22 research outputs found

    ADAPTIVE RESOURCE ALLOCATION FOR WIRELESS MULTICAST MIMO-OFDM SYSTEMS

    Get PDF
    Multiple antenna orthogonal frequency division multiple access (OFDMA) is a promissing technique for the high downlink capacity in the next generation wireless systems, in which adaptive resource allocation would be an important research issue that can significantly improve the performance with guaranteed QoS for users. Moreover, most of the current source allocation algorithms are limited to the unicast system. In this paper, dynamic resource allocation is studied for multiple antenna OFDMA based systems which provide multicast service. The performance of multicast system is simulated and compared with that of the unicast system. Numerical results also show that the propossed algorithms improve the system capacity significantly compared with the conventional scheme

    Multicast vs multiple-unicast scheduling in high-speed cellular networks

    Get PDF
    International audiencePacket scheduling is one of the key features in data-oriented radio interfaces of cellular networks like HSDPA (High Speed Downlink Packet Access). It has been primarily designed for unicast applications. Nevertheless, unicast may not optimise the resource usage when the same content has to be transmitted to several users in the same cell. In this paper, we compare the performance of multicast and unicast scheduling considering both a theoretical generic system and an HSDPA system. We prove the benefit of deploying multicast which is found to have merits when the average channel quality is good enough. Results show that the better the average channel quality is, the more users are allowed to receive the service simultaneously

    On maximizing the throughput of opportunistic multicast in wireless cellular networks with erasure codes

    Get PDF
    In this paper, we discuss the opportunistic multicast scheduling (OMS) in a wireless network using erasure codes. Originally proposed for channels with erasures such as internet, erasure codes are found useful in wireless multicast to achieve better tradeoff between multiuser diversity and the multicast gain. In this work we investigated how to design an opportunistic multicast scheduling scheme which can efficiently improve the per user throughput capacity in a wireless network using erasure codes. Aiming at maximize the throughput, we proposed a maximal OMS (M-OMS) scheme which is inspired by the unicast maximal opportunistic scheduling. We build a system model and provide theoretical analysis on proposed M-OMS scheme. The proposed scheme shows substantial improvement over existing fixed selection ratio opportunistic multicast scheduling schemes (F-OMS). © 2011 IEEE.published_or_final_versionThe 2011 IEEE International Conference on Communications (ICC 2011), Kyoto, Japan, 5-9 June 2011. In Proceedings of the IEEE ICC, 2011, p. 1-

    Scheduling of Multicast and Unicast Services under Limited Feedback by using Rateless Codes

    Full text link
    Many opportunistic scheduling techniques are impractical because they require accurate channel state information (CSI) at the transmitter. In this paper, we investigate the scheduling of unicast and multicast services in a downlink network with a very limited amount of feedback information. Specifically, unicast users send imperfect (or no) CSI and infrequent acknowledgements (ACKs) to a base station, and multicast users only report infrequent ACKs to avoid feedback implosion. We consider the use of physical-layer rateless codes, which not only combats channel uncertainty, but also reduces the overhead of ACK feedback. A joint scheduling and power allocation scheme is developed to realize multiuser diversity gain for unicast service and multicast gain for multicast service. We prove that our scheme achieves a near-optimal throughput region. Our simulation results show that our scheme significantly improves the network throughput over schemes employing fixed-rate codes or using only unicast communications

    QoS and QoE Aware N-Screen Multicast Service

    Get PDF
    The paper focuses on ensuring the quality-of-service (QoS) and quality-of-experience (QoE) requirements of users having heterogeneous devices in a multicast session. QoS parameters such as bit rate, delays, and packet losses are good indicators for optimizing network services but fall short in characterizing user perception (QoE). In N-Screen service, the users have different devices with heterogeneous attributes like screen size, resolution, and access network interface, and the users have different QoE on N-Screen devices with the same QoS parameters. We formulate the objective function of the N-Screen multicast grouping to ensure the minimum user’s QoE with smaller bandwidth requirement. We propose a dynamic user reassignment scheme to maintain and satisfy the QoE by adapting the user’s membership to the varying network conditions. The proposed schemes combine the available bandwidth and multimedia visual quality to ensure the QoS and QoE. In the network architecture, we introduce the functions of the QoS and QoE aware multicast group management and the estimation schemes for the QoS and QoE parameters. The simulation results show that the proposed multicast service ensures the network QoS and guarantees the QoE of users in the varying network conditions

    A Novel Local and Hyper-Local Multicast Services Transmission Scheme for Beyond 5G Networks

    Full text link
    The efficiency of the broadcast network is impacted by the different types of services that may be transmitted over it. Global services serve users across the entire network, while local services cater to specific regions, and hyper-local services have even narrower coverage. Multimedia Broadcast over a Single-Frequency Network (MBSFN) is typically used for global service transmission while existing literature extensively discusses schemes for transmitting local or hyper-local services with or without Single Frequency Network (SFN) gain. However, these schemes fall short when network-wide requests for only local and hyper-local services are made, leading operators to scale down to either Single Cell-Point to Multipoint (SCPtM) or Multi-Frequency Network (MFN). SCPtM is highly susceptible to interference, and MFN requires substantial amounts of valuable spectrum. They both employ the Least Channel Gain (LCG) strategy for transmitting hyper-local services without SFN gain. Our proposed Local and Hyper-Local Services (LHS) transmission scheme utilizes the knowledge of user distribution and their corresponding radio link channel quality to schedule single or multi-resolution, local or hyper-local services within a three-cell cluster and aims to enhance spectral efficiency and maximize system throughput. It leverages Scalable Video Coding (SVC) in conjunction with Hierarchical Modulation (HM) for transmitting multi-resolution multimedia content to address the problem of heterogeneity amongst the multicast group users. The proposed scheme also employs macro-diversity combining with optimal HM parameters for each gNB catering to a local service area in order to minimize the service outage. System-level simulation results testify to the better performance achieved by the proposed LHS transmission scheme with respect to SCPtM.Comment: 12 pages, 18 figures, 2 tables, 3 algorithm

    Proactive Resource Allocation: Harnessing the Diversity and Multicast Gains

    Full text link
    This paper introduces the novel concept of proactive resource allocation through which the predictability of user behavior is exploited to balance the wireless traffic over time, and hence, significantly reduce the bandwidth required to achieve a given blocking/outage probability. We start with a simple model in which the smart wireless devices are assumed to predict the arrival of new requests and submit them to the network T time slots in advance. Using tools from large deviation theory, we quantify the resulting prediction diversity gain} to establish that the decay rate of the outage event probabilities increases with the prediction duration T. This model is then generalized to incorporate the effect of the randomness in the prediction look-ahead time T. Remarkably, we also show that, in the cognitive networking scenario, the appropriate use of proactive resource allocation by the primary users improves the diversity gain of the secondary network at no cost in the primary network diversity. We also shed lights on multicasting with predictable demands and show that the proactive multicast networks can achieve a significantly higher diversity gain that scales super-linearly with T. Finally, we conclude by a discussion of the new research questions posed under the umbrella of the proposed proactive (non-causal) wireless networking framework
    corecore