64 research outputs found

    Multichannel speech separation with recurrent neural networks from high-order ambisonics recordings

    Get PDF
    International audienceWe present a source separation system for high-order ambisonics (HOA) contents. We derive a multichannel spatial filter from a mask estimated by a long short-term memory (LSTM) recurrent neural network. We combine one channel of the mixture with the outputs of basic HOA beamformers as inputs to the LSTM, assuming that we know the directions of arrival of the directional sources. In our experiments, the speech of interest can be corrupted either by diffuse noise or by an equally loud competing speaker. We show that adding as input the output of the beamformer steered toward the competing speech in addition to that of the beamformer steered toward the target speech brings significant improvements in terms of word error rate

    High-Resolution Speaker Counting In Reverberant Rooms Using CRNN With Ambisonics Features

    Full text link
    Speaker counting is the task of estimating the number of people that are simultaneously speaking in an audio recording. For several audio processing tasks such as speaker diarization, separation, localization and tracking, knowing the number of speakers at each timestep is a prerequisite, or at least it can be a strong advantage, in addition to enabling a low latency processing. For that purpose, we address the speaker counting problem with a multichannel convolutional recurrent neural network which produces an estimation at a short-term frame resolution. We trained the network to predict up to 5 concurrent speakers in a multichannel mixture, with simulated data including many different conditions in terms of source and microphone positions, reverberation, and noise. The network can predict the number of speakers with good accuracy at frame resolution.Comment: 5 pages, 1 figur

    w2v-SELD: A Sound Event Localization and Detection Framework for Self-Supervised Spatial Audio Pre-Training

    Full text link
    Sound Event Detection and Localization (SELD) constitutes a complex task that depends on extensive multichannel audio recordings with annotated sound events and their respective locations. In this paper, we introduce a self-supervised approach for SELD adapted from the pre-training methodology of wav2vec 2.0, which learns representations directly from raw audio data, eliminating the need for supervision. By applying this approach to SELD, we can leverage a substantial amount of unlabeled 3D audio data to learn robust representations of sound events and their locations. Our method comprises two primary stages: pre-training and fine-tuning. In the pre-training phase, unlabeled 3D audio datasets are utilized to train our w2v-SELD model, capturing intricate high-level features and contextual information inherent in audio signals. Subsequently, in the fine-tuning stage, a smaller dataset with labeled SELD data fine-tunes the pre-trained model. Experimental results on benchmark datasets demonstrate the effectiveness of the proposed self-supervised approach for SELD. The model surpasses baseline systems provided with the datasets and achieves competitive performance comparable to state-of-the-art supervised methods. The code and pre-trained parameters of our w2v-SELD model are available in this repository.Comment: 17 pages, 5 figure

    L3DAS22 Challenge: Learning 3D Audio Sources in a Real Office Environment

    Get PDF
    The L3DAS22 Challenge is aimed at encouraging the development of machine learning strategies for 3D speech enhancement and 3D sound localization and detection in office-like environments. This challenge improves and extends the tasks of the L3DAS21 edition. We generated a new dataset, which maintains the same general characteristics of L3DAS21 datasets, but with an extended number of data points and adding constrains that improve the baseline model's efficiency and overcome the major difficulties encountered by the participants of the previous challenge. We updated the baseline model of Task 1, using the architecture that ranked first in the previous challenge edition. We wrote a new supporting API, improving its clarity and ease-of-use. In the end, we present and discuss the results submitted by all participants. L3DAS22 Challenge website: www.l3das.com/icassp2022

    Sound Event Localization, Detection, and Tracking by Deep Neural Networks

    Get PDF
    In this thesis, we present novel sound representations and classification methods for the task of sound event localization, detection, and tracking (SELDT). The human auditory system has evolved to localize multiple sound events, recognize and further track their motion individually in an acoustic environment. This ability of humans makes them context-aware and enables them to interact with their surroundings naturally. Developing similar methods for machines will provide an automatic description of social and human activities around them and enable machines to be context-aware similar to humans. Such methods can be employed to assist the hearing impaired to visualize sounds, for robot navigation, and to monitor biodiversity, the home, and cities. A real-life acoustic scene is complex in nature, with multiple sound events that are temporally and spatially overlapping, including stationary and moving events with varying angular velocities. Additionally, each individual sound event class, for example, a car horn can have a lot of variabilities, i.e., different cars have different horns, and within the same model of the car, the duration and the temporal structure of the horn sound is driver dependent. Performing SELDT in such overlapping and dynamic sound scenes while being robust is challenging for machines. Hence we propose to investigate the SELDT task in this thesis and use a data-driven approach using deep neural networks (DNNs). The sound event detection (SED) task requires the detection of onset and offset time for individual sound events and their corresponding labels. In this regard, we propose to use spatial and perceptual features extracted from multichannel audio for SED using two different DNNs, recurrent neural networks (RNNs) and convolutional recurrent neural networks (CRNNs). We show that using multichannel audio features improves the SED performance for overlapping sound events in comparison to traditional single-channel audio features. The proposed novel features and methods produced state-of-the-art performance for the real-life SED task and won the IEEE AASP DCASE challenge consecutively in 2016 and 2017. Sound event localization is the task of spatially locating the position of individual sound events. Traditionally, this has been approached using parametric methods. In this thesis, we propose a CRNN for detecting the azimuth and elevation angles of multiple temporally overlapping sound events. This is the first DNN-based method performing localization in complete azimuth and elevation space. In comparison to parametric methods which require the information of the number of active sources, the proposed method learns this information directly from the input data and estimates their respective spatial locations. Further, the proposed CRNN is shown to be more robust than parametric methods in reverberant scenarios. Finally, the detection and localization tasks are performed jointly using a CRNN. This method additionally tracks the spatial location with time, thus producing the SELDT results. This is the first DNN-based SELDT method and is shown to perform equally with stand-alone baselines for SED, localization, and tracking. The proposed SELDT method is evaluated on nine datasets that represent anechoic and reverberant sound scenes, stationary and moving sources with varying velocities, a different number of overlapping sound events and different microphone array formats. The results show that the SELDT method can track multiple overlapping sound events that are both spatially stationary and moving

    A Four-Stage Data Augmentation Approach to ResNet-Conformer Based Acoustic Modeling for Sound Event Localization and Detection

    Full text link
    In this paper, we propose a novel four-stage data augmentation approach to ResNet-Conformer based acoustic modeling for sound event localization and detection (SELD). First, we explore two spatial augmentation techniques, namely audio channel swapping (ACS) and multi-channel simulation (MCS), to deal with data sparsity in SELD. ACS and MDS focus on augmenting the limited training data with expanding direction of arrival (DOA) representations such that the acoustic models trained with the augmented data are robust to localization variations of acoustic sources. Next, time-domain mixing (TDM) and time-frequency masking (TFM) are also investigated to deal with overlapping sound events and data diversity. Finally, ACS, MCS, TDM and TFM are combined in a step-by-step manner to form an effective four-stage data augmentation scheme. Tested on the Detection and Classification of Acoustic Scenes and Events (DCASE) 2020 data sets, our proposed augmentation approach greatly improves the system performance, ranking our submitted system in the first place in the SELD task of DCASE 2020 Challenge. Furthermore, we employ a ResNet-Conformer architecture to model both global and local context dependencies of an audio sequence to yield further gains over those architectures used in the DCASE 2020 SELD evaluations.Comment: 12 pages, 8 figure

    Towards Generating Ambisonics Using Audio-Visual Cue for Virtual Reality

    Full text link
    Ambisonics i.e., a full-sphere surround sound, is quintessential with 360-degree visual content to provide a realistic virtual reality (VR) experience. While 360-degree visual content capture gained a tremendous boost recently, the estimation of corresponding spatial sound is still challenging due to the required sound-field microphones or information about the sound-source locations. In this paper, we introduce a novel problem of generating Ambisonics in 360-degree videos using the audio-visual cue. With this aim, firstly, a novel 360-degree audio-visual video dataset of 265 videos is introduced with annotated sound-source locations. Secondly, a pipeline is designed for an automatic Ambisonic estimation problem. Benefiting from the deep learning-based audio-visual feature-embedding and prediction modules, our pipeline estimates the 3D sound-source locations and further use such locations to encode to the B-format. To benchmark our dataset and pipeline, we additionally propose evaluation criteria to investigate the performance using different 360-degree input representations. Our results demonstrate the efficacy of the proposed pipeline and open up a new area of research in 360-degree audio-visual analysis for future investigations.Comment: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP
    • …
    corecore