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In  this  paper  we  propose  a  mathematical  learning  model  for  a  stochastic automaton simulating the 
behaviour of a predator  operating  in  a  random  environment  occupied  by  two  types  of  prey: 
palatable  mimics  and  unpalatable  models.  Specifically, a  well  known  linear  reinforcement  learning  
algorithm  is  used  to  update  the  probabilities  of  the  two  actions,  eat  prey  or  ignore  prey, at every 
random encounter.  Each  action  elicits  a  probabilistic  response  from the  environment  that  can  be 
either favorable  or  unfavourable.  We analyse both  fixed  and  varying  stochastic  responses for the 
system.  The basic approach of mimicry is defined and a short review of relevant previous approaches in 
the literature is given. Finally, the  conditions  for  continuous  predator   performance  improvement  are  
explicitly  formulated and precise  definitions  of  predatory  efficiency  and  mimicry  efficiency  are  
also  provided. 
 
 
1.  Introduction 
 
A Batesian  mimic  is  a  palatable  prey  who gains  protection  from  a  predator  
through  resemblance  to  an  unpalatable  species,  the  model.  It  is  believed  that  
Batesian  mimicry  generally   harms  the  model  by  degrading  its   natural  defensive  
advantage  conferred  by  the  aposematic  signal.  If  both  mimics  and  models  are  
unpalatable  then  they  both  should  gain  protection  from  the  predator.  This  type  of  
mimicry  is  known  as  Muellerian. 
 
A simple  mathematical  model  of  the  model-mimic  situation  was  introduced by  
Huheey  (1964).  Huheey  made  the  fundamental  assumption  that  the  predator  will  
reject  all  prey  for  a  number  of   encounters  following  an  unfavourable 
consumption of  a  model.  A  more  sophisticated   mathematical  model  involving a  
mimic,  a  model,  and  a  predator  was later put  forward  by  Estabrook  and  Jespersen  
(1974).  They  adopted  Huheey’s  idea  of  a  waiting  period  between  encounters  and  
constructed  a  Markov  chain to model  the  probabilistic  encounters  between  the  
predator  and  the models and mimics.  Bobisud  and  Potratz  (1976)  suggested  that  a  
more  plausible  strategy  for  the  predator  would  be  to  remember  the  number  of  
successive  mimics  that  have  been  consumed  after  a  model  is  consumed,  and  to  
modify  its  reaction  on  the basis  of  this  information.  Arnold  (1978)  investigated  
the  avoidance  behaviour  of  a  predator  in  relation   to  the  spatial  prey  distribution  
and degree of  noxiousness  of  the  models.  Luedeman  et  al.  (1981)  proposed  a  
Markov  chain  model  that  included  alternative  prey  in  addition  to  models  and  
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mimics.  Kannan  (1983)  presented  an  extensive  analysis  of  three  types  of  predator  
strategies:  single-trial  in  the  spirit  of  Estabrook  and  Jespersen,  multi-trial  in  the  
spirit  of  Bobisud  and  Potratz,  and a  consume-everything  strategy.  Owen  and  
Owen  (1984)  proposed  a  strategy  for  the  predator  based  on  recurrent  sampling.  
Huheey  (1988)  presented  a  partial  review  of  the  quantitative  methods  applied  to  
the  modelling  of  mimicry  for  the  previous 15  years.  Speed  (1993)  simulated   
predatory  behaviour  based  on  simple  learning  and  forgetting  rules  proposed  
earlier  by  Turner  et  al.  (1984),  and  by  further  assuming  that  learning  in  prey  is  
inherently  Pavlovian  in  nature.  In  a  series  of  papers,  Turner  and  Speed  (1996,  
1999)  proposed  a  generalised  model  of  learning  behaviour,  based  on  an  
algorithm  introduced  originally  by  Bush  and  Mosteller  (1955),  which  
encompassed  aspects of most of the major models as  special  cases. 
 
 
2.  The  learning   automaton  approach  to  predator-model-mimic  
interactions 
 
The  predatory  behaviour  simulated  by  Speed  and  Turner  (1999)  consists  of  two  main  aspects:  
learning  and  forgetting.  The  probability  of  attack   on  the  prey  changes  according  
to  the  rule 
 

)( 112 ppp −+= λα , 
 
where  p1  and  p2   are  the  attack  probabilities  prior  and  after  an  encounter  
respectively  ( 21 pp =   if  there  is  no  attack),  α  is  the  learning  parameter  (0 ≤ α  ≤ 
1, with α = 0  indicating  no  learning  and  1=α   indicating  learning  in  a  single  
trial)  and  λ  is  the  asymptotic  attack  probability,  10 ≤≤ λ .   The  predator  starts  
attacking  prey  with a  naïve  probability,  5.00 =p ,  which  is  also  the  probability  of  
attack  after  the  predator  has  forgotten  what  was  learnt  on  previous  samplings.  
The  forgetting  algorithm  is  thus 

 
)( 2023 pppp −+= φ , 

 
where  3p   is  the  attack  probability  after  forgetting  has  occurred,  and  φ  is  the  
associated  forgetting  parameter.  So  after  forgetting,  the  frequency  of  attack  
undergoes  a  change   
 

)5.0( 223 pppp −=−=∆ φ  
 

The  further  2p   is  from  the  naïve  value,  0.5,  the  larger  the  absolute  value  of  
p∆  is,  which  implies  a  larger  forgetting  rate,  yet  according  to  MacDougall  and  

Dawkins  (1998)  empirical  evidence  suggests  otherwise.   Also  the  assumption  
made  by  Speed  and  Turner  (1996,  1999),  that  a  prey  is  deemed  unpalatable  if  it  
is  attacked  asymptotically  with  probability  less  than  the  naïve  probability,  has  
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been  questioned  by  Joron  and  Mallet  (1998),  who  suggested  that  a  more  sensible  
view  of  palatability  would  be  one  that  reduces  predation  upon  experience, 
regardless  of  the  naïve  attack  rate.     
 
In  this  paper  we  model  a  predator  as  a  learning  automaton  operating  in  an  
environment  that  manifests  itself  in  the  form  of  either  palatable  or  unpalatable  
prey  (Batesian  mimicry).  Upon  each  encounter  the  predator  may  choose,  with  a  
certain  probability,  either  to  consume  the  prey  or to simply  ignore  it.  
Consumption  of  unpalatable  models  induces  the  predator  to  reduce  its  probability 
of consumption  on  the  next  encounter with a prey,  otherwise  the  attack  probability  
will  be  reinforced.   Each  instant  the  predator  chooses  to  ignore  prey  it  runs  the  
risk  of  a  missed  food  opportunity,  should  the  ignored  prey  be  palatable.  The  
predator  can  discriminate  prey  with   a  certain  probability  which  is  also  adjusted  
accordingly.  
 
Our  approach,  although  broadly  in  line  with  that  of  Turner  and  Speed  (1996, 
1999),  differs   in  at  least  three  respects:  following the observations of  Joron and 
Mallet, we  do not  use a  fixed  naïve  attack  probability. Moreover, we do not 
introduce a forgetting rate, rather, we allow  the  predator  to  reach  an   asymptotic  
consumption  probability  and  an  asymptotic  probability  of  prey  discrimination. 
This is achieved through  a  continuous  update  of  action  probabilities  on  the  basis  
of  the  response  the predator  elicits  from  the  environment. The  need  for  the  
inclusion  of  an environmental  response  in  learning  can  be  seen  thus;  if  the  
rewards  to  the  predator  for  a  given  action  and  the  proportion  of  palatable  prey  
were  known  at  each  stage,  then  a  payoff  matrix  could  be  set  up  as  follows: 
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If  γ   is  the  proportion  of  palatable  prey  and  p  is  the  probability  of  eating  a   
prey,  the  expected  payoff  to  the  predator  from  an encounter with a  prey  is: 
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From this, the  strategies  for  maximizing  the  expected  payoff  can be seen to be: 
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Formulating  an  action  plan therefore requires  knowledge  of  the  rewards  and  the  
proportion  of the palatable  population  at  each  stage.  Since  both  items  are  
expected  to  vary  at  each  stage  due  to  the  continuous  interaction  between  the  
predator  and  prey,  it  is  unrealistic  to  assume  that  such  knowledge  is  readily  
available. Instead, by probing  the  environment  regularly  the  predator  is  expected  to  
learn  how  often  it  will  choose  the  right  course  of  action.  This provides the 
motivation for the present study.   

 
Finally, we  emphasis that the effect  that the learning  automaton  mode  of  operation  
of  the  predator   has on  the  mimicry  system is not directly appraised. Furthermore, 
we do not consider competition  between  predators.   
 
Our  work  is  organized  as  follows:  in  the  next  section  a  brief  outline  of  the  
learning  automaton  concept  is  given.  Section  4  considers  the  predator  as  a  
simple  stochastic  automaton  with  no  learning  capacity.  Sections  5 and  6  are  
devoted  to  learning  in  fixed  and  varying  environments  respectively. 
 
3.  The  concept  of  the  learning  automaton  and  its  mathematical  
description 
 
Having established the need for environmental feedback, we now present a learning 
automaton which uses this approach. A  learning  automaton  is  a   deterministic  or  
stochastic  algorithm  used  in  discrete-time  systems  to  improve  their  performance  
in  random  environments  (Narendra  and  Thathachar,  1989).  A  finite  number  of  
decisions  (actions)  are  available  to  the  system  to  which  the  environment  
responds  either  favourably  or  unfavourably.  The  purpose  of  the  learning  
automaton  is  to  increase the probability of selecting  an  action  that  is  likely  to  
elicit   a  favourable  response  based  on  past  actions  and  responses.    The  
automaton  and  the  environment  in  which  it  operates  are  connected  in  a  feedback  
manner  as  illustrated  in  figure  1  below: 
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a(k)                                                    b(k) 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig.1.  Feedback  configuration  of  automaton  and  environment. 
 
The  system  operating  in  a  random  environment   can  choose  to  perform  an  action  
from  the  finite set  { }naa ,,1 L=a .  The  chosen  action  constitutes  the  input  to  the  
environment  which  responds  with  an  output  from  the  set   { }mbb ,,1 L=b .  The  
environment  is  categorized  as  a  P-model  if  the  output  set  is  binary  (m = 2),  a  
Q-model  if  m  is  finite  and  greater  than  2,  and  as  an   S-model  if  b  is  a  
continuous  random  variable such that b ε (b1, b2), where, b1 ≤ b2.   When  the  response  
of  the  environment  is  unambiguously  favourable  or  unfavourable,   then  a  P-
model  is  sufficient  to  describe  it.  When  the  number  of   possible  responses  is  
greater  than  2,  then  the  outputs  are  neither  totally  favourable   nor  totally  
unfavourable,  and  a  Q-  or  S-model  is  needed  to  describe  the  environment.    The  
behaviour  of  the  environment  can therefore be  captured  by  the  set,  c,  of  penalty  
probabilities, associated with each of the potential actions available to the automaton: 
 

))(|)(()( ii akapenaltykbyprobabilitkc === ,  ni ,,1L=  
 

where )(kci   denotes  the  probability  that  the  environment  will  respond  
unfavourably  to  the  action  ia   at  the  kth encounter.  If   the  penalty  probabilities,  

ic , are  independent  of  k ,  the  environment  is  stationary.   The  penalty  probabilities  
are  assumed  unknown  however,  for  knowledge  of   them  would  render  the  
problem  of  the  system  (automaton)  operating  in  a  random  environment, relatively  
trivial. 
 
The  internal  structure  of  a  stochastic  automaton  is  characterized  by  the  state  set,  
φ { }rφφ ,,1 K= .  The  r x r  stochastic state  transition    matrix, ( ))()( ll

ijfF = ,  
determines  the  state  at  the  (k + 1) encounter  in  terms  of  the  state  and  a  random  
input, lb , at  k: 

Random           
Environment     
( )n

T cc ⋅⋅⋅= 1c

Learning 
Automaton 

{ }GF ,,,, baφ  
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( ) mrjibkbkkyprobabilitf ijij ,,1;,,1,      )(,)(|)1()( LlLl

l =====+= φφφφ  
 
The  transition  between  states  is  thus  an  ergodic  Markov  chain,  with  the  final  
state  probabilities,  rip ii ,,1    ,)( L== πφ   given  by   
 

ππ TF=  
 

The  r x n  stochastic output  matrix,  ( )ijgG = ,  determines  the  action  of  the  
automaton  at  any  encounter  k  in  terms  of  the  state  at  that  encounter: 
 

( ) njrikakayprobabilitg ijij ,,1     ,,1      ,)(|)( LL ===== φφ  
 
The  final  action   probabilities,  nipap ii ,,1    ,)( * L==   are  given  by 
 

πTG=*p  
   

For  a  deterministic  automaton  the  entries  of  the  matrices  F  and  G  are  either  0  
or  1.  It  is  convenient  in  many  cases  to  identify  each  state  with  a  distinct  action  
so  that  r = n  and  G, after suitable reordering, is  the  identity  matrix.  As a 
consequence, here, *p = π.  A  fixed-structure  stochastic  automaton  is  
characterized  by  matrices  F(l)  and  G  independent  of  k.  When the  transition  
probabilities,  )(l

ijf   or  ijg  ,  are  updated  at  each  k  on  the  basis  of  the  response,  
b(k) = l ,  of  the  environment,  the  automaton  is  called    a  variable-structure  
stochastic  automaton.  The  basic  idea  behind  the  update  is  to  increase  the  action  
probability  that  produces  a  favourable  response  and  decrease  all  others;  for  an  
unfavourable  response,  the  respective  action  probability  is  decreased  and  all  
others  are  increased.  The  algorithm  for  update  is  called  a  reinforcement  scheme. 

 
The  average  penalty  incurred by the automaton,  M(k),  conditioned on the state 
corresponding to the action  probability  vector,  p(k),  at  encounter  k  is  given  
(Narendra and  Thathachar, (1989)) by   the  expectation: 
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If  all  actions  are  equally  likely,  such an  automaton is called a pure-chance  
automaton and suffers  the  expected  penalty: 
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Obviously, for an automaton to perform better than a pure-chance automaton,  its  
expected  penalty  must  be  less  than   M0.  Since  M(k)  is  a  random  variable,  we   



Reinforcement  learning  49 
 

 

need  to  examine  its  long  term  average  input,  E[M(k)]  as  ∞→k .  A  learning  
automaton  is  said  to  be   expedient  if: 

0)]([ MkMElim
k

<
∞→

 

 
and  optimal  if 

nicminkMElim iik
,,1    ,)]([ L==

∞→
 

 
Optimality  is  meant  to  imply  that  the  action  associated  with  the  minimum  
penalty  probability  is  always  chosen  in  the  long  term.  In  practice  optimality  may  
be  unattainable  and  a  suboptimal  performance  measure  like  ε-optimality may  be  
more  appropriate: 
 

nicminkMElimcmin iikii
,,1    ,)]([ L=+<<

∞→
ε  

 
for  some  arbitrary  ε > 0.  Finally,   a  learning  automaton  is  absolutely  expedient  
if  its  average  input   monotonically  decreases  with   time,  that  is  if  M(k)  is  a  
supermartingale: 
 

kkMEkME    allfor      , )]([)]1([ <+  
 
 
4.  Predator  as  a  fixed-structure   stochastic  automaton  operating   
in  stationary  random  model-mimic  environments 
 
A  predator  operating  in  an  environment  filled  with  unpalatable  models,  M,  and   
palatable  mimics,  X,  can  be  modelled   as  a  stochastic  automaton  with  two  
actions:  a1  for  ignoring   any  prey  and  a2   for   consuming  a prey.  If  the  prey  
ignored  is  a  mimic  then  the  predator  suffers  a  penalty  due  to  loss  of  
opportunity  with  probability  c1 given by: 
 

)( 11 a|IXpc =  
 
Similarly,  a  penalty  with  probability  c2  is  incurred  when  the  predator  consumes  
an  unpalatable  model: 

)( 22 a|EMpc = , 
 
where  the  symbols  I  )( 1a≡   and  E  )( 2a≡   stand  for  the  actions to  ignore  and  eat  
respectively.   

 
The  favourable  responses  by  the  environment  occur  when  the  predator  ignores  
models  and  consumes  mimics  and  have  respective  probabilities  d1  and  d2  given 
by: 
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Let   ijf   and   ijf~   be  the  transition  probability  from  state  (action)  i = 1,2  to  state  
(action)      j = 1,2,   following  a  favourable  and  unfavourable  response  respectively,  
that  is, 
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The  probability,  ijf ,  of  transition  from  state  i  to  state  j  is  then  given  by 
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Let  F   and  F~   be  the  state  transition  matrices  following  a   favourable  and  
unfavourable  response  respectively: 
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Then  the  state  transition  matrix  is  as  follows:   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+

+−−

⎩
⎨
⎧

=
qcqdqcqd

pcpdpcpd
E
I

F

EI

~1~
~~1

                                            

2222

1111

444 8444 76

 

 
The  long-term  action  probabilities,  π1  and  π2,  are  found  from  solving  ππ TF= : 
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 The  long  term  average  penalty given, π1 and π2, is: 
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If  the  predator  always  ignores   mimics  and  models  then  11 →c   and  02 →c ,  
and  the  long term average  penalty  is  simply 

    ~)(
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qkMlim
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If  the  predator  always  consumes   mimics  and  models  then  01 →c   and  12 →c ,  
and  the  average  penalty  is  simply 

    ~)(
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pkMlim
k +
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This “consume-all-prey”  policy  can  be  compared  to  the  ignore-all-prey  policy  on  
the  basis  of  the  magnitude  of  the  respective  asymptotic  average  penalties: 
 

0~~ >− qqpp   consume-all-prey  policy  is  superior, 
0~~ <− qqpp   ignore-all-prey  policy  is  superior, 

0~~ =− qqpp   neutral  approach ,  both  policies  are  equivalent. 
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Fig.2.  Average  penalty  surface  plot  for  8.0~,2.0~,2.0,8.0 ==== qpqp .  The  
predator  is, in the long term,  indifferent  to  either  ignore  all  prey  or  consume  all  

prey  policies  because  16.0~~ == qqpp .  Either  policy  incurs  an  average  penalty  of   
0.5. 

 
A  measure  of  the variation  rate  of  the  average  penalty  is afforded  by  the  second  
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When   transition  between  different  states  is  more  frequent  after  a  favourable  
response,  that  is   pp ~>   and  qq ~> ,  the  rate  of  the  average   penalty  increase  
grows  steadily  for  increasing  c1  and  c2.  When  the  opposite  scenario  occurs,  that  
is  pp ~<   and   qq ~< ,  the  average  penalty  declines  steadily  for  increasing   c1  and  
c2 .  When  either  pp ~>   and   qq ~<   or   pp ~<   and   qq ~> ,  the  rate  of  the long 
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term penalty  increase  accelerates  in  one  direction   and  decreases  in  the  other,  as  
displayed  in  fig.  2  above,  where  8.0~2.0  ,2.0~8.0 =<==>= qqpp . 

For  qpqp ~~ ===   we  get  
2
1

21 == ππ ,  and   the  predator  behaves  essentially  as  

a  pure-chance  automaton. Otherwise,  expediency  is  guaranteed,  provided 
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Finally,  we  need  an  average  measure  of  the predator’s  efficiency  in  distinguishing   
palatable  prey  (mimics)  from  a   pool  of   mixed  prey  (models  and  mimics).  We  
define  the  asymptotic  predatory  efficiency  index   as  the  ratio  of   the  
probability  of   consumption  of  palatable  prey  to  the  total   probability  of  
encountering  palatable  prey: 
 

qccqpccpcc
pccpcc

cc
ce ~)~)(1()1)(1(
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2121
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In  a  complementary  manner,  we  may  define  the  asymptotic  mimicry  efficiency  
index   as  the  ratio  of   the  probability  of   ignored  palatable  prey  to  the  total   
probability  of  encountering  palatable  prey: 

=*m  *

1122

11 1
)1(

e
cc

c
−=

+− ππ
π  

 
If  the  transition  between  states  is  independent  of  the  environmental  response  the  
matrices  F  and  F~   are  identical,  and   consequently qqpp ~  ,~ == .  The  action  
probabilities  and  the  asymptotic  penalty  are  then 
 

qp
pcqckMlim

qp
p

qp
q

k +
+

=
+

=
+

=
∞→

21
21 )(  ,     ,   ππ  

 
Expediency  in  this  case  simply  equates  to  the  action  that  incurs  the  least  penalty  
being  chosen  more  often,  that  is,  21 ππ >   if   21 cc <   and   21 ππ <   if   21 cc > . 
 
If  qp =   and   qp ~~ =   (both  matrices  F  and  F~   are  doubly  stochastic  but  not 
necessarily identical),  then  the  automaton  is  expedient   if  pp ~< .  The  predator  
exhibits  expedient  behaviour  when  the  frequency  of    swapping  actions  following  
immediately from an  unfavourable  response  is  higher  than  the frequency  of  
swapping  actions  immediately following  a  favourable  response.   
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A  trivial  strategy  for  the  predator  would  be  to  switch  action  with  certainty 

)1~~( == qp     whenever  an  unfavourable  response  is  recorded  and  continue  with  
the  same  action  )0( == qp   whenever  the  response  is  favourable,  in  which  case 
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and  consequently, 
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The  two  final  action  probabilities,  π1  and  π2,  in this case can also be calculated 
from  the equation,  ππ TF= : 
 

21

2
1 cc

c
+

=π   ,   
21

1
2 cc

c
+

=π  

 
The  automaton (predator)  is  expedient  if  21 cc ≠ ,  since 
 

0
21

21

21
2211 2

2)( Mcc
cc

cccckMlim
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=
+

<
+

=+=
∞→

ππ  

 
 
The  predatory  efficiency  is  2

* 1 ce −= ,  and  the  mimicry  efficiency  is  2
* cm = .  

Mimicry  efficiency  represents  the  rate that the  predator  consumes  the  wrong  prey.  
The  long term  proportion  of  ignored  palatable  prey  equals  the  long-term  

proportion  of  consumed  palatable  prey  when  
2
1

2 =c ,  and  the  long-term  

proportion  of  consumed  palatable  prey  equals  the  long-term  proportion  of  

consumed  unpalatable  prey  when  
2
1

1 =c . 

 
Such  a  fixed-structure,  two-state,  two-action  automaton  was  first  suggested  by  
Tsetlin  (Tsetlin  1973)  and  is  known  as  an 2,2L  automaton.  Despite  its  obvious  
simplicity  it  has  found  applications  in  many  learning  models  (Selfridge  1978).   
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5.  Predator  as  a  variable-structure   stochastic  automaton  
operating   in  stationary  random  model-mimic  environments 
 
5.1.  Mathematical  description  of  reinforcement  schemes 

 
Greater  flexibility  can  be  built  into modelling the  predatory  behaviour  by  
considering  the  predator  as  a  stochastic  automaton  with  state  transitions  or  action  
probabilities  being  updated  at  every  stage  using  a  reinforcement  scheme.   
In  general  terms,  a  reinforcement  scheme  can  be  represented  by  either   updating   
the  action  probability  at  stage  (k+1)  on  the  basis  of  its  previous  value,  the  
action  a(k)  and  input   b(k): 
 

[ ] nikbkakphkp ii ,,2,1   ,)(),(),()1( L==+  
 

or  by  updating  the  state  transition  probabilities,  fij(k+1),  on  the  basis  of  the  
states,  φ(k)  and  φ(k+1),  input  b(k),  and  previous  state  transition  probabilities  
fij(k): 
 

[ ] rjikbkkkfkf ijij ,,2,1,  ,)(),1(),(),()1( L=+=+ φφϕ  
 
If  either  h  or  ϕ  is  linear,  the  reinforcement  scheme  is  said  to  be  linear;  
otherwise  it  is  called  nonlinear.   
 
The  idea  of  a  reinforcement  scheme  is  to  increase  the  action   probability,  pi(k),  
and  decrease  all  ijkp j ≠  ),( , if  the  action  a(k) = ai   results  in  a  favourable  
response.  For  an  unfavourable  input,   pi(k)  is  decreased  and  all  the  other  
components  are  increased.  The  same  idea  applies  to  state  transition  probabilities;  
fij(k)  is  increased  when  ji kk φφφφ =+= )1(  ,)(   and  the  input  is  favourable,  and  
decreased  otherwise.  To  maintain F as a stochastic matrix,   the  remaining  elements  
of  the   ith  row  must  be  adjusted  updated to sum to unity.  Thus  the  state  transition  
matrices  F ,  F~   and  consequently F   of  the  last  section  become  state  dependent.  
Next   we  adapt  a  well  known  linear  reinforcement  algorithm  to  the  predator-
model-mimic  system. 
 
 

5.2.  The  asymmetric  )βα ≠(    Linear  Reward-Penalty  (LR-P)  scheme 
 
Linear  reinforcement  algorithms  are  based  on  the  simple  premise  of  increasing  
the  probability  of  that  action  that  elicits a favourable  response  by  an  amount  
proportional  to  the  total  value  of  all  other action  probabilities.  Otherwise, it is 
decreased by  an  amount  proportional  to  its  current  value. The  probability  updating  
algorithm  for  the  two  predator  actions,  a1  (ignore)  and  a2  (eat),  with  respective 
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to penalty  probabilities  c1  and  c2,    is  a  Markov  chain  and   has  the  following  
form:     
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From  these  equations  it  follows  that  if  action  ai  is  chosen  at  stage  k,  the  
probability  pj(k) ( j≠i)  is  decreased,  at  stage  k+1,  by  an  amount  proportional  to  
its  value  at  stage  k  for  a  favourable  response,   and  increased  by  an  amount  
proportional  to  [ ])(1 kp j−   for  an  unfavourable  response as this is consistent with 
action j being more favourable.  The  parameters  α  and  β  are  the  reward  and  
penalty  parameters  respectively. 
 
In  order  to  assess  the  asymptotic  behaviour  of  the  action  probabilities  we  
consider  the  conditional   expectation  of  p1(k+1)  given  p1(k): 
 

( )( )[ ] ( )[ ] 2212121
2
1111 21)()()](|)1([)1( cccckpcckpkpkpEkp ββαβα +−−++−−=+=+

 
 
Then  for  the  Markov  chain  to  be  ergodic,  we  that   

)()](|)1([ *
111 kpkpkpElim

k
=+

∞→
.  This  probability,  *

1p  ,  is  found  as   the  fixed  point  

of   the   first-order  nonlinear  autonomous  difference  equation  (with  21 cc ≠ ): 
 

=1p  ( )( )[ ] ( )[ ] 2212121
2
1 21 ccccpccp ββαβα +−−++−− ,  

 
The  above  quadratic  equation  admits  a unique  feasible  solution for .10 *

1 << p : 
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Similarly  for  action  a2,   
 

( )( )[ ] ( )[ ] 1121212
2
2222 21)()()](|)1([)( cccckpcckpkpkpEkp ββαβα +−−++−−=+=
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the  unique  fixed  point  is 
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The  equilibrium  probabilities,  *

1p   and  *
2p  ,  are  asymptotically  stable  if   

 

1)2(2)(1 22
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Since  the  expression,    )2(2)( 22

21
2
2

2
1

2 αβα −++ cccc ,  is  a  positive-semi  definite  
quadratic  form  with  an  upper  bound  of  4,  asymptotic  stability  is  ensured.   
 
Figures  3  and  4  display  a  typical  evolution  pattern  of )(1 kp  and  )(2 kp   towards 

)(*
1 kp  and  )(*

2 kp  ,  their  asymptotic  values respectively. 
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Figure  3.  Plot  of mean  action  probabilities  versus  stage  for  

4.0  ,8.0  ,4.0  ,5.0 21 ==== ccβα .  The  asymptotic  mean  probabilities  are  

685.0  ,315.0 *
2

*
1 == pp . 
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Figure  4.  Plot  of  mean  action  probabilities  versus  stage  for  
9.0  ,5.0  ,8.0  ,3.0 21 ==== ccβα .  The  asymptotic  mean  probabilities  are  

4.0  ,6.0 *
2

*
1 == pp . 

 

 
The  variance  of   the  random  variable  )1(1 +kp , conditioned on  p1(k)  is  given by 
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The  asymptotic  variance  is  given  by: 
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The  random variables,  p1(k)  and  p2(k),  therefore converge  in  distribution  to   two   
random  variables  with  means,  *

1p   and  *
2p ,  and  variances,  )( *

11
*
1 pSS =   and   

)( *
22

*
2 pSS =   respectively. 

 
The  average  penalty  at  stage  k+1  conditioned  on  the  probabilities  at  stage  k  is  
given  by 
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To  determine  whether  M (k)  is  monotonically  increasing  or  decreasing  we  need  
to  examine  the  sign  of  )()1( kMkM −+   for  all  k.  It  is  easier,  however,  to  

assess  monotonicity  from  the  sign  of   the  sign  of  
dt
Md  ,  provided  the  function  

)(tM   can  be  obtained.   An  analytic  solution  to  the  difference  equation  in  the  
mean  probability  is  very  tedious,  but  the  continuous  time  solution  to  the  
associated  differential  equation,    
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however,  is  straightforward   and  given  by 
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Similarly, 
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It  can  be  seen  clearly  that,  *
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*
11 )(     ,)( ptplimptplim
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,  as  expected.   

 
Since   )()()( 2211 tpctpctM += ,  the  functional  expression  for  the  penalty   is 
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So 

M (k)  is    monotonically  increasing  ( M (k)  is  a  submartingale)  if  0>
− βα
D  

 

M (k)  is   monotonically  decreasing  ( M (k)  is  a  supermartingale)  if  0<
− βα
D  
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Figure  5.  Plot  of  penalty  and  action  probability  evolution  for  an  automaton  with  

3.0)0(  ,3.0  ,5.0  0.4,  ,5.0 121 ===== pccβα . Here  we  have  the  asymptotic  

values 36.0*
1 =p , 372.0* =M , 0235.2723 >=

− βα
D ,  so  M (k)  is  a  

submartingale. 
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Figure  6.  Plot  of  penalty  and  action  probability  evolution  for  an  automaton  with  

4.0)0(  ,4.0  ,3.0  0.6,  ,4.0 121 ===== pccβα . Here  we  have  the  asymptotic  

values 56.0*
1 =p , 344.0* =M , 020.107 <−=

− βα
D ,  so  M (k)  is  a  

supermartingale  and  the  automaton  is  absolutely  expedient. 
 

 
The  performance  of  the  automaton  in  the  long  term  is  better  than  that  of  a  
pure-chance  automaton  by  virtue  of  the  inequality,  

=*M
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0
cc

M
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=< . This  is  valid  for  any  values  of   the  

parameters,  21 ,,, ccβα ,  hence  the  automaton  is  always  expedient.  It  is  absolutely  

expedient  when  0<
− βα
D ,  and  also  ε-optimal  because  for  any  arbitrary  ε>0 , 

proper  parameter  values  for  α  and  β   can  be  chosen  such  that  
{ } ε<− 21

* ,ccminM   holds.  For  instance,  for  6.0  ,4.0 21 == cc ,  ε =  0.01,  α  and  

β   must  be  chosen  so  that   the  inequality 01.0
)(2

96.004.08.02.0 22

<
−

+−+
βα

βαβα
  

always  holds.    When  α >>β ,  the  automaton  exhibits   nearly  optimal  behaviour,  
as  },{ 21

* ccminM ≈   and  either  1*
1 ≈p   if  21 cc < ,   or  0*

1 ≈p   if  21 cc > .  Figure  7  
below  displays  the  average  penalty  curve,  with  c1 = 0.4  and  c2 = 0.9,  plotted  
against  all  possible  α  and  for   β = 0.01.  For  1

* 405.0  ,9.0 cM ≈==α . 
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Figure  7.  Penalty  variation  with  α  with  c1 = 0.4,  c2 = 0.9  and  β = 0.01. 
 

When  β >>α,  },{ 2121
* ccminccM >≈ ,  and hence is not  optimal.  Figure  8  below  

displays  the  average  penalty  curve,  with  c1 = 0.8  and  c2 = 0.2,  plotted  against  all  
possible  β  and  for   α = 0.01.  For  16.04.0399.0  ,9.0 * =≈== Mβ . 
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Figure  8.  Penalty  variation  with  β  with  c1 = 0.8,  c2 = 0.2  and  α = 0.01. 

 
In  deriving  the   asymptotic  properties  of  the  automaton  we  have  allowed  the  
number  of  stages  to  approach  infinity.  In  practice,  however,  the  number  of  steps  
needed  to  converge  to  the  desired  action  is  finite.  Let  *)( MTM −δ   be  the  
difference  between  the  average  penalty  at  time  δT   and   its  asymptotic  value.  A  
natural  index  of  the  rate  of  convergence  would  be  an  estimate  of  the  time  
needed  by    this  difference  to  become  equal  to  an  arbitrary  proportion, δ  (0<δ<1),  
of  the  difference  between  the  final  and  initial  penalties.   We  have  therefore: 
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The  time,   δT ,   taken  by  the  automaton  to  reach  %100δ   of  the  difference,   

*)0( MM − ,  is  longer  when   βα <   and  is  dependent  on  the  absolute  difference,  
|| 21 cc − ,  rather  than  on  the  individual  penalty  probabilities,  c1  and  c2.  

 
Figure  9  below  illustrates  the  faster  convergence  to  *M   when  βα <   and  ]1.0  ,  01.0[=δ .  
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Figure  9.  Two  cases:  (i)  α = 0.9,  β  = 0.3,  and  (ii)  α = 0.3,  β  = 0.9.  Automaton  

converges  to  the  asymptotic  penalty  approximately  three  time  faster  in  case  (ii). 
 
 

 
In  the  optimal  scenario,  α >> β,  the  time,  δT ,  depends  on  the  difference,  

|| 21 cc − ,  the  initial  probabilities,  p1(0)  and  p2(0), α and δ, thus:: 
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δT   increases  as  p1(0)  increases  when  21 cc > ,  and   increases  as  p2(0)  increases  

when    21 cc <  given the positive restricted ranges for α and δ.  
 
The  variable  predatory  efficiency  index, ),(ke  is   again  defined  as  the  ratio  of   
the  probability  of   consumption  of  palatable  prey  to  the  total   probability  of  
encountering  palatable  prey  at  each  stage  k: 
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This  index  is  a  monotonically  increasing  function  of  )(2 kp   with  an  asymptotic  
value,  *e ,  obtained  by  introducing  the  asymptotic   probabilities  in  the  above  
formula. 
 
5.3.  The  symmetric  (α = β)  Linear  Reward–Penalty  (LR-P)  scheme 
 
The  special  case  when  βα =   is  called  the  symmetric  Linear  Reward-Penalty  
scheme  (LR-P)  and  has  the  following  conditional  expectation: 
 

212111 )()](1[)](|)1([ ckpcckpkpE αα ++−=+  
 
which  is  a  linear  difference  equation  in  p1(k),  with  solution 
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since  1)(1 21 <+− ccα . 
 

If  21 cc >   then  
21

1*
2

*
1 cc

c
pp

+
=< ,  and  action  a1   is  chosen  asymptotically  with  

lower  probability,  and  vice  versa.   The  average  penalty  evolves  according  to  the  
difference  equation 
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and   is  monotonically  decreasing  (supermartingale)   if  
 

21

21*
2211

2
)0()0()0(

cc
cc

MpcpcM
+

=>+= , 

 
where *M is the corresponding asymptotic value for  )(kMlim

k ∞→
  otherwise it  is  a  

submartingale. 

 
 The  automaton  is  always  expedient  since   
 



Reinforcement  learning  67 
 

 

0
21

21

21*

2
2

M
cc

cc
cc

M =
+

<
+

=   )( 21 cc ≠  

 
and  has  an  asymptotic  efficiency  index  given  by 
 

2
* 1 ce −=  

 
Mimicry  efficiency  is thus tied  to  the  rate  the  predator  consumes  the  wrong  prey.  
Furthermore, the  symmetric  LR-P  scheme  exhibits  long-term  properties  identical  to  
those  of  a  purely  stochastic  automaton,  switching  actions  with  probability  1  
whenever  an  unfavourable  response  is  recorded  (section  4). 

 
 

5.4.  The  Linear  Reward–Inaction  (LR-I)  (β = 0)  scheme 
  
The  basic  idea  of  the linear reward-inaction  scheme (LR-I)  is  to  increase  the  
probability  of  an  action  if  it was the last action and  resulted  in a  favourable  
response  ( 0≠α ) or  leave  the  probability  unchanged  if unfavaourable  (β = 0).  The  
conditional  expectation  is  described  by  the  following   nonlinear  difference  
equation: 
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The  associated asymptotic  probability, *

1p ,  and  efficiency  index,  *e ,  are  found  
from  the  corresponding  formulae   for  the  asymmetric  LR-P   case  with  β = 0: 
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The  Markov  chain  modelling  the  LR-I  automaton   has  two  absorbing  states,  action  
a1  (ignore  prey  all  the  time)  if   21 cc < ,  and  action  a2  (consume  every  prey  
encountered)  if    21 cc > .  In  the  former  case  the  predator  is  completely  
inefficient,  whereas  in  the  latter  case   it  is  100%  efficient.  The average  penalty,  

)(kM ,  is  a  supermartingale  because  of   the  condition   0<=
− αβα

DD ,   with  the  

automaton  exhibiting   optimum  behaviour,  since  { }21
* ,ccminM = .   
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6.  Predator  as  a  variable-structure   stochastic  automaton  
operating   in  nonstationary  random  model-mimic  environments 
 
6.1. Introduction 

 
In  the  last  section  we  analysed,  in  detail,  a  linear  reinforcement  learning  
algorithm  designed  to  allow  a  predator  (the  automaton)  to  operate  efficiently  in  
an  environment  occupied  by  palatable  and  unpalatable  prey  and  characterized  by  
a  constant  penalty  probability  for  each  predator  action.  Although  the  assumption  
of  a  stationary  environment  may  provide a good approximation when  undergoing  
slow  change,  the  concept  of  learning  is  associated  with  the  ability  to  adapt   in  a  
varying  environment.   
In this  section   we  analyse  the  performance  of  the  learning  algorithm  of  the  last  
section  when  each  penalty  probability,  ci,  i = 1,2,  is  a  monotonically   non-
decreasing  function  of the  respective  action  probability,  ai,  i  =1,2.   We  base  our  
decision  on  the  reasonable  assumption  that  if  the  predator  is  ignoring  all  prey  
with  a  certain  frequency,  palatable  prey  amongst  them  are  essentially  ignored  at  
a  lesser rate,  and  consumed at a relatively greater rate.  Thus, 
 

,)( 1111 prpc =   10 1 << r  
 ,)( 2222 prpc = 10 2 << r  

 
The  average  penalty  at  stage  k  is  given  by   )()()( 2

22
2
11 kprkprkM += .  The  pure-

chance  automaton  has  an  average  penalty,  
4

21
0

rr
M

+
= .  Due  to  the  variation  in  

c1  and  c2 ,  absolute  expediency  may  not  always  be  feasible  in  the  strict  sense  of  
)]([)]1([ kMEkME <+   for  all  k,  but  may  hold  for  some  k>k0. 

 
 
6.2.  The  asymmetric  (α ≠β) Linear  Reward-Penalty  (LR-P)  scheme 
 
The  expectation  of  the  action  probability,  p1(k+1),   conditioned  on  p1(k),  is  a  
third-order  polynomial  in  p1(k): 
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The  asymptotic  behaviour  of  the automaton  will  be determined  by  the  nature  of   
the  roots  of  the  cubic   polynomial.  Let 
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2
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3
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There  are  analytic  expressions  for  the  roots  of  the  cubic  equation,  f(p1) = 0,  
based  on  a  method   attributed  to  Cardan.  A  brief  outline  of   the  procedure  is  
expounded  in  the  Appendix. 

As an example,  let   5.0  ,2.0  ,7.0 21 ==== rrβα .  Then  
 ,052.0  ,1142.0 −≈−≈ GH   01025.3 3 <⋅−≈ −E .  From  case  (iii)  in  the  Appendix, 

we  obtain  the  following  three  real  roots: 

166.0  ,49.0  ,654.0* −−≈x  

The  corresponding    roots  of  the  polynomial  f(p1)  are  given  respectively by, 

0.37  ,28.0  ,2*
1 −≈p  

The  asymptotically  stable  probability  value  in  this  case  is  37.0*
1 =p    as  it  

satisfies  the  condition   for  asymptotic  stability, namely,  052.0)( *
1 <−≈′ pf . 

Figure  10  below  is  a   graph  of  the  polynomial  f(p1)  plotted against  p1  for  the  
above  parameters.  The  three  roots  can  be  readily  identified here.  Figure  11  
demonstrates  the  evolution  of   the  conditional  action  probability 

)](|)1([ 11 kpkpE +   towards  the  asymptotic  value  of  0.37.    
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Figure  10.  Plot  of   f(p1) = 0.5 3

1p -1.05 2
1p  + 0.05 p1 + 0.1   versus  p1. 
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Figure  11.  Evolution  of  E[p1(k+1)|p1(k)]  = 0.5 3

1p (k) - 1.05 2
1p (k) + 1.05 p1(k) +  0.1   

towards  0.371 =*p . 
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Figure  12  displays  the  plot  of   f(p1)  when  there  is  one  real  root  and  two  
complex  roots.  In  this  case,  ,9.0  ,1.0 == βα   9.0  ,1.0 21 == rr ,  and  

03254.0  ,1395.0  ,4245.0 >=−== EGH .  The  unique  real  root  of  the  polynomial  
is  4225.0*

1 =p .  Figure  13  displays  the  stage  history  of  E[p1(k+1)|p1(k)]  towards  
4225.0*

1 =p .  Note  the  oscillatory   movement  of  E[p1(k+1)|p1(k)]  due  to  the  
complex   roots  of  f(p1).  The  automaton  is  asymptotically  stable  as  

0637.1)( *
1 <−≈′ pf . 
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Figure  12.  Plot  of   f(p1) = - 0.8 3
1p  + 1.34 2

1p  -  2.34 p1 + 0.81   versus  p1. 
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Figure  13.  Evolution  of  E[p1(k+1)|p1(k)]  = - 0.8 3
1p (k) + 1.34 2

1p (k) - 1.34 p1(k) +  
0.81   towards  0.42251 =*p . 

 
 
The  average  penalty  function,  M (k),  is  either  a  supermartingale  or  submartingale  
except  when  f(p1)  has  complex  roots.  To demonstrate this,  when  

9.0  ,1.0  ,2.0  ,9.0 21 ==== rrβα ,  the  penalty  is  a  supermartingale  and  the  

automaton  is  expedient  ⎟
⎠
⎞

⎜
⎝
⎛ =

+
<≈ 25.0

4
142.0 21* rr

M ,  as  well  as  absolutely  

expedient  (figure  14) whereas,  for  example, when   5.0  ,9.0  ,3.0 21 ==== rrβα ,  
the  average  penalty  oscillates  before  it  settles  to  the  stable  value,  267.0* ≈M   
(figure  15)  and  is  not  even  expedient  )25.0267.0( > . 
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Figure  14.  Average  penalty  is  a  supermartingale. 
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 Figure  15.  Average  penalty  oscillates  before  it  settles  to  its  stable  value. 
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The  penalty  probabilities  tend  to  equalize  at  equilibrium,  that  is   
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≈ ,   if  the  following   condition  connecting  all   parameters  
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In  this  case  the  asymptotic  average  penalty,  0
21
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+
=   (expedient).  For  

large  α, large  β  and  21 rr ≈ ,  and the  automaton consequently behaves  like  a  pure-
chance  automaton  in  the  long  term. Moreover, the  automaton  is  never  optimal  
( 1or    0*

1 =p )  since  always  f(0) ≠ 0  and  f(1) ≠ 0. 
 
 
6.3.  The  symmetric  (α = β)  Linear  Reward–Penalty  (LR-P)  scheme 
 

When  α  = β  and  12
2
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r
r ,  f(p1)  is  now  a  quadratic  polynomial,  with  a  

unique  root  in  the  range  [0,1]  given  by 
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continuous  time  function  for  1p    is,    
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The  continuous  time  average  penalty  is   given  by 
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and  its  time  derivative  by 
 

( )2211
212

2

2

))((
2)(

2 rrrtp
rrr

D
De

eC
dt
Md

Ct

Ct

−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−

= −

−

α
 

 
The  above  derivative  vanishes  (i)  asymptotically  as  ∞→t ,  and  (ii)  when  the  
two  penalty  probabilities  become  equal  at  time    
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if  such  time  exists. 
 
For  example,  for  9.0)0(  ,3.0  ,1.0  ,5.0 121 ==== prrα ,  the  penalty  curve  

possesses  a  turning  point,   075.0
4.0
03.0)( ==tM   when  75.0)(1 =tp   (figure  16). 
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Figure  16.  Average  penalty  curve  has  a  turning  point. 
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Next  we  investigate  the  conditions  under  which   the  penalty  probabilities  become 

equal  asymptotically.  Setting   
21

2
1 rr

r
p

+
=   in  the  polynomial  f(p1)  we  obtain  a  

cubic  polynomial  in   r1  and  r2: 
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(i)  If  1→α   and   21 rr =  ,  then   
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(iv)  If  5.0>α ,  the  polynomial  f(r1,r2)  has  either  0  or  2  positive  roots,  r2,  that  
can  be  determined  according  to  the  Cardan  method  outlined  earlier. 
 
(v)  If  5.0<α ,  the  polynomial  f(r1,r2)  has  only  1  positive   root,  r2,  that  can  also   
be  found  easily. 
 

Finally,  when  12
2

1 −= α
r
r

  and  
2
1

>α ,   f(p1)  is  a  linear  equation  with  root,  

5.0*
1 =p ,  and  the  automaton  is  ultimately  a  pure-chance  automaton. 

 
 
 

6.4.  The  Linear  Reward–Inaction  (LR-I)  (β = 0)  scheme 
 
When  β = 0 ,  f(p1)  is  again  a  quadratic  polynomial,  with  a  unique  root  in  the  
range  [0,1]  given  by: 
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stable.  The  continuous  time  function  for  1p    is,    
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The  time  derivative  of  the  penalty  is: 
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The  analysis  of  the  behaviour  of  )(tM   is  analogous  to  that  for  the  LR-P  scheme.  
As  an  example,  let  9.0)0(  ,4.0  ,3.0  ,8.0 121 ==== prrα .  The  penalty  curve  

possesses  a  turning  point,   17.0
7.0
12.0)( ≈=tM   when  57.0)(1 ≈tp   (figure  17). 
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Figure  17.  Average  penalty  curve  has  a  turning  point. 
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assuming   a  stable  value,  then    
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 Next  we  investigate  the  conditions  under  which   the  penalty  probabilities become 

equal  asymptotically.  Setting   
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=   in  the  polynomial  f(p1),  we  obtain  a  

linear  expression  in   r1  and  r2: 
 

0))(1(),( 2121 ≠+−= rrrrf α  
 
So  under  the  LR-I  scheme,  the  penalty  probabilities  never  become equal. 
 
 
The  predatory  efficiency  index,  )(ke ,  for  the  asymmetric  LR-P  with  variable  
penalty  structure  scheme  assumes  a  more  complicated  form  than  that  of  the  
asymmetric  LR-P   with  fixed  penalties  and  is  not  given  explicitly  here.  Instead,   
we  provide graphical output of simulated variation  of  the   asymptotic  index  value,  

*e ,  with  the  learning  parameters  α  and  β  in  the  following  two  figures.  Figure  
18  depicts   *e  as  a  continuous  convex  function  of  β  for  three  values  of  α,  

1.0  ,5.0  ,9.0=α . Figure  19  depicts   *e  as  a  continuous  concave  function  of  α  
for  three  values  of  β,  1.0  ,5.0  ,9.0=β .   Figure  20   displays  the  linearity  of  the  
index  function  for  the  symmetric  version  of  the  LR-P  )( βα = .  In  all  cases,  

5.0)0(  ,4.0  ,6.0 121 === prr .   Evidently,  the  efficiency  of  predation  is  at  its  
highest  (and  mimicry  efficiency  at  its  lowest)  when  both  α  and  β  assume    low  
values simultaneously. Using an  analogy  from  utility  theory, and considering  the  
predatory  efficiency  index  to be the  utility  function,  we  could  infer,  for  the  given  
values  of  r1  and   r2,  that  fixing  parameter  α  and  adjusting  parameter  β  is 
equivalent to  risk  seeking  predatory  behaviour,  fixing  parameter  β  and  adjusting  
parameter  α  amounts  to   risk  averse  behaviour,  whereas  fixing  both  parameters  is 
comparable to risk  neutrality. 
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Figure  18.  Asymptotic  efficiency  index  as  a  convex  function  of   β  for  fixed    
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of  parameter  alpha,  plotted   for  three  values  of  beta. 

alpha

A
sy

m
pt

ot
ic

  e
ffi

ci
en

cy
  i

nd
ex

beta = 0.1 

beta = 0.5 beta = 0.9 

 
Figure  19.  Asymptotic  efficiency  index  as  a  concave  function  of   α  for  fixed   β. 
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Figure  20.  Asymptotic  efficiency  index  as  an  approximately  linear  function  of   
α  when   α  = β. 
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7.  Discussion 
 
In  this  paper  we  have  explored  the  concept  of  a   predator  as  a  learning  
automaton  feeding  on  prey  that  can  be  broadly  categorized  as  either  palatable  
(the  mimics)  or  unpalatable  (the  models).  The  predator’s  actions  is  to  either  
attack  the  prey  or  simply  ignore  it.  Each  action  elicits  a  probabilistic  response  
from  the  environment  that  is  classified  as  favourable  or  unfavourable.  A  response  
is  deemed  favourable  if either the  prey  consumed  is  of  the  palatable  type  or  if 
the  prey  ignored  is  unpalatable  and  deemed  unfavourable  if either the  prey  
ignored  is  palatable or  the  prey  consumed  is  unpalatable.  This  distinction  made  
when  ignoring  prey  is  related   to  the  predator’s  ability  to  discriminate  effectively  
against  models.  If  the  predator  senses  that  the  prey  ignored  is  of  palatable  
nature  it  will  decrease  the  frequency  of  avoidance  and  vice  versa.  Furthermore,  
the  distinction  aids  in  quantifying  the  expected  frequency  of  missed  palatable  
food  as   part  of  the  average  overall  penalty.   
 
In section  4  we  analysed  various  predator  strategies   when  no  learning  takes  
place  and  derived a   condition  that  dictates  the  best  (that  is,  minimum  average  
penalty)  policy.  In  sections  5  and  6  we  identified  the  predator  with  a  learning  
automaton  capable  of  learning  by  means  of  a  reinforcement  algorithm,  the  Linear  
Reward-Penalty  scheme,  LR-P.  In section  5  the  environmental  penalty  probabilities  
were  held  constant,  whereas  in  section  6  they  were  allowed  to  vary  in  
proportion  to  the  respective  action  probabilities.   
 
As  a  measure  of  predator  performance  we  have  consistently  used  the  stage  
dependent  average  linear penalty,   
 

)()()()()( 2211 kckpkckpkM +=  
 
where  1p   and  2p   are  the  average  probabilities  of  avoiding  and  consuming  
respectively at the kth encounter,  and  21   , cc   are  the  respective  penalties  incurred at 
the encounter.  A  monotonically  decreasing  penalty  indicates  a  steady  improvement  
in  the  predator’s  overall  performance.  We  have  obtained  explicit  parameter  
conditions  that  will  render  )(kM   a  supermartingale  and   thus  ensure  such  
performance.  In  contrast  Estabrook  and  Jespersen,  (1974)  and  subsequent  
researchers  who  improved  on  their  work,  used    the  expected  long-term  benefit  
per  encounter  to  the  predator as  a  performance  index. This however pertained  
solely  to  consumption.  Under  our  approach  such  benefit  is  given  by 
 

)1( 22
*
22

*
22

*
2

* bccpcpbdpS −−=−=  
 
where  b  is  a  parameter  quantifying  the  unpalatability  of  the  model,  and  *

2p   is  
the  long-term  mean  probability  of   prey  consumption.  Some  benefit  will  accrue  if  
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2

21
c

cb −
< .  The  maximum  long-term  benefit  can  be  found  by  introducing  the  

expression  for  *
2p   in  *S .   An  expression  containing   the   two  learning  

parameters,  α  and  β, is then obtained and can be  differentiated  with  respect  to   
these to yield  the  stationary  values  *α   and  *β .   Perhaps  a  more  realistic  
approach  than  maximizing  the  long-term  benefit   would  be  the   maximization  of   
the  benefit  function  at  each  stage  k  by  the  predator.  The  problem  then  becomes  
a  typical  multi-stage  decision  problem  with  two  decision  variables  α(k)  and  β(k),  
and  can be formulated  as  an  Optimal  Control  programme: 
 

∑
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subject  to  the  constraints 
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Solution  of  the  Optimal  Control  problem  will  produce  the  desired  optimal  
sequence,  Nkkk ,,1  ),(  ),( ** L=βα . 
 
Alternatively,  if  the  benefit  to  the  predator  is  to  include  ignored  palatable  prey,  
the  performance  criterion    may  be  chosen   as  the  minimization  of  the  cumulative  

average  penalty,  ∑
=

N

k

kM
1

)( ,  or  the  direct  minimization  the  long-term  penalty,  *M . 

 
The  long-term  efficiency  of  the  predator,  *e ,  is  the  fraction  of  encounters  with  
palatable  prey  that  are  actually  consumed.  The  percentage  the  predator  falls  short  
of  being  100%  efficient  constitutes  the  efficiency  of  the  mimics,  *m ,  which  is  
an  important  factor  in  their  effort  to  survive.  The  change  in  *e   depends   on  the  
magnitude  of  the  learning  parameters  α  and  β,  with  the  environmental  
parameters,  c1  and  c2 ,  affecting  the  rate  of  change. 
 
In  this  work  we  have  assumed,  for  the  sake  of  model  simplicity,  that  the  
environmental  penalty  probabilities  are  either  constant  or  proportional  to  the  
respective  action  probabilities,  and  have  confined  our  attention  to  two  types  of  
prey  only.  We  have  also  chosen  a  linear  learning  algorithm  to  model  the  
predator’s  behaviour.   Despite  the  simplicity  of  the  model  some  rich  behaviour  is  
seen  to evolve.  In  general, the  environmental  penalties  are  likely  to  depend  on  
prey  density,  spatial  and  temporal  prey  distribution,  varying  degrees  of  prey  
unpalatability  and  appearance,  and  seasonal  variations  in  the  predator’s  
behavioural  patterns.  For  example,  to  reflect  seasonal  characteristics  in  any  model  
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an  interesting  and  valid  choice  of  penalty  functions  might  be  
2,1  ),sin()( =+= itCtc iiii θϖ . 

 
We  have  endeavoured  here  to  construct  a  simple  theoretical  framework  for  
predator  learning  from  which  more  comprehensive  models  can  originate  in  the  
future.  Good  data  about  predator  psychology  is  difficult  to  obtain  and  
consequently  how  the  predators  actually  learn  is  still  unclear  (Speed  1999). The  
mathematical  modelling  of  the  predator-model-mimic  complex  is  still  at  a  very  
speculative  stage.  We  feel  that  the  learning  automaton  methodology  can  be  a  
useful  tool  in  making   theoretical  predictions  that  can  be  tested  when  
comprehensive  data  become  available.  
 
  

 
 

 
 
 

APPENDIX 
 

The value  of  the polynomial, 
   

2122
2
12122

3
1211 )()3()()3()())(()( rkprrkprrrrkprrpf ββααββα +−+−−−+−+=  

 
at   each  endpoint of  the  range  of  interest,   [0,1],  is 
 

0)0( 2 >= rf β  
0)1)(()1( 121 <−−+−= rrrf βα  

From  the  Intermediate  Value  Theorem  there  must  be  at  least  one  root,  *
1p ,  of  

the  polynomial  in  the  range  [0,1].  We  are  going  to  prove  that   *
1p   is  unique.  

From  the  Descartes’  rule  of  signs   we  know  that  the  number,  np,  of  positive  
roots  of   f(p1)  is  at  most  equal  to  the  number  of  variations,  sp,  in  sign  of  the  
coefficients  of   f(p1).  Moreover,  the  difference,  pp ns − ,  is  a  nonnegative  even  
integer.  There  are  three  cases  to  consider: 

(i)  If  βα 3≥   then  sp = 2.  Since  ppp nns −=− 2   must  be  a  nonnegative  even  
integer,  then  either  0=pn   or   2=pn .  As  we  have  already  established  that  there  
is  at  least  one  root  in  the  range  [0,1],  0≠pn .  If   2=pn   then  the  graph  of  
f(p1)  must  cross  the  axis  of  p1  twice  in  the  range  [0,1]  and  consequently   f(0)  
and  f(1)  will  have  the  same  sign.  Since  they  are  opposite  in  sign  we  conclude  
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that   there  are  at  most  two   positive  roots  but  only  one,  namely  *
1p ,   in  the  

range  [0,1].   

(ii)  If  βαβ 3<<   then  again  sp = 2,  and  the  reasoning   of  (i)  applies  here  too. 

(iii)  If  βα <   then  either   sp = 1  or  sp = 3.  Since  pp ns −   must  be  a  nonnegative  
even  integer,  then  either  1=pn   or   3=pn .  If   1=pn   then  the  only  positive  

root  is  *
1p   in  the  range  [0,1].  If   3=pn   then  the  derivative,  )( 1pf ′ ,  of  f(p1)  

with  respect  to  p1  must   vanish  at  least  twice  in  [0,1].  This  implies  that  )( 1pf ′  
must  have  more  than  one  turning  point  in  [0,1].  The  second  derivative,  )( 1pf ′′ ,  
however,  is  a  linear  function  of  p1  and  can  only  vanish  at  most  one  point  in  
[0,1].  So  when  βα < ,  )( 1pf ′   does  not  have  any  positive  roots  in  [0,1]  and  
consequently  3≠pn ,  i.e.,  1=pn .  We  conclude  again  that  f(p1)  vanishes  only  at  

one  point,  *
1p ,  in  the  interval  [0,1]. 

Let   
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The  roots,  *
1p ,  of  the  cubic  polynomial  f(p1)  are  found  from  the  roots,  *x ,  of  

the  cubic  polynomial   GHxxxg ++= 3)( 3   via  the  affine  transformation 

3

2
*

*
1 z

zxp −
=  

There  are  three  cases  to  consider: 

 
(i)  If   E > 0  then  g(x)   has  two  complex   roots  and  one  real  positive  root   given  
by 
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(ii)  If  E = 0  then  g(x)  has  three  real  roots,  one  repeated.  They  are  given  by  
either   

 
HHH −−−−    ,     ,  2  

or 
HHH −−− -   ,  -   ,  2  

(iii)  If   E < 0  then  g(x)  has  three  real  distinct  roots,  given  by 

3
4cos2   ,

3
2cos2   ,

3
cos2 πθπθθ +

−
+

−− HHH  

where  
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