1,716 research outputs found

    Cross-layer design through joint routing and link allocation in wireless sensor networks

    Get PDF
    Both energy and bandwidth are scarce resources in sensor networks. In the past, the energy efficient routing problem has been extensively studied in efforts to maximize sensor network lifetimes, but the link bandwidth has been optimistically assumed to be abundant. Because energy constraint affects how data should be routed, link bandwidth affects not only the routing topology, but also the allowed data rate on each link, which in turn affects the lifetime. Previous research that focus on energy efficient operations in sensor networks with the sole objective of maximizing network lifetime only consider the energy constraint ignoring the bandwidth constraint. This thesis shows how infeasible these solutions can be when bandwidth does present a constraint. It provides a new mathematical model that address both energy and bandwidth constraints and proposes two efficient heuristics for routing and rate allocation. Simulation results show that these heuristics provide more feasible routing solutions than previous work, and significantly improve throughput. A method of assigning the time slot based on the given link rates is presented. The cross layer design approach improves channel utility significantly and completely solves the hidden terminal and exposed terminal problems --Abstract, page iii

    An energy-aware and QOS assured wireless multi-hop transmission protocol

    Get PDF
    A thesis submitted in fulfillment of the requirements for the degree of Master of Science by researchThe Ad-hoc network is set up with multiple wireless devices without any pre-existing infrastructure. It usually supports best-effort traffic and occasionally some kinds of Quality of Service (QoS). However, there are some applications with real-time traffic requirements where deadlines must be met. To meet deadlines, the communication network has to support the timely delivery of inter-task messages. Furthermore, energy efficiency is a critical issue for battery-powered mobile devices in ad-hoc networks. Thus, A QoS guaranteed and energy-aware transmission scheme is one hot of research topics in the research area. The MSc research work is based on the idea of Real-Time Wireless Multi-hop Protocol (RT-WMP). RT-WMP is a well known protocol originally used in the robots control area. It allows wireless real-time traffic in relatively small mobile ad-hoc networks using the low-cost commercial IEEE 802.11 technology. The proposed scheme is based on a token-passing approach and message exchange is priority based. The idea of energy-aware routing mechanism is based on the AODV protocol. This energy-saving mechanism is analysed and simulated in our study as an extension of the RT-WMP. From the simulation results and analysis, it has been shown that adding energy-aware mechanism to RT-WMP is meaningful to optimise the performance of traffic on the network

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field
    • …
    corecore