86 research outputs found

    DIGITAL SIGNATURE IN CYBER SECURITY

    Get PDF
    For secure exchanges over open organizations, the Digital Signature method is basic. It is having assortments of uses to guarantee the uprightness of information traded or put away and to demonstrate the character of the originator to the beneficiary. Computerized Signature plans are regularly utilized in cryptographic conventions to offer types of assistance like element verification, confirmed key vehicle and validated key arrangement. Multi-biometric frameworks are as a rule perpetually sent in some huge scope biometric applications (e.g., FBI-IAFIS, UIDAI plot in India) since they have many points of interest, for example, second rate mistake rates and more prominent people inclusion contrasted with uni-biometric frameworks. In this paper, we propose a component level combination system to all the while ensure various layouts of a client as a sole secure sketch. Our main commitments include: 1) useful execution of the proposed highlight level combination development utilizing two notable biometric cryptosystems, in particular, fluffy vault and fluffy responsibility, and 2) nitty gritty investigation of the compromise between coordinating exactness and security in the proposed multibiometric cryptosystems dependent on two divergent information bases (one genuine and one virtual multimodal information base), each containing the three most famous biometric modalities, to be specific, unique mark, iris, and face. Test results give subtleties that together the multibiometric cryptosystems proposed here have progressed safe-haven and equal execution contrasted with their uni-biometric partners

    Securing Cloud Storage by Transparent Biometric Cryptography

    Get PDF
    With the capability of storing huge volumes of data over the Internet, cloud storage has become a popular and desirable service for individuals and enterprises. The security issues, nevertheless, have been the intense debate within the cloud community. Significant attacks can be taken place, the most common being guessing the (poor) passwords. Given weaknesses with verification credentials, malicious attacks have happened across a variety of well-known storage services (i.e. Dropbox and Google Drive) – resulting in loss the privacy and confidentiality of files. Whilst today's use of third-party cryptographic applications can independently encrypt data, it arguably places a significant burden upon the user in terms of manually ciphering/deciphering each file and administering numerous keys in addition to the login password. The field of biometric cryptography applies biometric modalities within cryptography to produce robust bio-crypto keys without having to remember them. There are, nonetheless, still specific flaws associated with the security of the established bio-crypto key and its usability. Users currently should present their biometric modalities intrusively each time a file needs to be encrypted/decrypted – thus leading to cumbersomeness and inconvenience while throughout usage. Transparent biometrics seeks to eliminate the explicit interaction for verification and thereby remove the user inconvenience. However, the application of transparent biometric within bio-cryptography can increase the variability of the biometric sample leading to further challenges on reproducing the bio-crypto key. An innovative bio-cryptographic approach is developed to non-intrusively encrypt/decrypt data by a bio-crypto key established from transparent biometrics on the fly without storing it somewhere using a backpropagation neural network. This approach seeks to handle the shortcomings of the password login, and concurrently removes the usability issues of the third-party cryptographic applications – thus enabling a more secure and usable user-oriented level of encryption to reinforce the security controls within cloud-based storage. The challenge represents the ability of the innovative bio-cryptographic approach to generate a reproducible bio-crypto key by selective transparent biometric modalities including fingerprint, face and keystrokes which are inherently noisier than their traditional counterparts. Accordingly, sets of experiments using functional and practical datasets reflecting a transparent and unconstrained sample collection are conducted to determine the reliability of creating a non-intrusive and repeatable bio-crypto key of a 256-bit length. With numerous samples being acquired in a non-intrusive fashion, the system would be spontaneously able to capture 6 samples within minute window of time. There is a possibility then to trade-off the false rejection against the false acceptance to tackle the high error, as long as the correct key can be generated via at least one successful sample. As such, the experiments demonstrate that a correct key can be generated to the genuine user once a minute and the average FAR was 0.9%, 0.06%, and 0.06% for fingerprint, face, and keystrokes respectively. For further reinforcing the effectiveness of the key generation approach, other sets of experiments are also implemented to determine what impact the multibiometric approach would have upon the performance at the feature phase versus the matching phase. Holistically, the multibiometric key generation approach demonstrates the superiority in generating the bio-crypto key of a 256-bit in comparison with the single biometric approach. In particular, the feature-level fusion outperforms the matching-level fusion at producing the valid correct key with limited illegitimacy attempts in compromising it – 0.02% FAR rate overall. Accordingly, the thesis proposes an innovative bio-cryptosystem architecture by which cloud-independent encryption is provided to protect the users' personal data in a more reliable and usable fashion using non-intrusive multimodal biometrics.Higher Committee of Education Development in Iraq (HCED

    State of the Art in Biometric Key Binding and Key Generation Schemes

    Get PDF
    Direct storage of biometric templates in databases exposes the authentication system and legitimate users to numerous security and privacy challenges. Biometric cryptosystems or template protection schemes are used to overcome the security and privacy challenges associated with the use of biometrics as a means of authentication. This paper presents a review of previous works in biometric key binding and key generation schemes. The review focuses on key binding techniques such as biometric encryption, fuzzy commitment scheme, fuzzy vault and shielding function. Two categories of key generation schemes considered are private template and quantization schemes. The paper also discusses the modes of operations, strengths and weaknesses of various kinds of key-based template protection schemes. The goal is to provide the reader with a clear understanding of the current and emerging trends in key-based biometric cryptosystems

    Multibiometric Authentication System Processed by the Use of Fusion Algorithm

    Full text link
    The present day authentication system is mostly uni-model i.e having only single authentication method which can be either finger print, iris , palm veins ,etc. Thus these models have to contend with a variety of problems such as absurd or unusual data, non-versatility; un authorized attempts, and huge amount of error rates. Some of these limitations can be reduced or stopped by the use of multimodal biometric systems that integrate the evidence presented by several sources of information. This paper converses a multi biometric based authentication system based on Fusion algorithm using a key. Our work mainly focuses on the fusion algorithm, i.e fusion of finger and palm print out of which the greatest features from the above two traits are taken into account. With minimum possible features the fusion of the both the traits is carried out. Then some key is generated for multi biometric authentication. By processing the test image of a person, the identity of the person is displayed with his/her own image. By the fusion algorithm, it is found that it has less computation time compared to the existing algorithms. By matching results, we validate and authenticate the particular individual

    Design and implementation of a multi-modal biometric system for company access control

    Get PDF
    This paper is about the design, implementation, and deployment of a multi-modal biometric system to grant access to a company structure and to internal zones in the company itself. Face and iris have been chosen as biometric traits. Face is feasible for non-intrusive checking with a minimum cooperation from the subject, while iris supports very accurate recognition procedure at a higher grade of invasivity. The recognition of the face trait is based on the Local Binary Patterns histograms, and the Daughman\u2019s method is implemented for the analysis of the iris data. The recognition process may require either the acquisition of the user\u2019s face only or the serial acquisition of both the user\u2019s face and iris, depending on the confidence level of the decision with respect to the set of security levels and requirements, stated in a formal way in the Service Level Agreement at a negotiation phase. The quality of the decision depends on the setting of proper different thresholds in the decision modules for the two biometric traits. Any time the quality of the decision is not good enough, the system activates proper rules, which ask for new acquisitions (and decisions), possibly with different threshold values, resulting in a system not with a fixed and predefined behaviour, but one which complies with the actual acquisition context. Rules are formalized as deduction rules and grouped together to represent \u201cresponse behaviors\u201d according to the previous analysis. Therefore, there are different possible working flows, since the actual response of the recognition process depends on the output of the decision making modules that compose the system. Finally, the deployment phase is described, together with the results from the testing, based on the AT&T Face Database and the UBIRIS database

    Modified shielding function for multi-biometric authentication and template protection / Abayomi Jegede... [et al.]

    Get PDF
    Biometrics provides a secure means of authentication because it is difficult to copy, forge, or steal biometric modalities. However, unprotected biometric data can be used to violate the security of the authentication system and the privacy of legitimate users. This paper proposes and implements a modified shielding function which provides multi-biometric authentication, template security and user privacy simultaneously. Experimental results based on face and iris datasets obtained from CASIA Near Infra-Red face database and CASIA Iris database version 2 respectively show that the approach has good recognition accuracy (false rejection rate of 0.65% and false acceptance rate of 0.035%). Security analysis shows that the method provides better security (key length of 120 bits) and user privacy compared to previous approaches based on the generic shielding function
    • …
    corecore