450 research outputs found

    Neutrality and Many-Valued Logics

    Get PDF
    In this book, we consider various many-valued logics: standard, linear, hyperbolic, parabolic, non-Archimedean, p-adic, interval, neutrosophic, etc. We survey also results which show the tree different proof-theoretic frameworks for many-valued logics, e.g. frameworks of the following deductive calculi: Hilbert's style, sequent, and hypersequent. We present a general way that allows to construct systematically analytic calculi for a large family of non-Archimedean many-valued logics: hyperrational-valued, hyperreal-valued, and p-adic valued logics characterized by a special format of semantics with an appropriate rejection of Archimedes' axiom. These logics are built as different extensions of standard many-valued logics (namely, Lukasiewicz's, Goedel's, Product, and Post's logics). The informal sense of Archimedes' axiom is that anything can be measured by a ruler. Also logical multiple-validity without Archimedes' axiom consists in that the set of truth values is infinite and it is not well-founded and well-ordered. On the base of non-Archimedean valued logics, we construct non-Archimedean valued interval neutrosophic logic INL by which we can describe neutrality phenomena.Comment: 119 page

    Swap structures semantics for Ivlev-like modal logics

    Get PDF
    In 1988, J. Ivlev proposed some (non-normal) modal systems which are semantically characterized by four-valued non-deterministic matrices in the sense of A. Avron and I. Lev. Swap structures are multialgebras (a.k.a. hyperalgebras) of a special kind, which were introduced in 2016 by W. Carnielli and M. Coniglio in order to give a non-deterministic semantical account for several paraconsistent logics known as logics of formal inconsistency, which are not algebraizable by means of the standard techniques. Each swap structure induces naturally a non-deterministic matrix. The aim of this paper is to obtain a swap structures semantics for some Ivlev-like modal systems proposed in 2015 by M. Coniglio, L. FariƱas del Cerro and N. Peron. Completeness results will be stated by means of the notion of Lindenbaumā€“Tarski swap structures, which constitute a natural generalization to multialgebras of the concept of Lindenbaumā€“Tarski algebras

    A uniform definition of stochastic process calculi

    Get PDF
    We introduce a unifying framework to provide the semantics of process algebras, including their quantitative variants useful for modeling quantitative aspects of behaviors. The unifying framework is then used to describe some of the most representative stochastic process algebras. This provides a general and clear support for an understanding of their similarities and differences. The framework is based on State to Function Labeled Transition Systems, FuTSs for short, that are state-transition structures where each transition is a triple of the form (s; Ī±;P). The first andthe second components are the source state, s, and the label, Ī±, of the transition, while the third component is the continuation function, P, associating a value of a suitable type to each state s0. For example, in the case of stochastic process algebras the value of the continuation function on s0 represents the rate of the negative exponential distribution characterizing the duration/delay of the action performed to reach state s0 from s. We first provide the semantics of a simple formalism used to describe Continuous-Time Markov Chains, then we model a number of process algebras that permit parallel composition of models according to the two main interaction paradigms (multiparty and one-to-one synchronization). Finally, we deal with formalisms where actions and rates are kept separate and address the issues related to the coexistence of stochastic, probabilistic, and non-deterministic behaviors. For each formalism, we establish the formal correspondence between the FuTSs semantics and its original semantics

    Viewpoint Development of Stochastic Hybrid Systems

    Get PDF
    Nowadays, due to the explosive spreading of networked and highly distributed systems, mastering system complexity becomes a critical issue. Two development and verification paradigms have become more popular: viewpoints and randomisation. The viewpoints offer large freedom and introduce concurrency and compositionality in the development process. Randomisation is now a traditional method for reducing complexity (comparing with deterministic models) and it offers finer analytical analysis tools (quantification over non-determinism, multi-valued logics, etc). In this paper, we propose a combination of these two paradigms introducing a viewpoint methodology for systems with stochastic behaviours

    Separable GPL: Decidable Model Checking with More Non-Determinism

    Get PDF
    Generalized Probabilistic Logic (GPL) is a temporal logic, based on the modal mu-calculus, for specifying properties of branching probabilistic systems. We consider GPL over branching systems that also exhibit internal non-determinism under linear-time semantics (which is resolved by schedulers), and focus on the problem of finding the capacity (supremum probability over all schedulers) of a fuzzy formula. Model checking GPL is undecidable, in general, over such systems, and existing GPL model checking algorithms are limited to systems without internal non-determinism, or to checking non-recursive formulae. We define a subclass, called separable GPL, which includes recursive formulae and for which model checking is decidable. A large class of interesting and decidable problems, such as termination of 1-exit Recursive MDPs, reachability of Branching MDPs, and LTL model checking of MDPs, whose decidability has been studied independently, can be reduced to model checking separable GPL. Thus, GPL is widely applicable and, with a suitable extension of its semantics, yields a uniform framework for studying problems involving systems with non-deterministic and probabilistic behaviors
    • ā€¦
    corecore