitor-based tuning of reconfigurable silicon photonic APF-based pole/zero filters. J. Lightwave Technol. 36, 1899–1911 (2018).Choo, G. Automatic monitor-based tuning of an RF silicon photonic 1X4 asymmetric binary tree true-time-delay beamforming network. J. Lightwave Technol. 36, 5263–5275 (2018).Bin Mohd Zain, M. Z. et al. A multi-objective particle swarm optimization algorithm based on dynamic boundary search for constrained optimization. Appl. Soft Comput. 70, 680–700 (2018).Pérez, D. et al. Thermal tuners on a silicon nitride platform. Preprint at https://arxiv.org/abs/1604.02958 (2016)
    corecore