1,557 research outputs found

    Thermal and Performance Efficient On-Chip Surface-Wave Communication for Many-Core Systems in Dark Silicon Era

    Get PDF
    Due to the exceedingly high integration density of VLSI circuits and the resulting high power density, thermal integrity became a major challenge. One way to tackle this problem is Dark silicon. Dark silicon is the amount of circuitry in a chip that is forced to switch off to insure thermal integrity of the system and prevent permanent thermal-related faults. In many-core systems, the presence of Dark Silicon adds new design constraints, in general, and on the communication fabric of such systems, in particular. This is due to the fact that system-level thermal-management systems tend to increase the distance between high activity cores to insure better thermal balancing and integrity. Consequently, a designing dilemma is created where a compromise has to be made between interconnect performance and power consumption. This study proposes a hybrid wire and surface-wave interconnect (SWI) based Network-on-Chip (NoC) to address the dark silicon challenge. Through efficient utilization of one-hop cross the chip communication SWI links, the proposed architecture is able to offer an efficient and scalable communication platform in terms of performance, power, and thermal impact. As a result, evaluations of the proposed architecture compared to baseline architecture under dark silicon scenarios show reduction in maximum temperature by 15°C, average delay up to 73.1%, and energy-saving up to ~3X. This study explores the promising potential of the proposed architecture in extending the utilization wall for current and future many-core systems in dark silicon era

    MorphIC: A 65-nm 738k-Synapse/mm2^2 Quad-Core Binary-Weight Digital Neuromorphic Processor with Stochastic Spike-Driven Online Learning

    Full text link
    Recent trends in the field of neural network accelerators investigate weight quantization as a means to increase the resource- and power-efficiency of hardware devices. As full on-chip weight storage is necessary to avoid the high energy cost of off-chip memory accesses, memory reduction requirements for weight storage pushed toward the use of binary weights, which were demonstrated to have a limited accuracy reduction on many applications when quantization-aware training techniques are used. In parallel, spiking neural network (SNN) architectures are explored to further reduce power when processing sparse event-based data streams, while on-chip spike-based online learning appears as a key feature for applications constrained in power and resources during the training phase. However, designing power- and area-efficient spiking neural networks still requires the development of specific techniques in order to leverage on-chip online learning on binary weights without compromising the synapse density. In this work, we demonstrate MorphIC, a quad-core binary-weight digital neuromorphic processor embedding a stochastic version of the spike-driven synaptic plasticity (S-SDSP) learning rule and a hierarchical routing fabric for large-scale chip interconnection. The MorphIC SNN processor embeds a total of 2k leaky integrate-and-fire (LIF) neurons and more than two million plastic synapses for an active silicon area of 2.86mm2^2 in 65nm CMOS, achieving a high density of 738k synapses/mm2^2. MorphIC demonstrates an order-of-magnitude improvement in the area-accuracy tradeoff on the MNIST classification task compared to previously-proposed SNNs, while having no penalty in the energy-accuracy tradeoff.Comment: This document is the paper as accepted for publication in the IEEE Transactions on Biomedical Circuits and Systems journal (2019), the fully-edited paper is available at https://ieeexplore.ieee.org/document/876400

    Design Space Exploration for MPSoC Architectures

    Get PDF
    Multiprocessor system-on-chip (MPSoC) designs utilize the available technology and communication architectures to meet the requirements of the upcoming applications. In MPSoC, the communication platform is both the key enabler, as well as the key differentiator for realizing efficient MPSoCs. It provides product differentiation to meet a diverse, multi-dimensional set of design constraints, including performance, power, energy, reconfigurability, scalability, cost, reliability and time-to-market. The communication resources of a single interconnection platform cannot be fully utilized by all kind of applications, such as the availability of higher communication bandwidth for computation but not data intensive applications is often unfeasible in the practical implementation. This thesis aims to perform the architecture-level design space exploration towards efficient and scalable resource utilization for MPSoC communication architecture. In order to meet the performance requirements within the design constraints, careful selection of MPSoC communication platform, resource aware partitioning and mapping of the application play important role. To enhance the utilization of communication resources, variety of techniques such as resource sharing, multicast to avoid re-transmission of identical data, and adaptive routing can be used. For implementation, these techniques should be customized according to the platform architecture. To address the resource utilization of MPSoC communication platforms, variety of architectures with different design parameters and performance levels, namely Segmented bus (SegBus), Network-on-Chip (NoC) and Three-Dimensional NoC (3D-NoC), are selected. Average packet latency and power consumption are the evaluation parameters for the proposed techniques. In conventional computing architectures, fault on a component makes the connected fault-free components inoperative. Resource sharing approach can utilize the fault-free components to retain the system performance by reducing the impact of faults. Design space exploration also guides to narrow down the selection of MPSoC architecture, which can meet the performance requirements with design constraints.Siirretty Doriast

    Multi-node Acceleration for Large-scale GCNs

    Full text link
    Limited by the memory capacity and compute power, singe-node graph convolutional neural network (GCN) accelerators cannot complete the execution of GCNs within a reasonable amount of time, due to the explosive size of graphs nowadays. Thus, large-scale GCNs call for a multi-node acceleration system (MultiAccSys) like TPU-Pod for large-scale neural networks. In this work, we aim to scale up single-node GCN accelerators to accelerate GCNs on large-scale graphs. We first identify the communication pattern and challenges of multi-node acceleration for GCNs on large-scale graphs. We observe that (1) coarse-grained communication patterns exist in the execution of GCNs in MultiAccSys, which introduces massive amount of redundant network transmissions and off-chip memory accesses; (2) overall, the acceleration of GCNs in MultiAccSys is bandwidth-bound and latency-tolerant. Guided by these two observations, we then propose MultiGCN, the first MultiAccSys for large-scale GCNs that trades network latency for network bandwidth. Specifically, by leveraging the network latency tolerance, we first propose a topology-aware multicast mechanism with a one put per multicast message-passing model to reduce transmissions and alleviate network bandwidth requirements. Second, we introduce a scatter-based round execution mechanism which cooperates with the multicast mechanism and reduces redundant off-chip memory accesses. Compared to the baseline MultiAccSys, MultiGCN achieves 4~12x speedup using only 28%~68% energy, while reducing 32% transmissions and 73% off-chip memory accesses on average. It not only achieves 2.5~8x speedup over the state-of-the-art multi-GPU solution, but also scales to large-scale graphs as opposed to single-node GCN accelerators.Comment: To appear in T

    High performance communication on reconfigurable clusters

    Get PDF
    High Performance Computing (HPC) has matured to where it is an essential third pillar, along with theory and experiment, in most domains of science and engineering. Communication latency is a key factor that is limiting the performance of HPC, but can be addressed by integrating communication into accelerators. This integration allows accelerators to communicate with each other without CPU interactions, and even bypassing the network stack. Field Programmable Gate Arrays (FPGAs) are the accelerators that currently best integrate communication with computation. The large number of Multi-gigabit Transceivers (MGTs) on most high-end FPGAs can provide high-bandwidth and low-latency inter-FPGA connections. Additionally, the reconfigurable FPGA fabric enables tight coupling between computation kernel and network interface. Our thesis is that an application-aware communication infrastructure for a multi-FPGA system makes substantial progress in solving the HPC communication bottleneck. This dissertation aims to provide an application-aware solution for communication infrastructure for FPGA-centric clusters. Specifically, our solution demonstrates application-awareness across multiple levels in the network stack, including low-level link protocols, router microarchitectures, routing algorithms, and applications. We start by investigating the low-level link protocol and the impact of its latency variance on performance. Our results demonstrate that, although some link jitter is always present, we can still assume near-synchronous communication on an FPGA-cluster. This provides the necessary condition for statically-scheduled routing. We then propose two novel router microarchitectures for two different kinds of workloads: a wormhole Virtual Channel (VC)-based router for workloads with dynamic communication, and a statically-scheduled Virtual Output Queueing (VOQ)-based router for workloads with static communication. For the first (VC-based) router, we propose a framework that generates application-aware router configurations. Our results show that, by adding application-awareness into router configuration, the network performance of FPGA clusters can be substantially improved. For the second (VOQ-based) router, we propose a novel offline collective routing algorithm. This shows a significant advantage over a state-of-the-art collective routing algorithm. We apply our communication infrastructure to a critical strong-scaling HPC kernel, the 3D FFT. The experimental results demonstrate that the performance of our design is faster than that on CPUs and GPUs by at least one order of magnitude (achieving strong scaling for the target applications). Surprisingly, the FPGA cluster performance is similar to that of an ASIC-cluster. We also implement the 3D FFT on another multi-FPGA platform: the Microsoft Catapult II cloud. Its performance is also comparable or superior to CPU and GPU HPC clusters. The second application we investigate is Molecular Dynamics Simulation (MD). We model MD on both FPGA clouds and clusters. We find that combining processing and general communication in the same device leads to extremely promising performance and the prospect of MD simulations well into the us/day range with a commodity cloud

    Adaptive Routing Approaches for Networked Many-Core Systems

    Get PDF
    Through advances in technology, System-on-Chip design is moving towards integrating tens to hundreds of intellectual property blocks into a single chip. In such a many-core system, on-chip communication becomes a performance bottleneck for high performance designs. Network-on-Chip (NoC) has emerged as a viable solution for the communication challenges in highly complex chips. The NoC architecture paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication challenges such as wiring complexity, communication latency, and bandwidth. Furthermore, the combined benefits of 3D IC and NoC schemes provide the possibility of designing a high performance system in a limited chip area. The major advantages of 3D NoCs are the considerable reductions in average latency and power consumption. There are several factors degrading the performance of NoCs. In this thesis, we investigate three main performance-limiting factors: network congestion, faults, and the lack of efficient multicast support. We address these issues by the means of routing algorithms. Congestion of data packets may lead to increased network latency and power consumption. Thus, we propose three different approaches for alleviating such congestion in the network. The first approach is based on measuring the congestion information in different regions of the network, distributing the information over the network, and utilizing this information when making a routing decision. The second approach employs a learning method to dynamically find the less congested routes according to the underlying traffic. The third approach is based on a fuzzy-logic technique to perform better routing decisions when traffic information of different routes is available. Faults affect performance significantly, as then packets should take longer paths in order to be routed around the faults, which in turn increases congestion around the faulty regions. We propose four methods to tolerate faults at the link and switch level by using only the shortest paths as long as such path exists. The unique characteristic among these methods is the toleration of faults while also maintaining the performance of NoCs. To the best of our knowledge, these algorithms are the first approaches to bypassing faults prior to reaching them while avoiding unnecessary misrouting of packets. Current implementations of multicast communication result in a significant performance loss for unicast traffic. This is due to the fact that the routing rules of multicast packets limit the adaptivity of unicast packets. We present an approach in which both unicast and multicast packets can be efficiently routed within the network. While suggesting a more efficient multicast support, the proposed approach does not affect the performance of unicast routing at all. In addition, in order to reduce the overall path length of multicast packets, we present several partitioning methods along with their analytical models for latency measurement. This approach is discussed in the context of 3D mesh networks.Siirretty Doriast

    Design of a multicast router for network-on-chip architectures with irregular topologies

    Get PDF
    As chip complexity keeps increasing in system-on-chip (SoC), the on-chip interconnect has become a critical issue for large-scale chip design.It has been proposed that the packet-switched network exchanging messages between intellectual property (IP) cores is a viable solution for the SoC interconnect problem.The design of the router in such network-on-chip (NoC) architectures is the key to high-performance communication for the IP cores in SoC. In this paper, we present the design and implementation of a multicast router for NoC with irregular topologies.The router employs our previously proposed tree-based routing algorithm for irregular networks.Our experiment results show that the multicast router has a slightly lower clock rate and moderately larger chip area than the unicast router in NoC.Since multicasting is a technique providing superior network performance, especially for large networks, such multicast router design is an effective routing solution for large-scale network-on-chip architectures
    • …
    corecore