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As a physiological process and high-level cognitive behavior, emotion is an important

subarea in neuroscience research. Emotion recognition across subjects based on brain

signals has attracted much attention. Due to individual differences across subjects

and the low signal-to-noise ratio of EEG signals, the performance of conventional

emotion recognition methods is relatively poor. In this paper, we propose a self-organized

graph neural network (SOGNN) for cross-subject EEG emotion recognition. Unlike

the previous studies based on pre-constructed and fixed graph structure, the graph

structure of SOGNN are dynamically constructed by self-organized module for each

signal. To evaluate the cross-subject EEG emotion recognition performance of our model,

leave-one-subject-out experiments are conducted on two public emotion recognition

datasets, SEED and SEED-IV. The SOGNN is able to achieve state-of-the-art emotion

recognition performance. Moreover, we investigated the performance variances of the

models with different graph construction techniques or features in different frequency

bands. Furthermore, we visualized the graph structure learned by the proposed model

and found that part of the structure coincided with previous neuroscience research. The

experiments demonstrated the effectiveness of the proposed model for cross-subject

EEG emotion recognition.

Keywords: SEED dataset, graph neural network, cross-subject, emotion recognition, graph construction

1. INTRODUCTION

Human emotion is a complex psychophysiological process that plays an important role in daily
communications. Emotion recognition is a significant and fundamental research topic in affective
computing and neuroscience (Cowie et al., 2001). In general, human emotions can be recognized
using data from different modalities, such as facial expression images, body language, textual
information and physiological signals such as electromyogram (EMG), electrocardiogram (ECG),
and electroencephalogram (EEG) (Busso et al., 2004; Shu et al., 2018). EEG is a widely used
technique in neuroscience research that is able to directly capture brain signals that could reflect
neural activities in real time. Therefore, EEG-based emotion recognition has received considerable
attention in the areas of affective computing and neuroscience (Coan and Allen, 2004; Lin et al.,
2010; Alarcao and Fonseca, 2017; Li et al., 2019).

In order to facilitate EEG-based emotion recognition research, the SJTU emotion EEG dataset
(SEED) was released (Duan et al., 2013). In addition, its evolutionary dataset termed SEED-IV
was also available (Zheng et al., 2018). Before the experiments on SEED and SEED-IV datasets, a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/429987278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.611653
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.611653&domain=pdf&date_stamp=2021-06-09
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:surkyli@m.scnu.edu.cn
https://doi.org/10.3389/fnins.2021.611653
https://www.frontiersin.org/articles/10.3389/fnins.2021.611653/full


Li et al. Cross-Subject EEG Emotion Recognition With SOGNN

series of film clips with different emotional tendencies were
chosen as stimulation materials. In the SEED dataset, happy,
sad and neutral emotions were included, while the SEED-IV
dataset consisted of happy, sad, fear and neutral emotions.
During the experiments, each participant watched the film clips
while his/her EEG signals were recorded with a 62-channel
ESI NeuroScan System. Consequently, the recorded EEG signals
and the corresponding emotion labels of film clips can be
used to train an emotion recognition model. If the trained
emotion recognition model is effective, we will be able to
decode the emotions of a new participant when he/she watched
a film. Therefore, based on the SEED and SEED-IV datasets,
different emotion recognition methods can be evaluated on
common benchmarks.

In the past few years, many feature extraction and machine
learning approaches have been proposed for EEG-based emotion
recognition. In an original research on SEED dataset, the
features of the energy spectrum (ES), differential entropy
(DE), rational asymmetry (RASM), and differential asymmetry
(DASM) were proven to be effective features for EEG-based
emotion recognition (Duan et al., 2013). To explore different
EEG features for cross-subject emotion recognition, 18 kinds
of linear and non-linear EEG features were evaluated (Li et al.,
2018b). Moreover, a machine learning technique was used
to investigate stable EEG patterns for emotion recognition
and achieved high performance on SEED and DEAP emotion
recognition datasets (Zheng et al., 2017). To eliminate the
individual differences in EEG signals, a deep adaption network
(DAN) was proposed and applied on the SEED and SEED-
IV datasets to conduct cross-subject emotion recognition (Li
et al., 2018a). A novel group sparse canonical correlation analysis
(GSCCA) method was proposed for simultaneous EEG channel
selection and emotion recognition (Zheng, 2016).

Recently, deep learning and graph representation
methodology were proven to be powerful tools to model
structured data and achieved significant performance in many
applications (Linial et al., 1995; Even, 2011). A deep belief
network (DBN) was applied to process differential entropy
features extracted from multichannel EEG signals (Zheng et al.,
2014). To investigate critical frequency bands and channels
for EEG-based emotion recognition, a deep neural network
was proposed (Zheng and Lu, 2015). Long-short term memory
(LSTM) was used to learn features from EEG signals, and
these features were discriminative for emotion recognition
on the DEAP dataset (Alhagry et al., 2017). EEG signals were
recorded by EEG caps placed on the scalp, and these data
can be considered to be a typical kind of structured data
(Micheloyannis et al., 2006). Accordingly, graph representation
approaches also achieved impressive performance in handling
EEG signals in emotion recognition experiments. For example,
a dynamic graph convolutional neural network (DGCNN) was
proposed for emotion recognition, and its graph structure was
determined by a dynamic adjacency matrix that reflected the
intrinsic relationships between different EEG electrodes (Song
et al., 2019b). In order to explore the deeper-level information of
graph-structured EEG data, a graph convolutional broad network
(GCB-net) was proposed and achieved high performance on the

SEED and DREAMER datasets (Zhang et al., 2019). To capture
both local and global interchannel relations, a regularized
graph neural network (RGNN) was proposed and achieved
state-of-the-art performance on the SEED and SEED-IV datasets
(Zhong et al., 2020).

In this paper, we proposed a novel model for cross-subject
EEG emotion recognition and evaluated the model on two
common datasets. The main contributions of this paper can be
summarized as follows:

1. A novel cross-subject emotion recognition model, termed
the self-organized graph neural network (SOGNN),
was proposed.

2. The SOGNN is able to achieve state-of-the-art emotion
recognition performance with cross-subject accuracy
of 86.81% on the SEED dataset and 75.27% on the
SEED-IV dataset.

3. Interchannel connections and time-frequency features
are aggregated by the self-organized graph construction
module, graph convolution and hierarchical structure
of the SOGNN to improve the cross-subject emotion
recognition performance.

The remainder of this paper is organized as follows. The EEG
emotion recognition datasets (SEED and SEED-IV) and the
proposed SOGNN model are presented in section 2. In section
3, numerical emotion recognition experiments are conducted.
In addition, the performance of the current methods and
the proposed methods are presented and compared. Some
discussions and analysis of the proposed model are presented in
section 4. The conclusions of this paper are given in section 5.

2. MATERIALS AND METHODS

2.1. EEG Emotion Recognition Datasets
In order to facilitate EEG-based emotion recognition research,
the SJTU emotion EEG dataset (SEED) was released on http://
bcmi.sjtu.edu.cn/~seed/ (Duan et al., 2013). In addition, its
evolutionary dataset termed SEED-IV was also available (Zheng
et al., 2018). Before the experiments on the SEED and SEED-
IV datasets, a series of film clips with different emotional
tendencies were chosen as stimulation materials. The SEED
dataset includes happy, sad and neutral film clips while the
SEED-IV dataset consists of happy, sad, fear and neutral film
clips. During the experiments, each participant watched film clips
while his/her EEG signals were recorded with a 62-channel ESI
NeuroScan System.

In the SEED and SEED-IV datasets, 15 subjects (7 males
and 8 females) participated in the experiments. During the
experiments, 62-channel EEG signals of each subject were
recorded when he/she was watching film clips with different
emotion labels. There are 675 EEG samples (45 samples * 15
subjects) in SEED datasets. For each subject, there are 15 samples
of happy, 15 samples of sad, and 15 samples of neutral emotion.
There are 1,080 samples (72 samples * 15 subjects) in SEED-IV
dataset. For each subject, there are 4 different kinds of emotion
including happy, sad, fear and neutral emotion that the number
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of each emotion class is 18. So the number of samples per
subject/class are balanced.

The signals were synchronously recorded at a 1,000 Hz
sampling rate. Bandpass frequency filters of 0–75 and 1–75 Hz
were applied to filter the unrelated artifacts for the SEED and
SEED-IV datasets, respectively. To accelerate the computation,
the signals were downsampled with sampling frequency of 200
Hz. In addition, the dataset provider applied the linear dynamic
system approach to filter out noise and artifacts that were
unrelated to the EEG features (Shi and Lu, 2010; Zheng et al.,
2018). In the two datasets, the EEG features of the differential
entropy (DE), power spectral density (PSD), asymmetry(ASM),
differential asymmetry (DASM), differential caudality (DCAU),
and radial asymmetry (RASM) were provided. The DE feature
and PSD feature extract contents about the frequency and
energy spectrum, respectively; the DASM feature and RASM
feature obtain asymmetrical information of EEG channels, and
DCAU feature computes the differences between channel pairs.
Compared with the other features, the DE feature is more
discriminative for emotion recognition according to the previous
research (Duan et al., 2013; Song et al., 2019b; Zhong et al., 2020).

Therefore, we used DE features as the input data for our
model. The DE features are frequency domain features that are
calculated by a 512-point short-time Fourier transform with
a non-overlapped Hanning window of 1 s and averaged in 5
frequency bands, e.g., δ band (1–3 Hz), θ band (4–7 Hz), α band
(8–13 Hz), β band (14–30 Hz), and γ band (31–50 Hz). As a
result, the output DE feature can be represented as a 5×T matrix
in which T denotes the time window which is dependent on the
stimulated film clip. The time window T of the SEED dataset
ranges from 185 to 265 while the window of SEED-IV ranges
from 12 to 64. For normalization, the features with a short time
window will be zero-padded to a length of 265 for SEED dataset
and a length of 64 for the SEED-IV dataset.

Based on the benchmark SEED and SEED IV datasets,
different EEG emotion recognition models can be evaluated and
compared with each other.

2.2. Self-Organized Graph Neural Network
Generally, EEG signal can be considered to be a typical kind
of structured data and defined on a graph (Micheloyannis
et al., 2006). Graph representation techniques and graph neural
networks were proven to be effective in processing brain signals
(Petrosian et al., 2000; de Haan et al., 2009; Varatharajah et al.,
2017; Zhang et al., 2020). Here, the EEG signal is defined on a
graph model as follows:

G = (V , E ,A)

V = {vi| i = 1, . . . ,N}

E =
{

eij
∣

∣ vi, vj ∈ V
}

A = {aij}

(1)

where V denotes the nodes (a total of N nodes) in graph G, E are
the connected edges between different nodes, each node denotes
one EEG electrode, A ∈ R

N×N is the adjacency matrix, and
its element aij denotes the adjacent connection weight between
nodes vi and vj. Consequently, the structure of a graph is
determined by its adjacency matrix.

As shown in Figure 1, the brain graph structure is predefined
by a distance function f between different channels in many
previous studies (Micheloyannis et al., 2006; Ktena et al., 2018;
Wang et al., 2018; Zhang et al., 2019; Zhong et al., 2020).
However, the predefined and fixed graph structures could not
properly model the dynamic brain signals of different subjects in
different emotion states.

Here, we propose a self-organized graph construction module
for modeling EEG emotion features. The proposed self-organized
graph is determined by the input brain signals rather than based
on a predefined graph structure as in many previous researches.
The adjacent weight aij of the self-organized graph is defined by
function f (vi, vj) as

aij = f (vi, vj) =
exp(θ(viW)θ(vjW)T)

∑N
i=1 exp(θ(viW)θ(vjW)T)

(2)

where v ∈ R
1×F is a feature vector of one node (i.e., EEG

electrode) in V ∈ R
N×F , there are a total of N nodes

(EEG electrodes), W ∈ R
F×L and θ are the weight and

tanh activation function of a linear layer, respectively; and
the exponential function is part of the softmax activation
function for normalization and obtains a positive and bounded
adjacent weight. The linear layer work as a bottleneck to reduce
computational cost.

To clarify the details of the self-organized graph construction
module, we also presented its matrix operation form in Figure 2.
The self-organized adjacent matrix can be calculated as follows:

G = Tanh(VW) (3)

A = Softmax(GGT) (4)

where V ∈ R
N×F is the input EEG features whose row vectors

are node features of the graph to build, the W ∈ R
F×L

denote the weight of a linear layer, we adopted tanh activation
function, G ∈ R

N×L is the output of the linear layer, softmax
activation function is applied to obtain a positive and bounded
adjacent matrix A. With the self-organized graph construction
module, the graph structure, is dynamically constructed by the
corresponding input features.

Generally, the computational costs of sparse graphs are much
lower than those of dense graphs. To construct a sparse graph, we
adopt a top-k technique in which only the k largest weights of the
adjacent matrix will be maintained while the small connection
weights will be set to zero. The top-k operation is applied
as follow







for i = 1, 2, · · · ,N

index = argtopk(A[i, :])

A[ i, index ] = 0

(5)

where argtopk(·) is a function to obtain the index of the top-k

largest values of each vectorA[i, :] in adjacentmatrixA, and index
denotes the index of those values that do not belong to the top-
k largest values in A[i, :]. As a result, only the k largest values in
each row vector of adjacent matrix A are maintained while the
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FIGURE 1 | General brain graph construction function.

FIGURE 2 | Self-organized graph construction module.

remaining values will be set to zero. Actually, the top-k strategy
can be considered as a modified max-pooling layer. Therefore,
the parameters of the network can be updated as the network with
max-pooling layers with backpropagation.

With the self-organized graph construction module, the graph
structure is dynamically constructed by the corresponding input
EEG features. Then, the newly built graphs can be processed
by the graph convolutional layers to extract the local/global
connection features for emotion recognition.

Based on the self-organized graph construction module, we
propose SOGNN as shown in Figure 3. The SOGNN is composed
of three conv-pool blocks, three self-organized graph layers,
three graph convolution layers, one fully-connected layer and an
output layer.

For the proposed SOGNN model, its input EEG feature

is sized Electrodes × Bands × TimeFrames. To simplify the

illustration of the model, we take the SEED dataset with a 62 ×

5× 265 input feature as an example in Figure 3. ∗Maps indicates

the number of output feature maps of each layer. In each conv-

pool block, standard convolution and max-pooling layers were
applied to extract features for each EEG electrode independently.
Therefore, the features of different EEG electrodes will not mix
with each other so that the corresponding graph structure can be
maintained. In the conv-pool 1 block, the 5 × 5 convolutional
kernel extracts features in a window of 5 frequency bands and 5
time frames. Therefore, the output features are sized 62×1×261
in the SEED dataset. A 1 × 4 max-pooling layer is applied to
downsample the features of the SEED dataset. Then the output

feature map of conv-pool 1 block is sized 62×1×65 for the input
feature of SEED. For the SEED-IV dataset, 1 × 2 max-pooling
layers are used. A convolutional kernel 1×5 was applied in conv-
pool 2 and 3. There are 32, 64, and 128 convolutional kernels
in conv-pool 1-3 blocks that will obtain 32, 64, and 128 output
feature maps, respectively.

The output of each conv-pool block was reshaped as a
matrix with the shape of electrodes×features and fed into self-
organized graph layers (SO-graphs 1-3). In the SO-graph layer,
the feature of each EEG electrode remains unchanged, and
only the adjacent weights between different EEG electrodes are
calculated according to (2)–(5). For each SO-graph layer, there
are 64 linear units, 32 output units and top-10 adjacent weights.
With different input features, the graph features of the SO-graph
1-3 layers are different. Next, we applied graph convolution layers
to process these graph features.

According to previous research (Bruna et al., 2013; Song et al.,
2019b), spectral graph convolution multiplied a signal x ∈ R

n

with a graph convolution kernel 2 by a graph convolution
operator ∗G as,

2∗Gx = 2(L)x = 2(U3UT)x = U2(3)UTx (6)

where graph Fourier basis U ∈ R
N×N is the matrix of

eigenvectors for the normalized graph Laplacian L = In −

D−1/2AD−1/2 = ULUT ∈ R
N×N (In is an identity matrix,

D ∈ R
N×N is the diagonal degree matrix with Dii =

∑

j Aij,

A ∈ R
N×N is the adjacency matrix mentioned in Equation
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FIGURE 3 | Self-organized graph neural network for EEG emotion prediction.

1); 3 ∈ R
N×N is the diagonal matrix of the eigenvalues

of L, and filter 2(3) is also a diagonal matrix. According to
this definition, a graph signal x is filtered by a kernel 2 with
multiplication between 2 and graph Fourier transform UTx
(Shuman et al., 2013).

The outputs of the graph convolution layers were flattened
and concatenated as a feature vector. This feature vector will
be fed into fully-connected (FC) layer with a softmax activation
function to predict emotional states. The proposed SOGNN
model can be trained by minimizing the cross-entropy error of
its prediction and ground truth. As a result, the loss function is
defined as

L = −
∑

i∈�

∑

c

yic log(pic)+ (1− yic) log(1− pic) (7)

where pic is the output value of the c-th output unit of the
SOGNN model with the input of the i-th training sample, pic
can be considered as the model’s predicted probability of the
c-th class, yic is the ground truth, and � denotes all of the
training samples.

3. RESULTS

In this section, a series of experiments will be conducted to
evaluate the proposed model. In addition, the corresponding
experimental results of our method will be presented and
compared with the results of the other methods. The model
implementation will be publicly available at https://github.com/

tailofcat/SOGNN. In our experiments, the hardware and software
configuration of our system is a platform with an Nvidia Titan
Xp, Ubuntu 16.04, PyTorch 1.5.1, and PyTorch-geometric 1.5.0
(Fey and Lenssen, 2019).

In order to investigate the cross-subject emotion recognition
performance, a leave-one-subject-out (LOSO) cross-validation
strategy was applied in the experiments. In each run of the LOSO
experiment, the DE features of 14 subjects in SEED/SEED-IV
are used as the training dataset while the data of the remaining
subject is the validation dataset. Regarding normalization, the
features of each subject will be normalized by subtracting its
mean and then dividing by its standard deviation.

In order to train the proposed SOGNN model, the Adam
optimizer is applied to minimize the model’s loss. The proposed
model was trained by the Adam optimizer with a learning
rate of 0.00001, a weight-decay rate of 0.0001 and mini-
batch size of 16. A drop-out operation with a dropout rate of
0.1 was applied in the training procedure to randomly block
the output units of the internal layers. During the training
procedure, we monitored the model’s mean area under the
curve (AUC) from the receiver operating characteristic curve
for all emotion classes. Once the training averaged AUC score
reached 0.99, the training procedure was stopped. Finally,
the trained SOGNN model could be applied for emotion
prediction. Once the proposed SOGNN model was trained, it
could be applied to the validation dataset. For the SEED/SEED-
IV database with 15 subjects, the LOSO experiment will be
conducted in 15 runs. Then, the average validation accuracy
can be considered as the model’s performance, which can
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TABLE 1 | Leave-one-subject-out emotion recognition accuracy (mean/standard deviation) on SEED and SEED-IV.

SEED SEED-IV

Model Delta band Theta band Alpha band Beta band Gamma band All bands All bands

SVM (Zhong et al., 2020) 43.06/8.27 40.07/6.50 43.97/10.89 48.64/10.29 51.59/11.83 56.73/16.29 37.99/12.52

TCA (Pan et al., 2011) 44.10/8.22 41.26/9.21 42.93/14.33 43.93/10.06 48.43/9.73 63.64/14.88 56.56/13.77

SA (Fernando et al., 2013) 54.23/7.47 50.60/8.31 55.06/10.60 56.72/10.78 64.47/14.96 69.00/10.89 64.44/9.46

T-SVM (Collobert et al., 2006) - - - - - 72.53/14.00 -

TPT (Sangineto et al., 2014) - - - - - 76.31/15.89 -

DGCNN (Song et al., 2019b) 49.79/10.94 46.36/12.06 48.29/12.28 56.15/14.01 54.87/17.53 79.95/9.02 52.82/9.23

A-LSTM (Song et al., 2019a) - - - - - - 55.03/9.28

DAN (Li et al., 2018a) - - - - - 83.81/8.56 58.87/8.13

BiDANN-S (Li et al., 2018c) 63.01/7.49 63.22/7.52 63.50/9.50 73.59/9.12 73.72/8.67 84.14/6.87 65.59/10.39

BiHDM (Li et al., 2020) - - - - - 85.40/7.53 69.03/8.66

RGNN (Zhong et al., 2020) 64.88/6.87 60.69/5.79 60.84/7.57 74.96/8.94 77.50/8.10 85.30/6.72 73.84/8.02

SOGNN (Ours) 70.37/7.68 76.00/6.92 66.22/11.52 72.54/8.97 71.70/8.03 86.81/5.79 75.27/8.19

FIGURE 4 | Emotion recognition performance of SOGNN with DE, PSD, ASM,

DASM, DCAU, and RASM features.

be compared with the results of other EEG-based emotion
recognition models.

As shown in Table 1, the experimental results of the proposed
SOGNN and many other methods on the SEED and SEED-IV
databases are presented. The bold values indicated the largest
values in all methods. In the experiments of the model for one-
band features, we changed the input features from 5 bands to
1 band, changed the input size of the model to fit the inputs,
and retrained the model for evaluation of sub-band features. The
proposed SOGNN with delta or theta band features achieved
higher accuracies than the other methods with the same features.
Regarding the features of the other bands, the proposed SOGNN
achieved relatively high performance which was quite close to the
best performing methods.

With the features of all bands, the SOGNN achieved averaged
accuracy of 86.81% on the SEED dataset and 75.27% on the
SEED-IV dataset, which are higher than the performances of
the state-of-the-art methods, i. e. the BiHDM (Li et al., 2020)
and RGNN (Zhong et al., 2020) models. The proposed SOGNN

FIGURE 5 | Performance changes of SOGNN as the variance of top-k sparse

graph varies.

achieved a macro-F1 score of 0.8669 and an AUC score of
0.9685 on the SEED dataset. The F1 scores of happy, sad and
neutral emotion class are 0.8556, 0.8577, and 0.8874. For SEED-
IV dataset, it achieved a macro-F1 score of 0.7547 and an AUC
score of 0.9162. The F1 scores of happy, sad, fear and neutral class
are 0.7517, 0.7419, 0.7441, and 0.7810. As a typical kind of neural
network, the performance of the SOGNN may be different when
the model is randomly initialized by different random seeds.
According to our experiments, the averaged accuracy on SEED
dataset is from 0.83 to 0.88 while the averaged accuracy on SEED-
IV dataset is between 0.70 and 0.78. In Table 1, we presented
the medium results of the two datasets. The performance of the
proposed SOGNN demonstrated its effectiveness in cross-subject
emotion recognition.

Many previous graph models like DGCNN and BIDANN
were based on predefined graph structure according to prior
knowledge of EEG emotion signals. However, the predefined and
fixed graph structures could not properly model the dynamic
brain signals of different subjects in different emotion states. The

Frontiers in Neuroscience | www.frontiersin.org 6 June 2021 | Volume 15 | Article 611653

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Li et al. Cross-Subject EEG Emotion Recognition With SOGNN

strength of the proposed SOGNN is that it could automatically
extract graph structure from EEG features. The graph structure of
SOGNN is dynamic and independent for different EEG features.
As a result, the proposed SOGNN obtained more accurate and
robust emotion recognition performance. In the next section, we
will discuss and analyze the proposed model.

4. DISCUSSION

In this section, we analyze the proposed method and its internal
properties in detail. We will discuss the performance differences
of the SOGNN model with different features, self-organized
graphs with different top-k rates, different graph construction
methods, interchannel connections, etc.

Figure 4 shows the emotion recognition accuracies of the
proposed SOGNN model with different features including DE,
PSD, ASM, DASM, DCAU, and RASM features. We found
that the DE feature is the most discriminate feature while the
performances of the other features are much lower. This finding
is consistent with previous researches (Song et al., 2019b; Zhong
et al., 2020).

Accordingly, dense graph convolution usually has high
computational costs. Therefore, it is significant to construct a
sparse and effective graph in practice. To obtain a sparse adjacent
matrix of graph, we applied the top-k technique in which only
the k-largest connection weights of each EEG electrode in the
adjacent matrix were maintained while the remaining small
weights were set to zero. As shown in Figure 5, the performance
of the SOGNN with different top-k sparse graphs is presented.
In the figure, k-10 denotes that only the 10 largest connection
weights were maintained while the remaining weights were set to
zeros. Likewise, k-62 indicates that the total connections between
all 62 electrodes were reserved. We can find that the model with
k-10 connections achieved similar performances as those models
with more connections. This finding indicates the effectiveness of
the model with sparse adjacent matrix.

In the proposed SOGNN model, a self-organized graph
construction module is applied to dynamically learn the
interchannel relationships of EEG signals across subjects. Here,
we investigate different graph construction technique and
their performance. Figure 6 presents the emotion recognition
accuracies on SEED dataset of the models with different graphs.
To compare the performance of the models with different graphs,
we would like to conduct statistical analyses. Evaluated on a
dataset with only 15 subjects, the results of each model may
not follow normal distribution. Wilcoxon signed-rank test is a
non-parametric statistical hypothesis test which is suitable for
the analysis on non-normally distributed data. With Wilcoxon
signed-rank test result, we are able to determine whether the
proposed model could achieve statistically significant better
performance than the other models. As shown in Figure 6, the
SOGNN achieved significantly better performance than non-
graph model and the model with covariance graph. Regarding
the covariance graph, the values of the elements in its adjacent
matrix are usually too large that the graph convolutional layers
will be easily saturated. This might be the reason for the low

FIGURE 6 | Emotion recognition performance based on different graphs.

Wilcoxon signed rank test: ∼ non-significant,
†
p < 0.05,

††
p < 0.01.

performance of the model with the covariance graph. The
correlation graph can be considered as a normalized version of
the covariance graph in which its adjacentmatrix is normalized to
be in [0, 1]. As a result, its performance is improved a little. Here,
we propose a straightforward method termed self-organized
graph construction in (5). The proposed SOGNN could achieve
state-of-the-art emotion recognition performance on the SEED
and SEED-IV datasets. Our experiments demonstrated the
effectiveness of the proposed model and the self-organized graph
construction method.

To analyze the interchannel relationships learned by the
proposed model, we obtained the average adjacent matrix of its
self-organized graph (SO-graphs 1-3 as indicated in Figure 3) for
SEED samples. Then, the average adjacent matrixes of SO-graphs
1-3 are normalized to [0, 1] for ease of analysis and presented in
Figure 7A. These graphs reflect the common connections of EEG
electrodes for emotion recognition. The SO-graph 1 is diagonally
dominant that only few diagonal elements are relatively large
while most of the rest elements are close to zero. That is only
the features of a few EEG channels are discriminative for first
graph convolution layer. Moreover, the off-diagonal elements of
SO-graph 2 and 3 indicated that interchannel relationships also
play important roles in classifying different emotion EEG signals.

Furthermore, we analyze the interchannel connections of
the learned graphs for emotion recognition. We extracted the
diagonal elements of the adjacent matrixes for SO-graph 1-
3 and transformed into topographic maps. The topographic
maps for SO-graphs 1-3 are presented in Figure 7B. According
to the topographic maps, the prefrontal, and centro-parietal
electrodes (e.g., F7, CPZ, FP2) had the largest weights in
the topographic maps. The five electrodes with the largest
weights connected with CPZ and FP2 are also presented.
According to a previous study (Davidson et al., 1999), the
activation in the regions of prefrontal cortex is related to
blunted positive and negative emotions. A positive waveform
will be enhanced over the centro-parietal electrode (CPZ)
for emotional pictures (Lang and Bradley, 2010). In many
related studies (Tyng et al., 2017; Alia-Klein et al., 2018; Pan
et al., 2018), the prefrontal-parietal network is activated by
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FIGURE 7 | Adjacent matrixes (A) and topographic maps (B) learned by SOGNN.

emotion-related stimulus such as facial feelings, negative emotion
processing, anger, etc. The interchannel relations between
prefrontal, parietal and occipital channels are discriminative
for emotion recognition EEG signals. Our findings coincide
with the spatial distribution for emotion, as suggested by
prior studies.

The above experiments and analysis of the proposed SOGNN
model are significant for EEG-based emotion recognition.
As a novel graph processing method for brain signals,
it may bring some inspiration for neuroscience research,
such as graph-based functional magnetic resonance imaging
data processing.

5. CONCLUSION

In this paper, a novel model termed SOGNN was proposed for
cross-subject emotion recognition. The SOGNN model was
able to dynamically learn the interchannel relationships of EEG
emotion signals using a self-organized graph construction
module. The proposed model achieved state-of-the-art
performance on two open EEG emotion recognition databases,
i.e., SEED and SEED-IV. In addition, a series of analyses
demonstrated the effectiveness of the proposed model on
graph construction and emotion recognition. The experimental

results indicated that the SOGNN model is not only an effective
model for recognizing emotions, but it is also a potential
technique for other EEG-based applications. In the future, we
would like to build more efficient networks to model brain
signals and effectively decode high-level cognitive behaviors.
Moreover, some new emerging machine learning techniques
can also inspire the methodology for emotion recognition and
affective computing.
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