848 research outputs found

    Multi-Automata Learning

    Get PDF

    Intelligent Control of Vehicles: Preliminary Results on the Application of Learning Automata Techniques to Automated Highway System

    Full text link
    We suggest an intelligent controller for an automated vehicle to plan its own trajectory based on sensor and communication data received. Our intelligent controller is based on an artificial intelligence technique called learning stochastic automata. The automaton can learn the best possible action to avoid collisions using the data received from on-board sensors. The system has the advantage of being able to work in unmodeled stochastic environments. Simulations for the lateral control of a vehicle using this AI method provides encouraging results

    Analysis of reinforcement learning strategies for predation in a mimic-model prey environment

    Get PDF
    In this paper we propose a mathematical learning model for a stochastic automaton simulating the behaviour of a predator operating in a random environment occupied by two types of prey: palatable mimics and unpalatable models. Specifically, a well known linear reinforcement learning algorithm is used to update the probabilities of the two actions, eat prey or ignore prey, at every random encounter. Each action elicits a probabilistic response from the environment that can be either favorable or unfavourable. We analyse both fixed and varying stochastic responses for the system. The basic approach of mimicry is defined and a short review of relevant previous approaches in the literature is given. Finally, the conditions for continuous predator performance improvement are explicitly formulated and precise definitions of predatory efficiency and mimicry efficiency are also provided

    Distributed learning automata-based scheme for classification using novel pursuit scheme

    Get PDF
    Author's accepted manuscript.Available from 03/03/2021.This is a post-peer-review, pre-copyedit version of an article published in Applied Intelligence. The final authenticated version is available online at: http://dx.doi.org/10.1007/s10489-019-01627-w.acceptedVersio

    Learning automata and its application to priority assignment in a queuing system with unknown characteristics /

    Get PDF
    Conditions for (epsilon)-optimality of a general class of absorbing barrier and strongly absolutely expedient learning algorithms are derived. As a consequence, a new class of learning algorithms having identical behavior under the occurrence of success and failure are obtained. An application of learning automata to the priority assignment in a queuing system with unknown characteristics is given

    Multiple Stochastic Learning Automata for Vehicle Path Control in an Automated Highway System

    Full text link
    This paper suggests an intelligent controller for an automated vehicle planning its own trajectory based on sensor and communication data. The intelligent controller is designed using the learning stochastic automata theory. Using the data received from on-board sensors, two automata (one for lateral actions, one for longitudinal actions) can learn the best possible action to avoid collisions. The system has the advantage of being able to work in unmodeled stochastic environments, unlike adaptive control methods or expert systems. Simulations for simultaneous lateral and longitudinal control of a vehicle provide encouraging result

    Improved learning automata applied to routing in multi-service networks

    Get PDF
    Multi-service communications networks are generally designed, provisioned and configured, based on source-destination user demands expected to occur over a recurring time period. However due to network users' actions being non-deterministic, actual user demands will vary from those expected, potentially causing some network resources to be under- provisioned, with others possibly over-provisioned. As actual user demands vary over the recurring time period from those expected, so the status of the various shared network resources may also vary. This high degree of uncertainty necessitates using adaptive resource allocation mechanisms to share the finite network resources more efficiently so that more of actual user demands may be accommodated onto the network. The overhead for these adaptive resource allocation mechanisms must be low in order to scale for use in large networks carrying many source-destination user demands. This thesis examines the use of stochastic learning automata for the adaptive routing problem (these being adaptive, distributed and simple in implementation and operation) and seeks to improve their weakness of slow convergence whilst maintaining their strength of subsequent near optimal performance. Firstly, current reinforcement algorithms (the part causing the automaton to learn) are examined for applicability, and contrary to the literature the discretised schemes are found in general to be unsuitable. Two algorithms are chosen (one with fast convergence, the other with good subsequent performance) and are improved through automatically adapting the learning rates and automatically switching between the two algorithms. Both novel methods use local entropy of action probabilities for determining convergence state. However when the convergence speed and blocking probability is compared to a bandwidth-based dynamic link-state shortest-path algorithm, the latter is found to be superior. A novel re-application of learning automata to the routing problem is therefore proposed: using link utilisation levels instead of call acceptance or packet delay. Learning automata now return a lower blocking probability than the dynamic shortest-path based scheme under realistic loading levels, but still suffer from a significant number of convergence iterations. Therefore the final improvement is to combine both learning automata and shortest-path concepts to form a hybrid algorithm. The resulting blocking probability of this novel routing algorithm is superior to either algorithm, even when using trend user demands
    corecore