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In this paper we propose a mathematical learning model for a stochastic automaton simulating the
behaviour of a predator operating in a random environment occupied by two types of prey:
palatable mimics and unpalatable models. Specifically, a well known linear reinforcement learning
algorithm is used to update the probabilities of the two actions, eat prey or ignore prey, at every
random encounter. Each action elicits a probabilistic response from the environment that can be
either favorable or unfavourable. We analyse both fixed and varying stochastic responses for the
system. The basic approach of mimicry is defined and a short review of relevant previous approaches in
the literature is given. Finally, the conditions for continuous predator performance improvement are
explicitly formulated and precise definitions of predatory efficiency and mimicry efficiency are
also provided.

1. Introduction

A Batesian mimic is a palatable prey who gains protection from a predator
through resemblance to an unpalatable species, the model. It is believed that
Batesian mimicry generally harms the model by degrading its natural defensive
advantage conferred by the aposematic signal. If both mimics and models are
unpalatable then they both should gain protection from the predator. This type of
mimicry is known as Muellerian.

A simple mathematical model of the model-mimic situation was introduced by
Huheey (1964). Huheey made the fundamental assumption that the predator will
reject all prey for a number of encounters following an unfavourable
consumption of a model. A more sophisticated mathematical model involving a
mimic, a model, and a predator was later put forward by Estabrook and Jespersen
(1974). They adopted Huheey’s idea of a waiting period between encounters and
constructed a Markov chain to model the probabilistic encounters between the
predator and the models and mimics. Bobisud and Potratz (1976) suggested that a
more plausible strategy for the predator would be to remember the number of
successive mimics that have been consumed after a model is consumed, and to
modify its reaction on the basis of this information. Arnold (1978) investigated
the avoidance behaviour of a predator in relation to the spatial prey distribution
and degree of noxiousness of the models. Luedeman et al. (1981) proposed a
Markov chain model that included alternative prey in addition to models and
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mimics. Kannan (1983) presented an extensive analysis of three types of predator
strategies: single-trial in the spirit of Estabrook and Jespersen, multi-trial in the
spirit of Bobisud and Potratz, and a consume-everything strategy. Owen and
Owen (1984) proposed a strategy for the predator based on recurrent sampling.
Huheey (1988) presented a partial review of the quantitative methods applied to
the modelling of mimicry for the previous 15 years. Speed (1993) simulated
predatory behaviour based on simple learning and forgetting rules proposed
earlier by Turner et al. (1984), and by further assuming that learning in prey is
inherently Pavlovian in nature. In a series of papers, Turner and Speed (1996,
1999) proposed a generalised model of learning behaviour, based on an
algorithm introduced originally by Bush and Mosteller (1955), which
encompassed aspects of most of the major models as special cases.

2. The learning automaton approach to predator-model-mimic
interactions

The predatory behaviour simulated by Speed and Turner (1999) consists of two main aspects:
learning and forgetting. The probability of attack on the prey changes according
to the rule

p,=p+talA-p),

where p; and p, are the attack probabilities prior and after an encounter
respectively (p, = p, if there is no attack), « is the learning parameter (0 <o <
1, with a = 0 indicating no learning and « =1 indicating learning in a single
trial) and A is the asymptotic attack probability, 0<A<1. The predator starts
attacking prey with a naive probability, p, =0.5, which is also the probability of

attack after the predator has forgotten what was learnt on previous samplings.
The forgetting algorithm is thus

Py =P, +é(Ps — P2),

where p, is the attack probability after forgetting has occurred, and ¢ is the

associated forgetting parameter. So after forgetting, the frequency of attack
undergoes a change

Ap = P; — P, :¢(0-5_ pz)

The further p, is from the naive value, 0.5, the larger the absolute value of
Ap is, which implies a larger forgetting rate, yet according to MacDougall and

Dawkins (1998) empirical evidence suggests otherwise. Also the assumption
made by Speed and Turner (1996, 1999), that a prey is deemed unpalatable if it
is attacked asymptotically with probability less than the naive probability, has
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been questioned by Joron and Mallet (1998), who suggested that a more sensible
view of palatability would be one that reduces predation upon experience,
regardless of the naive attack rate.

In this paper we model a predator as a learning automaton operating in an
environment that manifests itself in the form of either palatable or unpalatable
prey (Batesian mimicry). Upon each encounter the predator may choose, with a
certain probability, either to consume the prey or to simply ignore it
Consumption of unpalatable models induces the predator to reduce its probability
of consumption on the next encounter with a prey, otherwise the attack probability
will be reinforced. Each instant the predator chooses to ignore prey it runs the
risk of a missed food opportunity, should the ignored prey be palatable. The
predator can discriminate prey with a certain probability which is also adjusted
accordingly.

Our approach, although broadly in line with that of Turner and Speed (1996,
1999), differs in at least three respects: following the observations of Joron and
Mallet, we do not use a fixed naive attack probability. Moreover, we do not
introduce a forgetting rate, rather, we allow the predator to reach an asymptotic
consumption probability and an asymptotic probability of prey discrimination.
This is achieved through a continuous update of action probabilities on the basis
of the response the predator elicits from the environment. The need for the
inclusion of an environmental response in learning can be seen thus; if the
rewards to the predator for a given action and the proportion of palatable prey
were known at each stage, then a payoff matrix could be set up as follows:

palatable unpalatable
R eat (r, I,
ignore\ r,, I,
If y is the proportion of palatable prey and p is the probability of eating a
prey, the expected payoff to the predator from an encounter with a prey is:

E[R]= p(my + A= 7)r,)+ A= p)(ry + L= 7)1 ) =
p(7(r11 —Ty) + Q=7)(r, - rzz))"’ o + L=yl

From this, the strategies for maximizing the expected payoff can be seen to be:

My, —hy
Rl EP Rl PRl PP

p=1 if y>
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M — 1y
Pl [P Rl PVl P

p=0 if y<

My —hy

p any value in [0,1] if y=

Rl EPSll PYRal PV

Formulating an action plan therefore requires knowledge of the rewards and the
proportion of the palatable population at each stage. Since both items are
expected to vary at each stage due to the continuous interaction between the
predator and prey, it is unrealistic to assume that such knowledge is readily
available. Instead, by probing the environment regularly the predator is expected to
learn how often it will choose the right course of action. This provides the
motivation for the present study.

Finally, we emphasis that the effect that the learning automaton mode of operation
of the predator has on the mimicry system is not directly appraised. Furthermore,
we do not consider competition between predators.

Our work is organized as follows: in the next section a brief outline of the
learning automaton concept is given. Section 4 considers the predator as a
simple stochastic automaton with no learning capacity. Sections 5 and 6 are
devoted to learning in fixed and varying environments respectively.

3. The concept of the learning automaton and its mathematical
description

Having established the need for environmental feedback, we now present a learning
automaton which uses this approach. A learning automaton is a deterministic or
stochastic algorithm used in discrete-time systems to improve their performance
in random environments (Narendra and Thathachar, 1989). A finite number of
decisions (actions) are available to the system to which the environment
responds either favourably or unfavourably. The purpose of the learning
automaton is to increase the probability of selecting an action that is likely to
elicit a favourable response based on past actions and responses. The
automaton and the environment in which it operates are connected in a feedback
manner as illustrated in figure 1 below:
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Random
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C = (Cl e Cn)
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{,a,b,F,G}

A

Fig.1. Feedback configuration of automaton and environment.

The system operating in a random environment can choose to perform an action
from the finite set a={a,,---,a,}. The chosen action constitutes the input to the
environment which responds with an output from the set b={b,---,b }. The
environment is categorized as a P-model if the output set is binary (m=2), a
Q-model if m is finite and greater than 2, and as an S-model if b is a
continuous random variable such that b € (bs, by), where, by <b,. When the response
of the environment is unambiguously favourable or unfavourable, then a P-
model is sufficient to describe it. When the number of possible responses is
greater than 2, then the outputs are neither totally favourable nor totally
unfavourable, and a Q- or S-model is needed to describe the environment. The
behaviour of the environment can therefore be captured by the set, ¢, of penalty
probabilities, associated with each of the potential actions available to the automaton:

¢, (k) = probability(b(k) = penalty |a(k) =a,), i=1---,n

where c,(k) denotes the probability that the environment will respond
unfavourably to the action a; at the k™ encounter. If the penalty probabilities,
c;, are independent of k, the environment is stationary. The penalty probabilities

are assumed unknown however, for knowledge of them would render the

problem of the system (automaton) operating in a random environment, relatively
trivial.

The internal structure of a stochastic automaton is characterized by the state set,
o=1{4,....4.}. The r x r stochastic state transition matrix, F =(fij“)),

determines the state at the (k + 1) encounter in terms of the state and a random
input, b, , at k:
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£ = probability(p(k +1) = ¢, | #(k) = 4,,b(k) =b,) i,j=L--,r;¢=1---,m

The transition between states is thus an ergodic Markov chain, with the final
state probabilities, p(¢,)==,, i=L1---,r given by

n=F'x

The r x n stochastic output matrix, G :(gij), determines the action of the
automaton at any encounter k in terms of the state at that encounter:

g; = probability(ak) = a, |¢(k)=¢;) i=L-r j=1--n

The final action probabilities, p(a;)=p;, i=1---,n are given by

*

P =G'n

For a deterministic automaton the entries of the matrices F and G are either 0
or 1. It is convenient in many cases to identify each state with a distinct action
so that r =n and G, after suitable reordering, is the identity matrix. As a
consequence, here, p'=mn. A fixed-structure stochastic automaton s
characterized by matrices F®” and G independent of k. When the transition
probabilities, fij“’) or g; , are updated at each k on the basis of the response,

b(k) = ¢, of the environment, the automaton is called a variable-structure
stochastic automaton. The basic idea behind the update is to increase the action
probability that produces a favourable response and decrease all others; for an
unfavourable response, the respective action probability is decreased and all
others are increased. The algorithm for update is called a reinforcement scheme.

The average penalty incurred by the automaton, M(k), conditioned on the state
corresponding to the action probability vector, p(k), at encounter k is given
(Narendra and Thathachar, (1989)) by the expectation:

M (k) = E[b(k) is unfavourable | p(k)] = Zn:ci P, (k)

i=1

If all actions are equally likely, such an automaton is called a pure-chance
automaton and suffers the expected penalty:

1
MO :HZCi
i=1

Obviously, for an automaton to perform better than a pure-chance automaton, its
expected penalty must be less than My Since M(k) is a random variable, we
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need to examine its long term average input, E[M(k)] as k > . A learning
automaton is said to be expedient if:
lim E[M(K)]<M,

and optimal if
limE[M(k)]=m_inci, i=1---,n

Optimality is meant to imply that the action associated with the minimum
penalty probability is always chosen in the long term. In practice optimality may
be unattainable and a suboptimal performance measure like s-optimality may be
more appropriate:

minc; < Eim E[M (k)] < &+ minc;, i=1---,n

for some arbitrary &> 0. Finally, a learning automaton is absolutely expedient
if its average input monotonically decreases with time, that is if M(k) is a
supermartingale:

E[M (k +1)] < E[M (k)], for all k

4. Predator as a fixed-structure stochastic automaton operating
in stationary random model-mimic environments

A predator operating in an environment filled with unpalatable models, M, and
palatable mimics, X, can be modelled as a stochastic automaton with two
actions: a; for ignoring any prey and a, for consuming a prey. If the prey
ignored is a mimic then the predator suffers a penalty due to loss of
opportunity with probability c; given by:

¢, = p(IX |a1)

Similarly, a penalty with probability c, is incurred when the predator consumes
an unpalatable model:
¢, = p(EM |a,),

where the symbols | (=a,) and E (=a,) stand for the actionsto ignore and eat
respectively.

The favourable responses by the environment occur when the predator ignores
models and consumes mimics and have respective probabilities d; and d, given

by:



50 A.Tsoularis, J.Wallace

dl = p(IM |al) =1-c,
dz = p(EX |az) =1-c,
Let f; and ﬂj be the transition probability from state (action) i=1,2 to state

(action) j=1,2, following a favourable and unfavourable response respectively,
that is,
f; =p(a;|a =IM ora =EX)
E,— = p(a; |a; =EMor g = IX)

The probability, f., of transition from state i to state j is then given by

ij?

f,=df,+cf,

Let F and F be the state transition matrices following a favourable and
unfavourable response respectively:

Then the state transition matrix is as follows:

I E

If:{l(l_dlp_clﬁ d1p+C15 j
E\ d,q+c,g 1-d,q-c,q

The long-term action probabilities, 7 and m, are found from solving m=F'x:

_ q+C,(q-a) . p+c(P—p)
top+g+c(P-p)+c,(@-q) * p+g+c(Pp-p)+c,(@-q)

T

The long term average penalty given, wt; and m, is:

||mM(k)= Clcz(p+q _~p_q)+clcl+czp
koo p+a+c(p-p)+c,(a-q)



Reinforcement learning 51

If the predator always ignores mimics and models then ¢, »1 and ¢, >0,
and the long term average penalty is simply

lim M (k) = q

P+q

If the predator always consumes mimics and models then ¢, -0 and c, —>1,
and the average penalty is simply

lim M (k) = —P—
k—o p+q

This “consume-all-prey” policy can be compared to the ignore-all-prey policy on
the basis of the magnitude of the respective asymptotic average penalties:

pp —qg >0 consume-all-prey policy is superior,
pp —qqg <0 ignore-all-prey policy is superior,
pp—qq =0 neutral approach, both policies are equivalent.
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Fig.2. Average penalty surface plot for p=0.8,q=0.2,p=0.2,g =0.8. The
predator is, in the long term, indifferent to either ignore all prey or consume all
prey policies because pp =qq =0.16. Either policy incurs an average penalty of
0.5.

A measure of the variation rate of the average penalty is afforded by the second
2

derivative, i=12. For ¢, =0,

2 7

oc;
°M _ 2q(p+a)(P-p)

oz [(pra)+c(p-p)

and for ¢, =0,

o°'M _ 2p(p+a)(G-q)
oc;  [p+a)+c,@-a)r

When transition between different states is more frequent after a favourable
response, that is p>p and q>q, the rate of the average penalty increase

grows steadily for increasing c; and c,. When the opposite scenario occurs, that
is p<p and g<q, the average penalty declines steadily for increasing c; and

C2. When either p>p and g<qg or p<p and g>0, the rate of the long
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term penalty increase accelerates in one direction and decreases in the other, as
displayed in fig. 2 above, where p=0.8>p=02, q=02<q=0.8.

For p=q=p=q we get 7, =7, =%, and the predator behaves essentially as

a pure-chance automaton. Otherwise, expediency is guaranteed, provided

c,<c, and d,q+c,q>d,p+c,p
or
c,>c, and d,q+c,q<d,p+c,p,

but not optimality, since !im M (k) > min{c,,c,} always.

Finally, we need an average measure of the predator’s efficiency in distinguishing
palatable prey (mimics) from a pool of mixed prey (models and mimics). We
define the asymptotic predatory efficiency index as the ratio of the
probability of consumption of palatable prey to the total probability of
encountering palatable prey:

e = 71'2(1_(:2) _ (1—C1)(1—Cz)p+C1(l—C2)ﬁ
7, (-Cy)+ e (L-c)(A-c,)p+C(L—C,)(P+0)+CC,q

In a complementary manner, we may define the asymptotic mimicry efficiency
index as the ratio of the probability of ignored palatable prey to the total
probability of encountering palatable prey:
m* — ﬂlcl zl_e*
m,(1-¢,)+7m,C

If the transition between states is independent of the environmental response the
matrices F and F are identical, and consequently p=p, q=q. The action
probabilities and the asymptotic penalty are then

_a .
p+q

: cq+c
7, L= ClimM (k) = 297 %P

p+q ko p+q
Expediency in this case simply equates to the action that incurs the least penalty
being chosen more often, that is, =, >z, if ¢, <c, and =, <z, if ¢, >c,.

If p=q and Pp=q (both matrices F and F are doubly stochastic but not
necessarily identical), then the automaton is expedient if p<p. The predator

exhibits expedient behaviour when the frequency of swapping actions following
immediately from an unfavourable response is higher than the frequency of
swapping actions immediately following a favourable response.
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A trivial strategy for the predator would be to switch action with certainty
(p=9g =1 whenever an unfavourable response is recorded and continue with

the same action (p=q=0) whenever the response is favourable, in which case

— ——
I E I E
I(1 0 ~ [I(0 1
F= F=
E\O 1 El1 O
and consequently,
——
| E

The two final action probabilities, m and m, in this case can also be calculated
from the equation, t=F'x:

C, C
T, = y Ty, =
C, +C,

C, +C,

The automaton (predator) is expedient if c, #c,, since

2¢,C, LGtG

limM (k) =c,z, +C,7, =
0 YT g4, 2

:|\/|0

The predatory efficiency is e =1-c,, and the mimicry efficiency is m" =c,.
Mimicry efficiency represents the rate that the predator consumes the wrong prey.
The long term proportion of ignored palatable prey equals the long-term

proportion of consumed palatable prey when CZ:%, and the long-term
proportion of consumed palatable prey equals the long-term proportion of

consumed unpalatable prey when c, :%.

Such a fixed-structure, two-state, two-action automaton was first suggested by
Tsetlin (Tsetlin 1973) and is known as an L,, automaton. Despite its obvious

simplicity it has found applications in many learning models (Selfridge 1978).



Reinforcement learning 55

5. Predator as a variable-structure  stochastic automaton
operating in stationary random model-mimic environments

5.1. Mathematical description of reinforcement schemes

Greater flexibility can be built into modelling the predatory behaviour by
considering the predator as a stochastic automaton with state transitions or action
probabilities being updated at every stage using a reinforcement scheme.

In general terms, a reinforcement scheme can be represented by either updating
the action probability at stage (k+1) on the basis of its previous value, the
action a(k) and input b(k):

p; (k +1) = h[p; (k),a(k),b(k)] i=12,n

or by updating the state transition probabilities, fij(k+1), on the basis of the
states, #(k) and @(k+1), input b(k), and previous state transition probabilities
fij(k)Z

fi(k+1) = o[ f; (K), p(K), p(k +2),b(K)} i, j =212,

If either h or ¢ is linear, the reinforcement scheme is said to be linear;
otherwise it is called nonlinear.

The idea of a reinforcement scheme is to increase the action probability, pi(k),
and decrease all p;(k), j=i,if the action a(k) =a results in a favourable

response. For an unfavourable input, pi(k) is decreased and all the other
components are increased. The same idea applies to state transition probabilities;
fijk) is increased when ¢(k)=4¢,, d(k+1)=¢; and the input is favourable, and

decreased otherwise. To maintain F as a stochastic matrix, the remaining elements
of the ith row must be adjusted updated to sum to unity. Thus the state transition

matrices F, F and consequently F of the last section become state dependent.
Next we adapt a well known linear reinforcement algorithm to the predator-
model-mimic system.

5.2. The asymmetric (o # B) Linear Reward-Penalty (Lrp) Scheme

Linear reinforcement algorithms are based on the simple premise of increasing
the probability of that action that elicits a favourable response by an amount
proportional to the total value of all other action probabilities. Otherwise, it is
decreased by an amount proportional to its current value. The probability updating
algorithm for the two predator actions, a; (ignore) and a, (eat), with respective
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to penalty probabilities ¢; and c;, is a Markov chain and has the following
form:

p(k +1) = p, (k) +afl- p, (k)

]} a(k) =a,, response is favourable, 0 <« <1
P, (k+1) =(A-a)p,(k)

p(k+1) =(Q1=-A)p. (k)

0, (k+1) = p, (K)+ AfL— pz(k)]} a(k) =a,, response is unfavourable, 0< <1, (B #a)

From these equations it follows that if action a is chosen at stage k, the
probability pj(k) (j=i) is decreased, at stage k+1, by an amount proportional to
its value at stage k for a favourable response, and increased by an amount
proportional to [1— pj(k)J for an unfavourable response as this is consistent with

action j being more favourable. The parameters « and S are the reward and
penalty parameters respectively.

In order to assess the asymptotic behaviour of the action probabilities we
consider the conditional expectation of p;(k+1) given pi(k):

Pu(k+1) = E[p,(k +D) | p,(K)] = p? (K)[(a — BN, —¢,)]+ p (KL +alc, —¢,)- 24, ]+ A,

Then for the Markov chain to be ergodic, we that
I!im E[p,(k +1)| p,(k)]= P, (k). This probability, p, , is found as the fixed point

of the first-order nonlinear autonomous difference equation (with ¢, #c,):

P, = plz[(a_ﬂ)(cl _Cz)]+ pl[1+a(c2 —Cl)—ZﬂC2]+ﬂC2,

The above quadratic equation admits a unique feasible solution for 0 < p; <1.:

. 2fk, +ale, —¢,) —yJa? (el +¢2) +20,c, (252 —a?)
P = 20— B)© —c,)

Similarly for action ay,

P,(K) = E[p,(k +1) | p,(K)] = p; (K)[(er = B)c, —c,)]+ p, (I +ele, —c,)- 28, ]+ fe,

the unique fixed point is
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2

— 2k, +a(c, _Cl)_\/az(clz +022)*‘2(:1(:2(2/82 -a’)
T 2a~H)e; -c)

The equilibrium probabilities, p; and p, , are asymptotically stable if

Since the expression,

‘1—\/a2(cf T2y 420, (287 —a?)| <1

57

a’(c’+cl)+2c,c,(2B° —a?), is a positive-semi definite
quadratic form with an upper bound of 4, asymptotic stability is ensured.

Figures 3 and 4 display a typical evolution pattern of p,(k) and P,(k) towards

P, (k) and P, (k) , their asymptotic values respectively.
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The variance of the random variable p,(k +1), conditioned on pi(k) is given by

S,(py(K)) = E|(py (k+1) — Bk +1))* | p, (&)= E[p? (k +1) | p, ()]~ P2 (k) =

[P, (K) +a@— p (k)] po(K)A-c,) +(@- B) pi(K)ec, + (L—a)? p (K)L- p,(K)]L—c,) +
[p. (k) + BA- p, (KN~ p, (K) e, -

2

[p12 (k)[(a - :B)(Cl —C, )]"‘ pl(k)[1+ a(Cz - Cl)_ 2ﬂC2]+ ﬂcz] =

a?p, (KL - p, (L —c, (- p, (k) — ¢, Py (K)]+ B[S (K)e, + (L - ps (K))c, |-
[p12 (k)[(a - /B)(Cl -G, )]+ P, (k)[a(C2 - Cl)_ 2, ]+ 5, ]2

The asymptotic variance is given by:
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S.(P)) =’ P, (L- By )l—c. (L— B7) — ¢, ; |+ A2|(B0)%c, + 1-77)°c, |

The random variables, pi(k) and pa(k), therefore converge in distribution to two
random variables with means, P, and p,, and variances, S, =S,(p,) and

S, =S,(p,) respectively.

The average penalty at stage k+1 conditioned on the probabilities at stage k is
given by

M (k +1) = M (k) —ar(c, —¢,)" P, (K) P, (k) = B(c, —c,)(c, Pt (k) — ¢, P; (K))

To determine whether M (k) is monotonically increasing or decreasing we need
to examine the sign of M(k+1)—M(k) for all k. It is easier, however, to

assess monotonicity from the sign of the sign of (L—'\:l , provided the function

M (t) can be obtained. An analytic solution to the difference equation in the

mean probability is very tedious, but the continuous time solution to the
associated differential equation,

d = p1 (t)[( ﬂ)(cl -G )]+ ﬁl(t)[a(CZ - Cl)_ ZIBCZ]"' ﬂcz J

however, is straightforward and given by

pe -Dp,
O="""—F—""".
pl() e ct D
where
or = 2/, +a(c, —c¢ )+\/a (¢ +c2)+2¢c,c,2B8° —a )
' 2(a - p)(c, - ¢,)
C= \/az(cf +c2)+2¢c,c,(2B8° —a?),
and
— pl(o)_pf.
pl(o)_ﬁ;
Similarly,
B p+e—Ct _ Dﬁ*
pZ(t) - Ze—Ct . D 2

where
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2fk, +alc, —cl)+\/o¢2(cl2 +c2)+2c,c,(2B8° —a?)
B 2(a - B, —c,)

+

P,

It can be seen clearly that, limp,(t)=p,, limp,(t)=p,, as expected.
t—o t—>o

Since M (t) =c,p,(t)+c,p,(t), the functional expression for the penalty is

— . M'e“-DM"
M (t) = e—Ct -D
where
M* =c,p, +c,p; Sl
2(a - B)
and
Tl BN = e o 4 . 5F = AC+€)=C
M" = lim E[M (k)] =c, P, +¢,P, = 2(a - B)
Then
dI\W B DCZe—Ct
dt (e’ct —D)Z(a_ﬂ)
So

M (k) is monotonically increasing (M (k) is a submartingale) if

I:)>0
b

M (k) is monotonically decreasing (M (k) is a supermartingale) if Dﬂ <0
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Average penalty monotonically increasing (M(k) is submartingale).
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Average penalty M and probability pl

0.32-

0.31-

0.3 L

p1(k)

20

30 40 50 60 70 80
Stage k

90

100

Figure 5. Plot of penalty and action probability evolution for an automaton with
a=05 f=04,c, =05 ¢c,=0.3, p,(0)=0.3. Here we have the asymptotic

values p, =0.36, M~ =0.372,

D
a J—
submartingale.

=2723.235>0, so M (k) is a
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Awerage penalty monotonically decreasing (M(k) is supermartingale).

0.6 - B

p1(k)
0.55 -

o
3
T
I

0.45 B

Average penalty M and probability pl
o
S
|

0.35} M(k) g

0 10 20 30 40 50 60 70 80 90 100
Stage k

Figure 6. Plot of penalty and action probability evolution for an automaton with
a=04, =06, c, =03 ¢, =04, p,(0)=0.4.Here we have the asymptotic
D

a-p

supermartingale and the automaton is absolutely expedient.

values p, =0.56, M~ =0.344, =-107.20<0, so M (k) is a

The performance of the automaton in the long term is better than that of a

pure-chance automaton by virtue of the inequality,
M™ = a6 +6,)=C M, ~8%% his is valid for any values of the
2(a—p) 2

parameters, «, f,c,,C,, hence the automaton is always expedient. It is absolutely

expedient when <0, and also s-optimal because for any arbitrary &0,

a_

proper parameter values for « and S can Dbe chosen such that
M ™ —min{c,,c,} <& holds. For instance, for ¢, =04, c,=0.6, &= 0.01, & and
0.2 +0.83 —+/0.04c:> +0.96 3 3

2(a—-pB)
always holds. When «>>f, the automaton exhibits nearly optimal behaviour,
as M~ ~min{c,,c,} and either P, ~1 if ¢, <c,, or p, =0 if ¢, >c,. Figure 7
below displays the average penalty curve, with ¢; = 0.4 and c, = 0.9, plotted
against all possible « and for £=0.01. For & =0.9, M" =0.405~c,.

£ must be chosen so that the inequality 0.01



Reinforcement learning 63

Average penalty versus alpha history.
0.44 T T T T T

0.435- =

0.43 - B

0.425- =

0.42 - 4

Average penalty

0.415 =

0.41- i

beta=0.01
0.405 |- B

0.4 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

alpha

Figure 7. Penalty variation with « with ¢;=0.4, c;=0.9 and £=0.01.

When g>>a, M™ = ./c,c, >min{c,,c,}, and hence is not optimal. Figure 8 below
displays the average penalty curve, with c; =0.8 and c, =0.2, plotted against all
possible B and for «=0.01. For #=0.9, M =0.399~0.4=+0.16 .
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Awverage penalty versus beta history.
0.4 T T T T T

0.399 - =

0.398 -

alpha=0.01
0.397 +

o
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Average penalty
o
w
©
(&)
T

0.394 -

0.393 -

0.392 -

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
beta

0.391 !
0

Figure 8. Penalty variation with g with ¢;=0.8, ¢c;=0.2 and «=0.01.

In deriving the asymptotic properties of the automaton we have allowed the
number of stages to approach infinity. In practice, however, the number of steps

needed to converge to the desired action is finite. Let M(T,)—M" be the
difference between the average penalty at time T, and its asymptotic value. A

natural index of the rate of convergence would be an estimate of the time
needed by this difference to become equal to an arbitrary proportion, 6 (0<&<1),
of the difference between the final and initial penalties. We have therefore:

S W)W

M(@O)-M"

-l
C |D ola—pAHM@0)-M ")

The time, T,, taken by the automaton to reach 1005% of the difference,

whence,

M(@©)-M", is longer when «a < and is dependent on the absolute difference,
|c, —c, |, rather than on the individual penalty probabilities, ¢, and c,.

Figure 9 below illustrates the faster convergence to M~ when @ < £ and & =[0.01, 0.1].
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Awerage time taken by the automaton to reach 100xdelta%
of the difference between the initial and asymptotic penalty.
22 T T T T T T T

20

18

16

14 alpha=0.9, beta=0.3

12+

Time T

10+ =

8L -

6L i
alpha=0.3, beta=0.9
4 |

I I I I I I I I I
0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

2
0.01 0.11

delta

Figure 9. Two cases: (i) «=0.9, # =0.3, and (ii) «=0.3, £ =0.9. Automaton
converges to the asymptotic penalty approximately three time faster in case (ii).

In the optimal scenario, « >> B, the time, T,, depends on the difference,
|c, —c, |, the initial probabilities, p;(0) and p,(0), o and §, thus::

T, ~ ! In[1_§ P (0) ) ¢ ¢, >C,
a(cl _Cz) o pz(o)

T, ~ ! In[l_(S P, (0) if ¢, <c,
a(cz _Cl) o pl(o)

T, increases as pi(0) increases when ¢, >c,, and
when

increases as p»(0) increases
c, <C, given the positive restricted ranges for o and 8.

The variable predatory efficiency index, €(k), is again defined as the ratio of

the probability of consumption of palatable prey to the total probability of
encountering palatable prey at each stage k:
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§(k) =— ﬁz (k)_(l_cz)
P (k)e, + P, (k)d-c,)

This index is a monotonically increasing function of p,(k) with an asymptotic

value, €, obtained by introducing the asymptotic probabilities in the above
formula.

5.3. The symmetric (e= /) Linear Reward-Penalty (Lgrp) scheme

The special case when a =/ is called the symmetric Linear Reward-Penalty
scheme (Lg.p) and has the following conditional expectation:

Elp,(k+D) | p,(K)]=[1-a(c, +¢,)Ip, (k) +ac,

which is a linear difference equation in py(k), with solution

b-(-a(, +c,)) ]
a(cl +C2)

E[p, (K)]=[L-ea(c, +¢,)1 p, (0) +

2

whence,
CZ
c, +C,

lim E[p, (k)] = ; =

since [L—a(c, +¢,) <1.

* * C - - - -
If ¢c,>c, then p, <p,=—=—, and action a; is chosen asymptotically with
Cc,+¢C,

lower probability, and vice versa. The average penalty evolves according to the
difference equation
M (k +1) = [1-a(c, +¢,) M (k) + 2ac,c,

and is monotonically decreasing (supermartingale) if

2c.c,

M (0) =c,p,(0)+¢,p,(0)>M" = ,
c, +C,

where M “is the corresponding asymptotic value for lim M (k) otherwise it is a

submartingale.

The automaton is always expedient since
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Vi = 2c,c, LGtG
C, +¢C, 2

= Mo (Cl ¢C2)

and has an asymptotic efficiency index given by

*

€ =1-c,

Mimicry efficiency is thus tied to the rate the predator consumes the wrong prey.
Furthermore, the symmetric Lgp Scheme exhibits long-term properties identical to
those of a purely stochastic automaton, switching actions with probability 1
whenever an unfavourable response is recorded (section 4).

5.4. The Linear Reward-Inaction (Lg.) (8=0) scheme

The basic idea of the linear reward-inaction scheme (Lg,) is to increase the
probability of an action if it was the last action and resulted in a favourable
response (a = 0) or leave the probability unchanged if unfavaourable (f=0). The
conditional expectation is described by the following nonlinear difference
equation:

E[p,(k+1) | p,(K)]=(c, —¢,) pf (k) + [1+ (¢, —¢,)]p, (K)

The associated asymptotic probability, p,, and efficiency index, €, are found
from the corresponding formulae for the asymmetric Lrp case with f=0:

a(c, —¢,)—a(c, —¢,)
2a(c, —c,)

=0 if ¢,>¢c,, € =1, m =0

a(c, —¢,)—alc, —¢,)
2a(c, —c¢,)

=1 if ¢, <c,, € =0, m =1

The Markov chain modelling the Lg., automaton has two absorbing states, action
a; (ignore prey all the time) if c, <c,, and action a, (consume every prey
encountered) if c,>C,. In the former case the predator is completely

inefficient, whereas in the latter case it is 100% efficient. The average penalty,

M (k), is a supermartingale because of the condition D,B =2<0, with the
o — (24

automaton exhibiting optimum behaviour, since M " =min{c,,c, }.
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6. Predator as a variable-structure stochastic automaton
operating in nonstationary random model-mimic environments

6.1. Introduction

In the last section we analysed, in detail, a linear reinforcement learning
algorithm designed to allow a predator (the automaton) to operate efficiently in
an environment occupied by palatable and unpalatable prey and characterized by
a constant penalty probability for each predator action. Although the assumption
of a stationary environment may provide a good approximation when undergoing
slow change, the concept of learning is associated with the ability to adapt in a
varying environment.

In this section we analyse the performance of the learning algorithm of the last
section when each penalty probability, ci, i =12, is a monotonically non-
decreasing function of the respective action probability, aj, i =1,2. We base our
decision on the reasonable assumption that if the predator is ignoring all prey
with a certain frequency, palatable prey amongst them are essentially ignored at
a lesser rate, and consumed at a relatively greater rate. Thus,

Cl(pl):rlpl’ 0<r1 <1
Cz(pz):rszv 0<r2 <1

The average penalty at stage k is given by M (k) =r,pZ(k)+r,pZ(k). The pure-

r+r .
L2 Due to the variation in

chance automaton has an average penalty, M, =

c; and c,, absolute expediency may not always be feasible in the strict sense of
E[M (k +1)] < E[M (k)] for all k, but may hold for some k>ko.
6.2. The asymmetric (a#p) Linear Reward-Penalty (Lr.p) scheme

The expectation of the action probability, pi(k+1), conditioned on pi(k), is a
third-order polynomial in p;y(K):

Elpy (k +2) | p, (k)] = (1, +1,)(a = B) p; (K) + (B, —ar, =1, — 1) i (K) + (L+ a1, = 3/0,) p, (K) + A,

Then
E[p,(k+1) | p,(K)]- p.(K) =

(r,+1,)(a-p) pf(k)+(3ﬂrz —al, - — rz)pf(k)+(ar2 =3/r,) py(K) + /r,

The asymptotic behaviour of the automaton will be determined by the nature of
the roots of the cubic polynomial. Let

f(py) =+ 1)@ - B)pi (k) + @A, —ar, — 1, —1,) py () + (ar, —3/r,) py (K) + A,
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There are analytic expressions for the roots of the cubic equation, f(p1) = 0,
based on a method attributed to Cardan. A brief outline of the procedure is
expounded in the Appendix.

As an  example, let a=07 =021 =r,=05. Then

H ~-0.1142, G~ -0.052, E ~-3.25-10"° <0. From case (iii) in the Appendix,
we obtain the following three real roots:

X ~0.654, —0.49, —0.166
The corresponding roots of the polynomial f(p1) are given respectively by,
p, ~2, —0.28, 0.37

The asymptotically stable probability value in this case is P, =0.37 as it
satisfies the condition for asymptotic stability, namely, f'(p;)~-0.52<0.

Figure 10 below is a graph of the polynomial f(p;) plotted against p; for the
above parameters. The three roots can be readily identified here. Figure 11
demonstrates  the  evolution  of the  conditional action  probability
E[p,(k+1)| p,(k)] towards the asymptotic value of 0.37.
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Plot of the polynomial f(pl) against pl.

root=0.37 root=2

f(p1)
5

root=-0.28

Figure 10. Plot of f(py) =0.5 pf—1.05 pf +0.05p; +0.1 versus p;.
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Figure 11. Evolution
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of E[pi(k+1)|p1(k)] = 0.5 p; (k) - 1.05 p? (k) + 1.05 ps(k) + 0.1

towards p, =0.37.
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Figure 12 displays the plot of f(p;) when there is one real root and two
complex roots. In this case, =01 =09, r=01r,=09, and
H =0.4245, G =-0.1395, E =0.3254>0. The unique real root of the polynomial
is P, =0.4225. Figure 13 displays the stage history of E[pi(k+1)|pi(k)] towards
P, =0.4225. Note the oscillatory movement of E[pi(k+1)|pi(k)] due to the
complex roots of f(py). The automaton is asymptotically stable as
f'(p,) ~-1.637<0.

Plot of the polynomial f(pl) against pl.
20 T T T

15+ -

10+ B

f(p1)

unique real
root=0.4225

Figure 12. Plot of f(py)=-0.8p; +1.34p? - 2.34p; +0.81 versus p.
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Stage ewolution of action probability pl.

0.435 =

0.43 B

0.425- =

0.42 4

Elpl(k+1)lp1(k)]

0.415 =

0.41 i

0.405 =

0 10 20 30 40 50 60 70 80 90 100
pl

Figure 13. Evolution of E[pi(k+1)|pi(k)] =-0.8 pJ (k) + 1.34 pZ (k) - 1.34 ps(K) +
0.81 towards P, =0.4225.

The average penalty function, M (k), is either a supermartingale or submartingale
except when f(p1)) has complex roots. To demonstrate this, when
a=09, =021=01r,=09, the penalty is a supermartingale and the

automaton is expedient (I\W* ~0.142 < % = 0.25}, as well as absolutely
expedient (figure 14) whereas, for example, when «=0.3, =09, 1, =r,=0.5,

the average penalty oscillates before it settles to the stable value, M~ ~0.267
(figure 15) and is not even expedient (0.267 > 0.25).
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Average penalty curve.
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Figure 14. Average penalty is a supermartingale.
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. Average penalty oscillates before it settles to its stable value.
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The penalty probabilities tend to equalize at equilibrium, that is
* r2 *~ rl

P, = , P, = , if the following condition connecting all parameters
n+r, rn+r,
is held:
1-a r,(rn-r)
g on(n+n)
: : . nr .
In this case the asymptotic average penalty, M = . l+ 2r <M, (expedient). For
1 2

large o, large g and r, ~r,, and the automaton consequently behaves like a pure-
c