2,757 research outputs found

    Graph Colorings with Constraints

    Get PDF
    A graph is a collection of vertices and edges, often represented by points and connecting lines in the plane. A proper coloring of the graph assigns colors to the vertices, edges, or both so that proximal elements are assigned distinct colors. Here we examine results from three different coloring problems. First, adjacent vertex distinguishing total colorings are proper total colorings such that the set of colors appearing at each vertex is distinct for every pair of adjacent vertices. Next, vertex coloring total weightings are an assignment of weights to the vertices and edges of a graph so that every pair of adjacent vertices have distinct weight sums. Finally, edge list multi-colorings consider assignments of color lists and demands to edges; edges are colored with a subset of their color list of size equal to its color demand so that adjacent edges have disjoint sets. Here, color sets consisting of measurable sets are considered

    Strong Structural Controllability of Systems on Colored Graphs

    Get PDF
    This paper deals with structural controllability of leader-follower networks. The system matrix defining the network dynamics is a pattern matrix in which a priori given entries are equal to zero, while the remaining entries take nonzero values. The network is called strongly structurally controllable if for all choices of real values for the nonzero entries in the pattern matrix, the system is controllable in the classical sense. In this paper we introduce a more general notion of strong structural controllability which deals with the situation that given nonzero entries in the system's pattern matrix are constrained to take identical nonzero values. The constraint of identical nonzero entries can be caused by symmetry considerations or physical constraints on the network. The aim of this paper is to establish graph theoretic conditions for this more general property of strong structural controllability.Comment: 13 page

    On the Complexity of Distributed Splitting Problems

    Full text link
    One of the fundamental open problems in the area of distributed graph algorithms is the question of whether randomization is needed for efficient symmetry breaking. While there are fast, polylogn\text{poly}\log n-time randomized distributed algorithms for all of the classic symmetry breaking problems, for many of them, the best deterministic algorithms are almost exponentially slower. The following basic local splitting problem, which is known as the \emph{weak splitting} problem takes a central role in this context: Each node of a graph G=(V,E)G=(V,E) has to be colored red or blue such that each node of sufficiently large degree has at least one node of each color among its neighbors. Ghaffari, Kuhn, and Maus [STOC '17] showed that this seemingly simple problem is complete w.r.t. the above fundamental open question in the following sense: If there is an efficient polylogn\text{poly}\log n-time determinstic distributed algorithm for weak splitting, then there is such an algorithm for all locally checkable graph problems for which an efficient randomized algorithm exists. In this paper, we investigate the distributed complexity of weak splitting and some closely related problems. E.g., we obtain efficient algorithms for special cases of weak splitting, where the graph is nearly regular. In particular, we show that if δ\delta and Δ\Delta are the minimum and maximum degrees of GG and if δ=Ω(logn)\delta=\Omega(\log n), weak splitting can be solved deterministically in time O(Δδpoly(logn))O\big(\frac{\Delta}{\delta}\cdot\text{poly}(\log n)\big). Further, if δ=Ω(loglogn)\delta = \Omega(\log\log n) and Δ2εδ\Delta\leq 2^{\varepsilon\delta}, there is a randomized algorithm with time complexity O(Δδpoly(loglogn))O\big(\frac{\Delta}{\delta}\cdot\text{poly}(\log\log n)\big)

    The Weisfeiler-Leman Dimension of Planar Graphs is at most 3

    Full text link
    We prove that the Weisfeiler-Leman (WL) dimension of the class of all finite planar graphs is at most 3. In particular, every finite planar graph is definable in first-order logic with counting using at most 4 variables. The previously best known upper bounds for the dimension and number of variables were 14 and 15, respectively. First we show that, for dimension 3 and higher, the WL-algorithm correctly tests isomorphism of graphs in a minor-closed class whenever it determines the orbits of the automorphism group of any arc-colored 3-connected graph belonging to this class. Then we prove that, apart from several exceptional graphs (which have WL-dimension at most 2), the individualization of two correctly chosen vertices of a colored 3-connected planar graph followed by the 1-dimensional WL-algorithm produces the discrete vertex partition. This implies that the 3-dimensional WL-algorithm determines the orbits of a colored 3-connected planar graph. As a byproduct of the proof, we get a classification of the 3-connected planar graphs with fixing number 3.Comment: 34 pages, 3 figures, extended version of LICS 2017 pape

    Trade-Offs in Distributed Interactive Proofs

    Get PDF
    The study of interactive proofs in the context of distributed network computing is a novel topic, recently introduced by Kol, Oshman, and Saxena [PODC 2018]. In the spirit of sequential interactive proofs theory, we study the power of distributed interactive proofs. This is achieved via a series of results establishing trade-offs between various parameters impacting the power of interactive proofs, including the number of interactions, the certificate size, the communication complexity, and the form of randomness used. Our results also connect distributed interactive proofs with the established field of distributed verification. In general, our results contribute to providing structure to the landscape of distributed interactive proofs
    corecore