199 research outputs found

    EEG-Based Emotion Recognition Using Regularized Graph Neural Networks

    Full text link
    Electroencephalography (EEG) measures the neuronal activities in different brain regions via electrodes. Many existing studies on EEG-based emotion recognition do not fully exploit the topology of EEG channels. In this paper, we propose a regularized graph neural network (RGNN) for EEG-based emotion recognition. RGNN considers the biological topology among different brain regions to capture both local and global relations among different EEG channels. Specifically, we model the inter-channel relations in EEG signals via an adjacency matrix in a graph neural network where the connection and sparseness of the adjacency matrix are inspired by neuroscience theories of human brain organization. In addition, we propose two regularizers, namely node-wise domain adversarial training (NodeDAT) and emotion-aware distribution learning (EmotionDL), to better handle cross-subject EEG variations and noisy labels, respectively. Extensive experiments on two public datasets, SEED and SEED-IV, demonstrate the superior performance of our model than state-of-the-art models in most experimental settings. Moreover, ablation studies show that the proposed adjacency matrix and two regularizers contribute consistent and significant gain to the performance of our RGNN model. Finally, investigations on the neuronal activities reveal important brain regions and inter-channel relations for EEG-based emotion recognition

    Cross-Subject EEG Emotion Recognition With Self-Organized Graph Neural Network

    Get PDF
    As a physiological process and high-level cognitive behavior, emotion is an important subarea in neuroscience research. Emotion recognition across subjects based on brain signals has attracted much attention. Due to individual differences across subjects and the low signal-to-noise ratio of EEG signals, the performance of conventional emotion recognition methods is relatively poor. In this paper, we propose a self-organized graph neural network (SOGNN) for cross-subject EEG emotion recognition. Unlike the previous studies based on pre-constructed and fixed graph structure, the graph structure of SOGNN are dynamically constructed by self-organized module for each signal. To evaluate the cross-subject EEG emotion recognition performance of our model, leave-one-subject-out experiments are conducted on two public emotion recognition datasets, SEED and SEED-IV. The SOGNN is able to achieve state-of-the-art emotion recognition performance. Moreover, we investigated the performance variances of the models with different graph construction techniques or features in different frequency bands. Furthermore, we visualized the graph structure learned by the proposed model and found that part of the structure coincided with previous neuroscience research. The experiments demonstrated the effectiveness of the proposed model for cross-subject EEG emotion recognition

    Tensor Analysis and Fusion of Multimodal Brain Images

    Get PDF
    Current high-throughput data acquisition technologies probe dynamical systems with different imaging modalities, generating massive data sets at different spatial and temporal resolutions posing challenging problems in multimodal data fusion. A case in point is the attempt to parse out the brain structures and networks that underpin human cognitive processes by analysis of different neuroimaging modalities (functional MRI, EEG, NIRS etc.). We emphasize that the multimodal, multi-scale nature of neuroimaging data is well reflected by a multi-way (tensor) structure where the underlying processes can be summarized by a relatively small number of components or "atoms". We introduce Markov-Penrose diagrams - an integration of Bayesian DAG and tensor network notation in order to analyze these models. These diagrams not only clarify matrix and tensor EEG and fMRI time/frequency analysis and inverse problems, but also help understand multimodal fusion via Multiway Partial Least Squares and Coupled Matrix-Tensor Factorization. We show here, for the first time, that Granger causal analysis of brain networks is a tensor regression problem, thus allowing the atomic decomposition of brain networks. Analysis of EEG and fMRI recordings shows the potential of the methods and suggests their use in other scientific domains.Comment: 23 pages, 15 figures, submitted to Proceedings of the IEE

    Noise Reduction of EEG Signals Using Autoencoders Built Upon GRU based RNN Layers

    Get PDF
    Understanding the cognitive and functional behaviour of the brain by its electrical activity is an important area of research. Electroencephalography (EEG) is a method that measures and record electrical activities of the brain from the scalp. It has been used for pathology analysis, emotion recognition, clinical and cognitive research, diagnosing various neurological and psychiatric disorders and for other applications. Since the EEG signals are sensitive to activities other than the brain ones, such as eye blinking, eye movement, head movement, etc., it is not possible to record EEG signals without any noise. Thus, it is very important to use an efficient noise reduction technique to get more accurate recordings. Numerous traditional techniques such as Principal Component Analysis (PCA), Independent Component Analysis (ICA), wavelet transformations and machine learning techniques were proposed for reducing the noise in EEG signals. The aim of this paper is to investigate the effectiveness of stacked autoencoders built upon Gated Recurrent Unit (GRU) based Recurrent Neural Network (RNN) layers (GRU-AE) against PCA. To achieve this, Harrell-Davis decile values for the reconstructed signals’ signal-to- noise ratio distributions were compared and it was found that the GRU-AE outperformed PCA for noise reduction of EEG signals
    • …
    corecore