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Abstract

Hulgan, Jonathan Darren. Ph.D. The University of Memphis. May, 2010. Graph
Colorings with Constraints. Major Professor: Jenő Lehel.

A graph is a collection of vertices and edges, often represented by points and

connecting lines in the plane. A proper coloring of the graph assigns colors to the

vertices, edges, or both so that proximal elements are assigned distinct colors. Here

we examine results from three different coloring problems. First, adjacent vertex

distinguishing total colorings are proper total colorings such that the set of colors

appearing at each vertex is distinct for every pair of adjacent vertices. Next, vertex

coloring total weightings are an assignment of weights to the vertices and edges of

a graph so that every pair of adjacent vertices have distinct weight sums. Finally,

edge list multi-colorings consider assignments of color lists and demands to edges;

edges are colored with a subset of their color list of size equal to its color demand

so that adjacent edges have disjoint sets. Here, color sets consisting of measurable

sets are considered.

iv



Contents

List of Figures vi

1 Introduction 1

1.1 Basic Terminology of Graphs . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Graph Coloring Foundations . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 New Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Adjacent Vertex Distinguishing Total Colorings 9

2.1 Definitions and Initial Observations . . . . . . . . . . . . . . . . . . . 10

2.2 Graphs with Maximum Degree Three . . . . . . . . . . . . . . . . . . 13

2.3 Cubic Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Vertex Coloring Total Weightings 22

3.1 Definitions and Basic Results . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Three-colorable Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Graphs with Small Maximum Degree . . . . . . . . . . . . . . . . . . 33

3.4 Vertex Distinguishing Total Weightings . . . . . . . . . . . . . . . . . 35

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Edge List Multi-Coloring of Graphs with Measurable Sets 40

4.1 Basics and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Hall’s Theorem for Finitely Many Measurable Sets . . . . . . . . . . . 43

Bibliography 47

v



List of Figures

2.1 Coloring Sequence from K5 to K3 . . . . . . . . . . . . . . . . . . . . 12

2.2 4-AVDTC for Odd Cycles . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Odd Snare with a C4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Contracting the Edges of a Snare . . . . . . . . . . . . . . . . . . . . 19

2.5 Extending an Edge-Coloring to an AVDTC . . . . . . . . . . . . . . . 20

3.1 H7 Decomposed Into H6 and H5 . . . . . . . . . . . . . . . . . . . . . 36

vi



1 Introduction

A common problem in graph theory involves partitioning the elements of a graph

in such a way that certain conditions are met: the most common condition being

that proximate elements are put in different subsets. A partition can be represented

by assigning each element in a given subset a particular number or color; for this

reason, such problems are often referred to as graph colorings. Here we will examine

three such problems where additional restrictions are enforced.

1.1 Basic Terminology of Graphs

A graph G is an ordered pair (V,E) consisting of the vertices V , a set, and the

edges E, a collection of pairs of vertices. Here we will consider only edges consisting

of different unordered pairs of distinct vertices; such graphs are called simple graphs.

Two graphs G1 and G2 are said to be isomorphic, or G1
∼= G2, if there exists a

bijection between their vertex sets that preserves their edge sets. Here we consider

isomorphic graphs to be the same graph.

For simplicity of notation, if the pair of vertices {u, v} is an element of the edge

set, we will write uv ∈ E or equivalently vu ∈ E. In this case, we would say that

u and v are adjacent vertices and that uv is incident to u and v; we say that two

distinct edges are adjacent if they share a common vertex. For a vertex v, let N(v)

denote the set of neighbors of v; that is N(v) = {u | uv ∈ E}. The degree of a

vertex, denoted d(v), is the number of edges incident to v. Therefore in a simple

graph d(v) = |N(v)|. We will occasionally refer to the maximum and minimum

degrees of a graph, denoted by ∆(G) and δ(G) respectively. If ∆(G) = δ(G) = k,

we say that G is k-regular.
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A subgraph H ⊆ G is an ordered pair (V ′, E ′) such that V ′ ⊆ V and E ′ ⊆

E where E ′ contains only edges incident to the vertices of V ′; if E ′ contains every

such edge, we say that H is an induced subgraph of G and write H = G[V ′]. We

say that H spans G if V ′ = V . For some pair of vertices u, v ∈ V , a uv-path is

a sequence of distinct vertices and incident edges starting with u and ending with

v. If for every pair of vertices u, v ∈ V there exists a uv-path, we say that G is

connected. A maximal connected subgraph is called a component of G. A subset

C ⊂ V is called a cut set of a connected graph G if G[V \ C] is disconnected; we

say that G is k-connected if every cut set contains at least k vertices where 1 ≤ k ≤

|V | − 2.

The graph with vertex set V = {v1, v2, . . . , vn} and edge set E = {vivi+1 :

1 ≤ i ≤ n − 1} is called a path and is commonly denoted by Pn. If the additional

edge v1vn is added, the graph is then called a cycle and is denoted by Cn. A cycle

with an odd number of vertices is called an odd cycle, otherwise it is an even cycle.

Together, paths and cycles make up the family of connected graphs with maximum

degree two. The family of connected graphs containing no cycle as a subgraph are

known as trees; equivalently, this is the family of graphs such that for every two

vertices u, v ∈ V , there exists exactly one uv-path.

Another common family of graphs are those that contain no odd cycle as a subgraph;

such graphs are called bipartite graphs. Bipartite graphs are thus called because

their vertex sets can be partitioned into two independent sets: a set of vertices

whose induced subgraph contains no edge. The complete graph on n vertices, denoted

Kn, is the graph containing all possible
(
n
2

)
edges. The complete bipartite graph

denoted Km,n is the bipartite graph with m vertices in one independent set, n vertices

in the other independent set, and all possible mn edges between them. This notion
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can be extended to a complete multipartite graph: a graph whose vertex set is

partitioned into independent sets and has all possible edges between these sets.

1.2 Graph Coloring Foundations

Graph coloring problems investigate the ability to efficiently partition the elements

of a graph such that adjacent or incident elements are put into different subsets;

that is, the elements are partitioned into independent sets. There are three types of

element sets of a graph that can be considered: vertices only, edges only, or both

vertices and edges. In the following definitions, the use of [k] denotes the set of

positive integers {1, 2, 3, . . . , k}

Definition 1.1. Let G = (V,E) be a graph and f : V → [k] be an assignment of

colors to its vertices. If f has the property that f(u) 6= f(v) for every uv ∈ E, we

say that f is a proper vertex coloring of G and that G is k-colorable. The smallest

integer k such that G is k-colorable is called the chromatic number of G and is

denoted χ(G).

Vertex coloring problems are the most well-known type of graph coloring. The

most famous problem in graph coloring, if not all of graph theory, is the four-color

theorem. It can be loosely stated as follows: every graph that can be drawn in

the plane with no crossing edges is four-colorable. The problem gained renown

and notoriety for remaining unsolved for over a century before being solved with

computer assistance by Appel, Haken, and Koch in 1977 [2, 3].

Observe that a proper vertex coloring partitions the vertices of a graph into independent

sets. Thus the family of graphs which are two-colorable are exactly the family of

bipartite graphs; odd cycles require a third independent set, meaning they are three-

colorable but not two-colorable. Note that a vertex coloring of any graph G restricted
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to some subgraph H induces a vertex coloring of that subgraph since independent

sets of vertices remain independent under edge or vertex deletion. It suffices to find

a coloring of each component of a disconnected graph, hence we always assume that

a graph is connected.

For general graphs, it’s easy to see that every graph G is (∆(G) + 1)-colorable:

if we order the vertices and then sequentially assign to each vertex v the lowest

color different from each of its previously colored neighbors, that number cannot

be larger than d(v) + 1. The scheme thus described is known as a greedy coloring.

The well-known theorem of Brooks shows that for most graphs this number can be

reduced by one.

Theorem 1.2. [12] Let G be a connected graph other than an odd cycle or a complete

graph. Then χ(G) ≤ ∆(G).

The maximum degree of a graph is not always a good upper bound for the chromatic

number. For instance, a bipartite graph could have arbitrarily large maximum degree.

However, there exist graphs for which this bound is sharp and, in two instances, is

exceeded: the noted families of complete graphs and odd cycles each require ∆ + 1

colors. For our purposes here, Brooks’ theorem will suffice for any required upper

bound on the chromatic number.

Next we consider edge colorings of graphs.

Definition 1.3. Let G = (V,E) be a graph and f : E → [k] be an assignment

of colors to its edges. If f has the property that f(uv) 6= f(wv) for every adjacent

uv, wv ∈ E, we say that f is an edge k-coloring of G. The smallest integer k for

which G has an edge k-coloring is called the chromatic index of G and is denoted

χ′(G).
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In other words, the edges of a graph must be partitioned into 1-regular subgraphs

called matchings. It is clear that at least ∆(G) colors are needed for such a task,

though this amount is not always sufficient. For instance, odd cycles once again

require three colors. Vizing’s theorem proves that these are the only two possibilities:

χ′(G) = ∆(G) or ∆(G) + 1. In the former case the graph is said to be a class 1

graph and a class 2 graph in the latter.

Theorem 1.4. [35] Let G be a graph. Then χ′(G) ≤ ∆(G) + 1.

The proof of this statement involves a technique of using a maximal path consisting

of edges that alternate between two different colors; this technique can be used

to easily prove that ∆(G) is a bound for the chromatic index of bipartite graphs.

Bipartite graphs were known to be class 1 graphs well before the result of Vizing;

this result is attributed to Kőnig.

Theorem 1.5. [30] Let G be a bipartite graph. Then χ′(G) = ∆(G).

The final type of coloring considered is known as a total coloring.

Definition 1.6. Let G = (V,E) be a graph and f : (V ∪E)→ [k] be an assignment

of colors to its vertices and edges. We say that f is a total k-coloring of G if it has

the following three properties: 1) f(u) 6= f(v) for every uv ∈ E; 2) f(uv) 6= f(wv)

for every adjacent uv, wv ∈ E; 3) f(u) 6= f(uv) for every u and incident edge uv ∈

E. The smallest k for which G has a total k-coloring is called the total chromatic

number of G and is denoted χ′′(G).

Observe that a total coloring restricted to the vertices gives a vertex coloring

while restricting it to the edges gives an edge coloring; these are exactly properties

1 and 2 in the definition. Property 3 could easily be satisfied by using disjoint color

5



sets on vertices and edges; this leads to the very trivial upper bound χ′′(G) ≤

χ(G) + χ′(G) ≤ 2∆(G) + 1. For a lower bound, observe that at least ∆(G) + 1

colors are needed: at a vertex of maximum degree, ∆(G) colors are needed for its

incident edges, and a brand new color is needed for the vertex itself.

Behzad [9] and Vizing [35, 36] both independently conjectured that graphs can

be partitioned into two types based on their total chromatic number: those with

total chromatic number ∆(G) + 1 and those with total chromatic number ∆(G) + 2.

This conjecture is known as the total coloring conjecture.

Conjecture 1.7. Let G be a graph. Then χ′′(G) ≤ ∆(G) + 2.

Currently there is a huge gap between the conjectured and proven upper bounds.

The best known upper bounds are χ′′(G) ≤ ∆ + 8 log8 ∆ found by Hind, Molloy,

and Reed in [23] and χ′′(G) ≤ ∆ + 1026 found by Molloy and Reed in [31]. Both of

these results are true for graphs with maximum degree ∆ sufficiently large, and use

probabilistic methods in their proofs.

I direct the reader to [10] for more information regarding general graph theory

and [27] for information specifically related to graph coloring problems.

1.3 New Problems

In this dissertation I will examine three non-standard coloring problems. Each contains

some flavor of one of these three traditional colorings, but require some sort of

additional constraint. The first type of coloring to be considered is known as adjacent

vertex distinguishing total colorings. Given a graph G = (V,E) and a proper total

coloring f : (V ∪ E) → [k], for each vertex v ∈ V define C(v) to be the set

of all colors appearing at v; that is, C(v) = f(v) ∪
(⋃

uv∈E f(uv)
)
. f is called

an adjacent vertex distinguishing total coloring if C(u) 6= C(v) for every pair of
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adjacent vertices. The smallest k for which such a coloring exists is known at the

adjacent vertex distinguishing chromatic number and is denoted χat(G). I give new

and simple proofs of χat for bipartite and complete graphs in Corollary 2.4 and

Proposition 2.6, in Theorem 2.11 I show that six colors are sufficient for graphs

with maximum degree three, and I give evidence for Conjecture 2.18 which proposes

that five colors are sufficient for graphs with maximum degree 3.

Next are vertex coloring total weightings. Given a graph G = (V,E) and S ⊆ R,

let w : (V ∪ E) → S be an assignment of weights to the elements of the graph and

define W (v) = w(v) +
∑

uv∈E w(uv). w is called a vertex coloring total weighting

if W (u) 6= W (v) for every pair of adjacent vertices, and is a vertex distinguishing

total weighting of W (u) 6= W (v) for every pair of vertices. It is known that the

weight set {1, 2, 3} suffices for all graphs. Here weight sets S of cardinality two

are exclusively considered. I show that for any distinct real numbers a and b there

exists a vertex coloring total weighting using weight set {a, b} for bipartite graphs

in Theorem 3.7 and complete multipartite graphs in Theorem 3.10; for graphs with

chromatic number at most three, I show such a weighting exists for most pairs

of real numbers in Theorem 3.12. Furthermore, I show that for weight set {0, 1}

graphs with maximum degree at most four have a vertex coloring total weighting in

Theorem 3.14 and I classify graphs for which a vertex distinguishing total weighting

exists in Theorem 3.21.

The last colorings considered are edge list multi-colorings with measurable sets.

In a list coloring problem, the possible color options for an edge are restricted to

different lists of colors assigned to each edge. Given a graph G = (V,E) and a non-

atomic measure space (X,A, µ), let L : E → A be an assignment of color lists

to the edges of G, and w : E → R+ be an assignment of color demands to the

7



edges. A coloring φ : E → A is called an edge list multi-coloring if φ(e) ⊆ L(e),

µ(φ(e)) = w(e) for every edge e ∈ E, and µ(φ(e) ∩ φ(f)) = 0 for every pair

of adjacent edges e, f ∈ E. In Lemma 4.4 I give a new proof of Hall’s marriage

theorem for measurable sets.
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2 Adjacent Vertex Distinguishing Total Colorings

An increasingly popular restriction on traditional colorings are meta-colorings:

proper graph colorings that themselves induce properties where vertices are distinguished

from each other. For example, in any proper edge coloring of a triangle, note how

the set of colors appearing at any vertex is distinct from each other vertex. This is

an example of a vertex distinguishing edge coloring. This coloring was first investigated

in the early 1990’s by the independent teams of Burris and Schelp in [13], Černý,

Horňák, and Soták as the observability of a graph in [34], and Aigner, Triesch, and

Tuza in [1].

Numerous other papers have investigated vertex distinguishing edge colorings,

including Favaron, Li, and Schelp in [17], Bazgan, Harkat-Benhamdine, Li, and

Woźniak in [8], and Balister, Kostochka, Li, and Schelp in [7]. Balister, Bollobás,

and Schelp in [5] found the minimum number of colors needed to color graphs with

∆(G) = 2. Balister in [4] proved for random graphs G(n, p), almost always ∆(G)

colors are sufficient.

Zhang, Liu, and Wang in [40] extended this coloring to consider edge colorings

where only adjacent vertices were required to have distinct color sets. Other papers

addressing adjacent vertex distinguishing edge colorings include Balister, Győri,

Lehel, and Schelp [6] and Hatami [20], who used probabilistic methods to show that

∆(G) + 300 colors are sufficient to color all graphs.

Zhang et al. in [39] extended the coloring once more to consider total colorings,

rather than edge colorings, such that adjacent vertices had distinct color sets. Such

colorings are called adjacent vertex distinguishing total colorings.
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2.1 Definitions and Initial Observations

Recall that a total coloring is an assignment of colors to the vertices and edges of a

graph so that no adjacent or incident elements share the same color.

Definition 2.1. Let G = (V,E) be a graph and f : (V ∪ E) → [k] be a proper

total k-coloring of it. For each v ∈ V , define C(v) = {f(v)} ∪ {f(uv) | uv ∈

E}; we call C(v) the color set of v. If for every uv ∈ E we have C(u) 6= C(v),

then we say that f is an adjacent vertex distinguishing total k-coloring (k-AVDTC)

of G. The minimum k for which G has a k-AVDTC is called the adjacent vertex

distinguishing chromatic number, denoted χat(G).

An observation showing the difficulty when dealing with these colorings is that a

k-AVDTC of a graph G restricted to some subgraph H does not necessarily give a

k-AVDTC of H: certainly the coloring remains proper, but it is possible that the

removal of one or more edges from G could cause two adjacent vertices in H to

have the same color set. One consequence of this is that a standard procedure of

considering only the case of regular graphs will not suffice for this problem. In the

introduction of AVDTC’s, Zhang, et al. proposed the following conjecture:

Conjecture 2.2. [39] χat(G) ≤ ∆(G) + 3

They also noted the following trivial lower bound: if a graph G has two adjacent

vertices of maximum degree, at least ∆(G) + 2 colors are needed for an AVDTC. A

trivial upper bound for χat(G) can be seen as follows:

Proposition 2.3. χat(G) ≤ χ(G) + χ′(G).

Proof. Let f be a total coloring of G obtained by combining a proper vertex coloring

of G using χ(G) colors and a proper edge coloring using χ′(G) new colors. Observe

10



that f is a proper total coloring; furthermore C(u) 6= C(v) for any uv ∈ E(G)

since f(u) 6= f(v) and these two colors appear exclusively on vertices. Thus f is a

(χ(G) + χ′(G))-AVDTC.

This immediately gives the optimal upper bound for bipartite graphs.

Corollary 2.4. Let G be a bipartite graph. Then χat(G) ≤ ∆ + 2.

Applying Brooks’ theorem and Vizing’s theorem to Proposition 2.3 gives this

immediate corollary:

Corollary 2.5. Let G be a graph that isn’t a complete graph or an odd cycle. Then

χat(G) ≤ 2∆(G) + 1.

These two basic exceptional cases can be handled separately. Zhang et al. found

χat(G) for cycles and complete graphs in [39]; I presented independent and simpler

proofs for these cases in [25]. This first proof is due to András Gyárfás (personal

communication).

Proposition 2.6. χat(Kn) =

 n+ 1 if n is even

n+ 2 if n is odd
for n ≥ 2.

Proof. An optimal AVDTC for complete graphs can be easily obtained from the

standard near-factorization of K2m+1, defined as follows: on vertex set v0, v1, . . . , v2m,

for every i ∈ {0, 1, 2, . . . , 2m} define Mi = {vi−xvi+x | 1 ≤ x ≤ m} where i ± x

here denotes addition modulo 2m + 1. Observe Mi misses vi; if the vertices are

colored with their vertex labels and edges in Mi are colored with i, then we have a

proper total coloring of K2m+1 with 2m + 1 colors. Since every vertex has the same

color set, if one vertex is removed an AVDTC of K2m is obtained. We claim that if

another vertex is removed, an AVDTC of K2m−1 is obtained (see Figure 2.1).

11
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Figure 2.1: Coloring Sequence from K5 to K3

This follows from the fact that in the standard near-factorization above, there

are no four-cycles in the union of two color classes and thus no two vertices lose the

same two colors. Suppose there exists a four-cycle with edges colored a and b. This

means the set of labels of vertices involved can be expressed as both {a − i, a +

i, a − j, a + j} and {b − k, b + k, b − `, b + `} for some i, j, k, ` ∈ {1, 2, . . . ,m}.

Since these two sets must be equal modulo 2m + 1, their sums must also be equal.

Therefore 4a ≡ 4b mod (2m + 1); but since (4, 2m + 1) = 1, this implies a = b, a

contradiction.

It is clear that 2m + 1 colors are needed for K2m. To show that 2m + 1 colors

are necessary for K2m−1, suppose an AVDTC with 2m colors is possible. If a color

is absent from the color set of one vertex, it must be present at every other vertex

because all color sets must be distinct. Additionally, every vertex must be colored

distinctly. By the pigeonhole principle there exists a color i missing from some

vertex that colors another vertex. It follows that every remaining vertex must be

incident to an edge colored by i. However, an odd number of vertices remain and

obviously no perfect matching exists between them, a contradiction.
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Figure 2.2: 4-AVDTC for Odd Cycles

Proposition 2.7. χat(Cn) = 4 for n ≥ 4.

Proof. If n is even, alternately color the vertices of the cycle 1 and 2, and alternately

color the edges 3 and 4. This is an AVDTC because it is clearly proper and the

color sets of adjacent vertices are distinguished by their vertex color. If n is odd,

again alternately color the vertices and edges of the cycle as in the even case except

for one vertex, say v1, and its incident edges. Hence we assume v2 is colored 1, vn is

colored 2, and both have an incident edge colored 3. Then color v1 by 4, v1v2 by 2,

and vnv1 by 1 (see Figure 2.2).

This in conjunction with Corollary 2.4 gives the following immediate corollary:

Corollary 2.8. Let G 6= K3 be a graph with ∆(G) = 2. Then χat(G) ≤ 4.

2.2 Graphs with Maximum Degree Three

Currently, there exist a small handful of proofs affirming Conjecture 2.2 in the first

non-trivial case: ∆(G) = 3. Wang provided an intricate case analysis to prove it in

[38]; Chen provided another proof in [14]. I was able to show a much simpler proof

of this case in [25]. The method used focuses on a restricted family of AVDTC’s.

Definition 2.9. Let G = (V,E) be a graph and f : (V ∪ E)→ [k] be a proper total

coloring. Define CE ⊆ [k] to denote the set of colors that appear on the edges of G

and CV ⊆ [k] to denote the set of colors that appear on the vertices of G. We say

that f is an almost disjoint total coloring if |CE ∩ CV | ≤ 1.
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Lemma 2.10. An almost disjoint total coloring of a graph is an AVDTC.

Proof. Observe that two adjacent vertices have identical color sets only if the color

appearing on each vertex is used to color an incident edge of the other. However,

this cannot happen since the colors used to color two adjacent vertices cannot both

be used to color edges also.

Theorem 2.11. If G is a graph with ∆(G) = 3, then χat(G) ≤ 6.

Proof. If G = K4, by Proposition 2.6 χat(K4) = 5. Now suppose G 6= K4; we aim

to show that G has an almost disjoint total coloring with 6 colors. We claim there

exists a partial almost disjoint 6-coloring f of G with the following properties:

1. The vertices of G are colored 1, 2, and 3.

2. The edges incident to the 3 color class are colored 4, 5, and 6.

3. The edges between the 1 and 2 color classes are colored 3, 4, 5, 6, or remain

uncolored.

The graph G has a proper vertex coloring with colors 1, 2, and 3 by Brooks’ theorem.

Consider the bipartite graph formed by all edges with one endpoint in color class 3,

and the other endpoint in color classes 1 or 2; by König’s theorem, these edges can

be 3-colored with colors 4, 5, and 6. Therefore there exists a partial 6-coloring of

G that satisfies Properties 1 and 2. Consider the collection F of all such colorings

of G with these two properties. We claim there exists a coloring in F that satisfies

Property 3 with no uncolored edges.

Suppose this is not the case; choose a coloring f ∈ F with the fewest number of

uncolored edges. Given such an f , we aim to create another partial 6-coloring f ′ ∈

F such that the number of uncolored edges is one less, thus deriving a contradiction.
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Consider an edge uv that is left uncolored by f . By property 3, uv must be incident

to a 1 vertex and a 2 vertex. If C(u) and C(v) have a common color then at most

three of the colors 3, 4, 5, and 6 are found at u or v, and so we may choose the

fourth color with which to color uv in f ′.

Suppose C(u) and C(v) have no common color. Without loss of generality, suppose

u has a 4 edge and a 3 edge, call it uw, and v has a 5 edge and a 6 edge. Now consider

C(w). If C(w) 6= C(v), in f ′ we can color uv 3 and recolor uw with either 5 or 6,

whichever is not present at w.

Suppose C(w) = C(v). Consider the longest path P consisting of edges alternately

colored 4 and 5 originating from u and switch the colors of each edge along it. If P

does not terminate at v, we may now color uv 4 in f ′ since the color 4 no longer

appears at u. If P does terminate at v, it obviously cannot terminate at w and

so in f ′ we may color uv 3 and recolor uw 4. This exhausts all possibilities, and

therefore there exists an almost disjoint total 6-coloring of G.

2.3 Cubic Graphs

Although complete graphs provide a construction showing that the conjectured

upper bound for χat is sharp for graphs with even maximum degree, no such construction

exists for graphs with odd maximum degree. Chen in [14] constructed another example

of a graph with even maximum degree for which χat(G) = ∆(G) + 3. In examining

many smaller graphs by hand, common counterexamples with maximum degree

three were found to need only five colors for an AVDTC. In particular, the Petersen

graph needs only five colors. A simple proof of this fact can be extended to provide

an AVDTC for a larger family of graphs.
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Definition 2.12. For any given integer n ≥ 1, consider the collection of subsets of

[2n−1] of size n−1. If we use a graph to represent this collection where each vertex

corresponds to exactly one subset of size n − 1 and two vertices are adjacent if and

only if their two corresponding subsets are disjoint, we call this graph an odd graph

and denote it On.

Odd graphs are a specific example of a larger family of graphs known as Kneser

graphs. Note that under this definition, O3 is the Petersen graph.

Proposition 2.13. χat(On) ≤ 2n− 1 for n ≥ 3.

Proof. For each vertex vi ∈ V (On), let Ai denote the subset corresponding to that

vertex. Observe that for any vivj ∈ E(On), |Ai ∩ Aj| = |Ai ∪ Aj| = 1 since |Ai| =

|Aj| = n − 1 and Ai and Aj are disjoint. Furthermore, note that Ai ∩ Aj 6= Ai ∩ Ak

for adjacent vivj, vivk ∈ E(On), since this would imply Aj = Ak. Define a total

coloring f : (V (On) ∪ E(On)) → [2n − 1] as follows: f(vi) = c where c ∈ Ai, and

f(vivj) = Ai ∩ Aj. We see that this is a proper total coloring since each edge color

appears uniquely at each vertex, the set of possible vertex colors is disjoint from the

set of possible edge colors at each vertex, and the sets of possible vertex colors are

disjoint for any two adjacent vertices, by definition of the odd graph. It suffices to

show that the complement of the color sets are distinguished for adjacent vertices.

Observe that for each vertex vi, C(vi) = Ai \ {c}, where c = f(vi); call this set A′i.

Since Ai ∩ Aj = ∅ for vivj ∈ E(On), it follows that A′i ∩ A′j = ∅ as well. Therefore,

the color sets of adjacent vertices are distinguished.

With the working conjecture that graphs with maximum degree 3 had χat(G) ≤

5, we also obtained the following results for very specific families of 3-regular graphs.

Note χat(G) ≥ 5 is immediately true in this situation since we have two adjacent
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vertices of maximum degree. Therefore, each of the following proofs demonstrate

that five colors are sufficient for an AVDTC of the given graph.

Definition 2.14. Consider two disjoint n-cycles i1i2 . . . in and o1o2 . . . on. Let π

denote a permutation on n elements. Add to the set of edges ijoπ(j) for 1 ≤ j ≤ n.

We call the family of such graphs n-snares. If π is the identity permutation, we call

the graph a drum and denote it Dn.

Proposition 2.15. χat(Dn) = 5

Proof. Let f be a 4-AVDTC of Cn; let f ′(v) = f(v) + 1 mod 4 and similarly for

edges. Define g : V (Dn) ∪ E(Dn) → [5] as follows: g(ik) = f(ik), g(ikik+1) =

f(ikik+1), g(ok) = f ′(ok), g(okok+1) = f ′(okok+1), g(ikok) = 5. Since f is a proper

total 4-coloring of Cn, it is clear that g is a proper total 5-coloring of Dn. Furthermore,

since f is a 4-AVDTC of Cn, color sets of adjacent vertices in the same cycle are

still distinguished, and color sets of adjacent vertices in different cycles are 1-shifts

of each other, and therefore distinguished.

Proposition 2.16. Let G be an even snare. Then χat(G) = 5

Proof. Alternately color the vertices of the first cycle 1 and 2, and alternately color

its edges 3 and 4. Similarly, alternately color the vertices of the second cycle 3 and

4, and alternately color its edges 1 and 2. Color the matching 5. It is clear that this

is a proper total coloring. It is an AVDTC because any two adjacent vertices on the

same cycle are distinguished by their vertex color, and any two adjacent vertices on

different cycles are distinguished by their edge colors.

Proposition 2.17. Let G be an odd snare containing a C4. Then χat(G) = 5.

Proof. Without loss of generality, assume the C4 is induced by i1, o1, on, in in that

order. Define a partial 5-coloring of G as follows: for 2 ≤ j, k ≤ n − 1 , f(oj) = 1
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Figure 2.3: Odd Snare with a C4

if j is even or 2 if odd, f(ik) = 4 if k is even or 3 if odd, and f(ojik) = 5; for 2 ≤

j, k ≤ n, f(ojoj−1) = 4 if j is even or 3 if odd and f(ikik−1) = 2 if k is even or 1

if odd. Observe that this partial coloring leaves only the vertices and edges of the

C4 uncolored. Additionally, f is a proper coloring and provides the colored vertices

with color sets distinct from its neighbors; this distinguishing property can be seen

in the fact that adjacent vertices in the same cycle are distinguished by their vertex

color and adjacent vertices in different cycles are distinguished by their edge colors.

We define a total 5-coloring f ′ : V (G) ∪ E(G) → [5] as follows: f ′(x) = f(x)

when f(x) is defined; f ′(o1) = 3, f ′(i1) = 5, f ′(in) = 2, f ′(on) = 5, f ′(o1i1) = 1,

f ′(o1on) = 2, f ′(onin) = 4, f ′(ini1) = 3 (see Figure 2.3). We observe that this

total coloring is proper since f is proper and it can be seen that the coloring of the

C4 preserves this properness. Additionally, f ′ is adjacent vertex distinguishing: we

have already shown that the vertices colored by f are distinguished; also observe

that C(o1) = {1, 2, 3, 4}, C(on) = {2, 3, 4, 5}, C(i1) = {1, 2, 3, 5}, C(in) = {1, 2, 3, 4},

C(o2) = C(on−1) = {1, 3, 4, 5}, and C(i2) = C(in−1) = {1, 2, 4, 5}. Therefore, the

coloring of the C4 is also adjacent vertex distinguishing within itself and within the

coloring of the rest of the graph given by f .
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Figure 2.4: Contracting the Edges of a Snare

The final case, namely odd snares with no C4, have proven to be much more

elusive. The first unsolved case is for 7-snares, since every 3-snare is a drum and

the only 5-snare with no C4 is the Petersen graph. In practice, every small case

considered has had a 5-AVDTC that could be found without extreme difficulty. No

general proof for this case has been found, but I feel it almost certainly is true.

This case can be reduced to an edge coloring problem in the following manner.

Observe that for n-snares with no C4, by contracting the matching between the

two cycles a 4-regular graph with vertices v1, v2, . . . , vn is created (see Figure 2.4).

Refer to the edges corresponding to the outside cycle as outside edges, and those

corresponding to the inside cycle as inside edges. The goal is to find a proper edge

5-coloring of this graph with the following conditions: there exist a pair of adjacent

vertices with disjoint sets of colors appearing on their inside edges and a pair of

adjacent vertices with disjoint sets of colors appearing on their outside edges.

If such an edge coloring of this new graph exists, then there exists a corresponding

5-AVDTC of the original snare. Convert this graph back to an n-snare, preserving

all edge colorings, and coloring each new edge of the matching with the only available

color. Without loss of generality, say that o1 and on correspond to the adjacent
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Figure 2.5: Extending an Edge-Coloring to an AVDTC

vertices with disjoint colors on their inside edges and i1 and in correspond to the

adjacent vertices with disjoint colors on their outside edges.

Choose a color for each vertex in the order o1, o2, . . . , on obeying the following

rules: the color of oi must be chosen from the set of colors appearing on the inside

edges of vi; if c was chosen for oi−1, it cannot be chosen for oi; and if c is a possible

color for both oi−1 and oi but was not chosen for oi−1, then it must be chosen for oi.

Note that o1 and on have disjoint color options, so there will be no chance for the

coloring to be improper. Similarly, color i1, i2, . . . , in in that order following these

rules: the color of ij must be chosen from the set of colors appearing on the outside

edges of vj; if c was chosen for ij−1, it cannot be chosen for ij; and if c is a possible

color for both ij−1 and ij but was not chosen for ij−1, then it must be chosen for

ij. Again, i1 and in have disjoint color options, so this coloring will be proper (see

Figure 2.5).

The conditions of choosing vertex colors ensure that adjacent vertices on the

same cycle will not avoid the same color, thus their color sets must be distinct.

Adjacent vertices on different cycles are distinguished since the colors used on the

inside edges are disjoint from the colors used on the outside edges.
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In light of these results with this particular class of 3-regular graphs, I propose

the following conjecture.

Conjecture 2.18. For every graph G with maximum degree 3, χat(G) ≤ 5.
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3 Vertex Coloring Total Weightings

A graph weighting is an assignment of values, usually real numbers, to the elements

of the graph; it can be thought of as a graph coloring with the removal of the condition

that adjacent and incident graph elements have distinct colors. Coupling these

values with a commutative binary operation, addition for instance, induces a new

assignment of values to the vertices of a graph by taking the sum of all values on or

incident to the vertex. If adjacent vertices have distinct induced values, we say that

the graph weighting is vertex coloring; if every vertex has a distinct value, we say

the weighting is vertex distinguishing.

In 2004, Karoński,  Luczak, and Thomason introduced vertex coloring edge weightings

in [29]: the edges of a graph are assigned values; vertices are then assigned the sum

of the values appearing on its incident edges. It is clear in this instance that any

graph with an isolated edge cannot have a vertex coloring edge weighting, as the

two vertices on that edge will always have the same induced value. The authors

considered the following question: what restrictions can be placed on the set of

weights used so that it is still possible to find a vertex coloring edge weighting for

any graph without an isolated edge. They conjectured that it is always possible to

do so with the weight set {1, 2, 3}. The triangle shows simply that three different

weights are necessary. Kalkowski, Karoński, and Pfender recently showed in [28]

that the weight set {1, 2, 3, 4, 5} is sufficient for all such graphs.

In 2007, Przyby lo and Woźniak considered the related question where vertices

were also weighted in addition to the edges [32, 33]. These are known as vertex

coloring total weightings. In this extension, the requirement that graphs have no

isolated edge can be removed since individual vertices can be weighted. Furthermore,

it appears that at most two weights, not three, are necessary to induce a proper
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vertex coloring. This led Przyby lo and Woźniak to propose a conjecture analogous

to that made for vertex coloring edge weightings: every graph has a vertex coloring

total weighting using weight set {1, 2}.

Independent of Przyby lo and Woźniak, this problem was investigated by Lehel,

Ozeki, Yoshimoto, and myself. However, our motivation was different: we considered

this problem as a generalization of adjacent vertex distinguishing total colorings

where the assignment of colors did not need to be proper. We proposed that every

graph had a vertex coloring total weighting with weight set {0, 1} and {1, 2}; later,

we strengthened this to say any set of two distinct real values {a, b} would suffice.

Here I will examine progress on this guiding question as found in [26].

It should be noted that the use of natural numbers and addition in the cases

discussed here appears to be arbitrary. In fact, the same question could be posed

using any commutative semigroup. In general, it is not clear that the existence of a

vertex coloring weighting with one weight set should imply the existence of a vertex

coloring weighting with a different weight set; far be it that such results for one

semigroup should imply the same for another in general. For the sake of simplicity,

real numbers and addition will be used here.

3.1 Definitions and Basic Results

Unlike a proper coloring, here we are considering an assignment of numbers to the

vertices and edges of a graph where adjacent or incident elements are allowed to be

the same. Rather, we require that the sum of all numbers appearing at each vertex

be distinct from that of its neighbors.

Definition 3.1. Let G = (V,E) be a graph and w : (V ∪ E) → S, S ⊆ R, be

an assignment of real numbers, called weights, to the edges and vertices of G. For
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every v ∈ V , define the total weight sum to be W (v) = w(v) +
∑

uv∈E w(uv), which

we call the color of v. If W (u) 6= W (v) for all uv ∈ E, then we say that w is a

vertex coloring total S-weighting, in short an S-VCTW of G. If |S| = k, we call w

a k-VCTW.

In this language, the 1,2 conjecture can be stated as follows:

Conjecture 3.2. [32] Every graph G has a {1, 2}-VCTW.

In this same paper of Przyby lo and Woźniak, the conjecture was confirmed for

bipartite graphs, complete graphs, and graphs with maximum degree at most three.

In the subsequent paper [33], the conjecture was confirmed for 3-colorable and 4-

regular graphs. We will show more general results for each of these families. The

following is the best known result for general graphs and was found by Kalkowski;

it was mentioned in [28].

Theorem 3.3. Every graph G has a {1, 2, 3}-VCTW.

Proof. Let V (G) = {v1, v2, . . . , vn} and initially weight all vertices and edges of

the graph 2. For any vertex refer to the set of neighbors with lower index as left

neighbors, and neighbors with higher index as right neighbors. It suffices to show

that for every k ≥ 2, we can adjust the weight sum of vk so that it is distinct

from each left neighbor without changing the weight sum of any of those neighbors.

We describe such a procedure with the additional restriction that when adjusting

the weight sum of a vertex, its right neighbors do not have any incident weights

changed. This condition means that when adjusting the weight sum of vk, every

incident edge vkvj is still initially weighted 2.

If vk has ` left neighbors with vertex weight 2 or 3, there are ` possible larger

weight sums of vk that do not change the weight sum of any left neighbor: if vkvj
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describes such an edge, increase the weight of vkvj from 2 to 3 and decrease the

weight of vj by 1; this can be done ` times, resulting in as many distinct weight

sums of vk. Similarly, if vk has m left neighbors with vertex weight 1, there are

m possible smaller weight sums of vk that do not change the weight sum of any

left neighbor: if vj is such a neighbor, decrease the weight of vkvj from 2 to 1 and

increase the weight of vj from 1 to 2. Combined with the original unchanged weight

sum, this gives ` + m + 1 distinct possibilities for the weight sum of vk. Since vk

needs only to distinguish itself from ` + m neighbors, by the pigeonhole principle

there must be an option distinct from the weight sums of each of its left neighbors.

Most results on VCTW’s have used weight sets of the form {1, 2, . . . , k} for some

positive integer k, with particular interest in proving Conjecture 3.2. Here we consider

more general two element weight sets. It is not clear that the existence of {1, 2}-

VCTW’s should imply the existence of some other 2-VCTW; a simple bijection

between two different weight sets will not, in general, produce a new VCTW. We

introduce the notion of vertex coloring total labelings (VCTL’s): instead of summing

the weights appearing at a vertex v, the multiset of weights are considered; let C(v)

denote this multiset. It is clear that a bijection between weight sets would produce

new VCTL’s. These two notions of VCTW’s and VCTL’s are identical for regular

graphs, and thus bijections between weight sets do produce new VCTW’s.

Proposition 3.4. Let G be a k-regular graph. Then for distinct a, b ∈ R, G has an

{a, b}-VCTW if and only if it has an {a, b}-VCTL.

Proof. Let w : (V ∪ E) → {a, b}. We show that w is not a VCTL if and only if it is

not a VCTW. It is clear that for uv ∈ E, if C(u) = C(v), then W (u) = W (v).

Suppose W (u) = W (v). Assume u has m elements weighted a and n elements
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weighted b; similarly, assume v has m′ elements weighted a and n′ weighted b. Observe

that m+n = m′+n′ = k+1 and am+bn = am′+bn′, since W (u) = W (v). It follows

from these two observations that (m−m′)+(n−n′) = 0 and (m−m′)a+(n−n′)b = 0;

we conclude that c(a − b) = 0, where c = m − m′ = n′ − n, and so m = m′ and

n = n′ since a and b are distinct. Therefore C(u) = C(v).

Corollary 3.5. Let G be a k-regular graph. Then for a, a′, b, b′ ∈ R, where a 6= b

and a′ 6= b′, G has an {a, b}-VCTW if and only if it has an {a′, b′}-VCTW.

In approaching this subject, our working hypothesis is stronger than Conjecture

3.2: for any distinct real values a and b, every graph has an {a, b}-VCTW. We have

just shown that this is equivalent to the conjecture in the case of regular graphs.

For general graphs, it suffices to prove the hypothesis for distinct integers a and b

by means of the following lemma.

Lemma 3.6. Let G be a graph and a, b, c ∈ R, c 6= 0. Then G has an {a, b}-VCTW

if and only if it has an {ac, bc}-VCTW.

Proof. We claim an {ac, bc}-VCTW can be obtained from an {a, b}-VCTW by

replacing a weights with ac weights and b weights with bc weights. Let W (v) denote

the weight sum of v from the {a, b}-VCTW and W ′(v) denote the weight sum of v

from the {ac, bc}-weighting obtained in the manner described. Suppose this process

results in two adjacent vertices u and v with W ′(u) = W ′(v). Observe that W ′(u) =

cW (u) and W ′(v) = cW (v); this implies W (u) = W (v), a contradiction.

Our claim follows from the lemma in this way: suppose a
b
6= 1 is rational; then

there exists some real number c such that ac and bc are distinct integers. Thus

if there exists an {ac, bc}-VCTW, there exists an {a, b}-VCTW. Suppose a
b

= γ

is irrational; considering some {0, 1}-VCTW, we may obtain a {γ, 1}-VCTW by
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replacing every 0 weight with γ. Multiplying all weights by b gives us an {a, b}-

VCTW. Because of this, for many proofs we will consider only the case where a and

b are integers with (|a|, |b|) = 1.

We begin by proving the hypothesis for several simple families of graphs using

relatively simple arguments.

Theorem 3.7. Let G be a bipartite graph and a, b be distinct real numbers. Then G

has an {a, b}-VCTW.

Proof. Assume a and b are integers. Let V1, V2 denote the partite sets of G and

assume without loss of generality |a| ≤ |b|. If a = 0, weight the vertices of V1 with

b and all other elements with 0; since for v1 ∈ V1 and v2 ∈ V2 we have W (v1) = b

and W (v2) = 0, this results in a proper coloring. Assume a and b are nonzero and

suppose |a| < |b|. Weight the vertices of V1 with a and all other elements with b.

Observe that for v1 ∈ V1, W (v1) ≡ a mod b and for v2 ∈ V2, W (v2) ≡ 0 mod b.

Thus for uv ∈ E, W (u) 6= W (v). Now suppose |a| = |b|; that is, a = −b. By Lemma

3.6, it suffices to prove the existence of a {−1, 1}-VCTW. Weight all edges with 1

and weight the vertices as follows:

w(v) =



1 if v ∈ V1 and d(v) ≡ 0 or 1 mod 4

−1 if v ∈ V1 and d(v) ≡ 2 or 3 mod 4

−1 if v ∈ V2 and d(v) ≡ 0 or 1 mod 4

1 if v ∈ V2 and d(v) ≡ 2 or 3 mod 4

Observe W (v) = d(v) ± 1 for every vertex v. Suppose there exist adjacent

vertices v1 ∈ V1 and v2 ∈ V2 such that W (v1) = W (v2). Thus either d(v1) =

d(v2) or d(v1) = d(v2) ± 2. The former case implies w(v1) 6= w(v2) and thus

W (v1) 6= W (v2), a contradiction; the latter case implies w(v1) = w(v2) and thus
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again W (v1) 6= W (v2), a contradiction. Therefore no such adjacent vertices exist

and w is a {−1, 1}-VCTW.

Corollary 3.8. Trees have an {a, b}-VCTW for distinct real weights a and b.

Corollary 3.9. Every graph with maximum degree 2 has an {a, b}-VCTW for any

two distinct real weights a and b.

Proof. By Theorem 3.7, the result is true for paths and even cycles. By Corollary

3.5, it suffices to show odd cycles have a {1, 2}-VCTW. Suppose G is an odd cycle

(v1, v2, . . . , v2k+1). Let w(v1) = w(v1v2) = w(v2j) = 1 for 2 ≤ j ≤ k, and weight

all other elements with 2. This results in a weighting of G satisfying W (v1) = 4,

W (v2j) = 5 and W (v2j+1) = 6, for 1 ≤ j ≤ k.

Theorem 3.10. Let G be a complete multipartite graph and let a < b be real

numbers. Then G has an {a, b}-VCTW.

Proof. Let V1, V2, . . . , V` denote the maximal independent sets of G. Define Gi to be

the subgraph of G induced by
⋃i
m=1 Vm; furthermore set ki = |Vi| and ni = |Gi|. We

may assume the Vi’s are ordered so that that k2 ≤ k1, and furthermore that ki−2 ≤

ki for i odd and ki−2 ≥ ki for i even, where 3 ≤ i ≤ `. We incrementally weight

the elements of G as follows: at the ith step, weight Vi and its incident edges in Gi

with a or b for i odd or even, respectively. Let Wi(v) denote the weight sum of v at

step i.
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Here let vi denote a vertex of Vi. Observe that W2(v1) < W2(v2) since a + bk2 <

b+ bk1. For i ≥ 3 odd, we note that Wi(vi) < Wi(vi−2):

aki−1 + aki−2 < bki−1 + aki

aki−1 + aki−2 + ani−3 + a < bki−1 + aki + ani−3 + a

a(ni−1 + 1) < a(ni−3 + 1) + bki−1 + aki

Wi(vi) < Wi−2(vi−2) + bki−1 + aki

Wi(vi) < Wi(vi−2).

Similarly, for i ≥ 4 even, Wi(vi) > Wi(vi−2):

bki−1 + bki−2 > aki−1 + bki

bki−1 + bki−2 + bni−3 + b > aki−1 + bki + bni−3 + b

b(ni−1 + 1) > b(ni−3 + 1) + aki−1 + bki

Wi(vi) > Wi−2(vi−2) + aki−1 + bki

Wi(vi) > Wi(vi−2).

At each step i, the weight sum of each v ∈ V (Gi−1) increases by the same amount;

with our previous observations this implies for j odd and m even,

Wi(vj) < Wi(vj−2) < Wi(v1) < Wi(v2) < Wi(vm−2) < Wi(vm)

where 5 ≤ j,m ≤ i. Therefore Gi has an {a, b}-VCTW for 1 ≤ i ≤ `; since G` = G,

we have the desired result.
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Theorem 3.10 proves the existence of {a, b}-VCTW’s for many classic families of

graphs, including complete graphs, complete graphs with a matching removed, and

Turán graphs. Note also that in this proof we do not need to assume that a and b

are integers.

3.2 Three-colorable Graphs

We next consider the case of graphs with chromatic number three. We show that if

we choose a and b to be integers such that a 6≡ b mod 3, then there exists a total

{a, b}-weighting of any three-colorable graph so that the weight sums of adjacent

vertices are distinct modulo 3; in other words, the weighting induces a three-coloring.

Lemma 3.11. Let G be a three-colorable graph and a, b ∈ {1, 2, 3} be distinct. Then

G has an {a, b}-weighting w such that W (u) 6≡ W (v) mod 3 for every uv ∈ E.

Proof. Let x ∈ V (G) be a non-cut vertex of G and f be a three-coloring of G. Let

S1, S2, and S3 denote the color classes of f where x ∈ S1; let vi denote an arbitrary

vertex contained in Si. We claim there exists a total {a, b}-weighting of G where

W (vi) ≡ i mod 3 for every vi ∈ V (G) \ {x}. Suppose not; let w be a total {a, b}-

weighting with the fewest number of vertices such that W (vi) 6≡ i mod 3. Observe

if W (vi) 6≡ i mod 3, then either W (vi) ≡ i+a−b mod 3 or W (vi) ≡ i+b−a mod 3;

furthermore, observe that in the first case w(vi) = b and in the second w(vi) = a,

otherwise a correct weighting could be obtained simply by changing the weight of

vi. Since these two cases are symmetric, we may focus only on the first.

Consider the following scheme for reducing the number of incorrectly weighted

vertices or moving an incorrect weighting from vi to a neighbor vj. If w(vivj) = a,

change its weight to b; if w(vivj) = b, change its weight to a and change w(vi) to a.

Observe in both of these cases, this change results in a correct weighting for vi and
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only affects the weighting of vj. By using this process, we may “push” an incorrect

weighting of u along a uv-path by first moving the incorrect weighting of u to its

neighbor in the path and then iterating this process, starting at the next incorrectly

weighted vertex on the path.

When this process completes, there can be at most one incorrectly weighted vertex

in this path, namely v. If w has more than one incorrectly weighted vertex, this

number can be reduced by one by pushing a bad weighting along a path between

two of these vertices. Since w contains the fewest number of such vertices, we conclude

it can have at most one incorrectly weighted vertex, and furthermore we may push

it to any vertex in the graph; by pushing the bad vertex to x, we prove the claim.

If W (x) ≡ 1 mod 3, we are done. Suppose not; without loss of generality, let

W (x) ≡ 1 + a − b mod 3. If w(x) = a, then a correct weighting could be obtained

by changing w(x) to b; assume w(x) = b. Suppose x has two edges xy and xz with

the same weight. Since x is not a cut vertex, there exists a cycle C containing x,

y, and z. If we push the incorrect weighting of x along C so that at some point

no incorrect weighting is induced, we are done; otherwise, suppose we push the

weighting back to x, that is, all the way around C. Call these new weights w′. If

w(xy) = w(xz) = a, then w′(xy) = w′(xz) = b; by letting w′(x) = a, we have

W ′(x) = W (x) + 2(b − a) + (a − b) ≡ 1 mod 3. If w(xy) = w(xz) = b, then

w′(xy) = w′(xz) = a; by keeping w′(x) = b, we have W ′(x) = W (x) + 2(a − b) ≡ 1

mod 3.

If no xy, xz ∈ E(G) exist with the same weight, then either d(x) = 1 or d(x) = 2

and x has exactly one edge of each weight. If d(x) = 1, it has a unique neighbor y;

by choosing w(x) appropriately, we may conclude W (x) 6≡ W (y), thus proving the
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result. If d(x) = 2, then W (x) = a + 2b ≡ 1 + a− b mod 3; but this implies 3b ≡ 1

mod 3, a contradiction.

Most remaining values of a and b can be handled in a slightly simpler manner.

Theorem 3.12. Let G be a three-colorable graph and a and b be distinct real numbers.

Assuming without loss of generality |a| ≤ |b|, if a
b
6= −1

2
then G has an {a, b}-

VCTW.

Proof. It suffices to prove the result for integers. By Lemma 3.6 we may assume

(|a|, |b|) = 1. By Lemma 3.11, all that remains are a and b where a ≡ b mod 3; in

particular, note that the cases where |a| = |b| and |a| = 0 follow as a consequence

of this lemma. Thus we may assume 0 < |a| < |b|. Suppose |b| ≥ 4. Let S1, S2,

and S3 denote the color classes for a greedy 3-coloring of G (that is, every vertex in

Si has a neighbor in Sj where j < i). In S3, weight all vertices and incident edges

with b. In S2, weight each vertex a and exactly one edge connecting the vertex to

a neighbor in S1 with a; weight all other incident edges with b. In S1, all incident

edges should have been previously weighted. Weight each vertex of S1 so that W (v) 6≡

0 or 2a modulo |b|: if the weight sum of the incident edges is congruent to 0 or 2a

mod |b|, then weight the vertex a, otherwise weight it b. By our assumption that

|b| ≥ 4 and (a, b) = 1, it follows that 0, a, 2a, 3a mod b are all distinct values. Thus

W (vi) 6= W (vj) for vi ∈ Si and vj ∈ Sj where 1 ≤ i < j ≤ 3. Now suppose |b| < 4;

since 0 < |a| < |b| ≤ 3 and a ≡ b mod 3, we must have a = ±1 and b = ∓2, but

then a
b

= −1
2
.

I feel that the same result for the last case where the weight set used is {±1,∓2}

is almost certainly true, but obviously requires a different approach.
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3.3 Graphs with Small Maximum Degree

By Theorems 3.10 and 3.12, we may conclude that every graph with maximum

degree at most three has an {a, b}-VCTW for most pairs of real numbers a and b.

In examining the next case of graphs with maximum degree four, techniques quite

different from those previously used were needed. We restricted our investigation

to the specific, though not previously investigated, weight set {0, 1}. We use the

existence of a restricted {0, 1}-VCTW’s of graphs with maximum degree three to

draw conclusions about graphs with maximum degree four.

Lemma 3.13. If G is a graph with ∆(G) ≤ 3 then it has a {0, 1}-VCTW such that

W (v) ≥ 1 for every v ∈ V (G).

Proof. If G = K4, by Theorem 3.10, there exists a {0, 1}-VCTW of K4. If there

exists a vertex v with W (v) = 0, then every vertex has an incident edge weighted

0. By swapping all 0 and 1 weights, we obtain a new VCTW of K4 such that all

vertices have strictly positive color.

Now suppose G 6= K4. Consider a greedy 3-coloring of G into color classes S1,

S2, and S3. We will consider two types of vertices in S3: define T1 to be the set of

vertices in S3 which have exactly one neighbor in S1, and define T2 to be the set

of vertices in S3 with two neighbors in S1. Additionally, define Y to be the set of

vertices in S2 with two neighbors in S3, at least one of which is in T2. We aim to

weight G so that vertices in S1 and T1 have odd color while those in S2 and T2

have even color; furthermore, we will distinguish adjacent vertices that have the

same color parity. We will incrementally weight the vertices and edges of G in three

steps. At each step, let L(v) denote the sum of all incident edge weights up to that

step.
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Step 1. For each v ∈ S2 \ Y weight exactly one edge incident to a vertex in S1 by 1.

Weight all edges between S1 and T2 by 1.

Step 2. Let v ∈ S1 have exactly one neighbor x ∈ T1. Note that L(v) ≤ 2 since

v can have at most two neighbors in (S2 \ Y ) ∪ T2. If L(v) = 0, let u ∈ S2 be a

neighbor of x and weight vx, ux, and x by 1. If L(v) = 1, weight v and vx by 1; if

L(v) = 2, weight vx by 1.

Now let v ∈ S1 have exactly two neighbors x1, x2 ∈ T1. Note that L(v) ≤ 1 since

v can have at most one neighbor in (S2\Y )∪T2. If L(v) = 0, weight vx1, vx2, and v

by 1. If L(v) = 1, weight vx1 and vx2 by 1. If v has three neighbors x1, x2, x3 ∈ T1

then L(v) = 0 and we weight vx1, vx2, and vx3 by 1. If v ∈ S1 has no neighbors

in T1, choose w(v) so that W (v) is odd; that is, if L(v) = 0 or 2, let w(v) = 1,

otherwise let w(v) = 0.Weight all other vertices and incident edges in S1 and T1

with 0.

Note that at the end of Step 2, vertices in S1 and T1 have an odd color. Furthermore,

adjacent vertices in S1 and T1 have distinct colors.

Step 3. Let v ∈ S2 \ Y . If v has exactly one neighbor x ∈ T2, then L(v) = 1,

otherwise a higher value would imply v has a neighbor in T1, and thus v ∈ Y ;

weight vx and x by 1. If v has no such neighbor in T2, choose w(v) so that W (v)

is even; that is, if L(v) = 1 or 3, let w(v) = 1, otherwise let w(v) = 0. Note that

L(v) ≥ 1 from Step 1, so W (v) > 0. Suppose v ∈ Y has exactly one neighbor

x ∈ T2; note that 0 ≤ L(v) ≤ 1. If L(v) = 0, weight v, x, and vx by 1; if

L(v) = 1, weight x and vx by 1. Suppose v has two neighbors x1, x2 ∈ T2. In

this case L(v) = 0 and we weight vx1, vx2, x1, and x2 by 1. Weight all remaining

vertices and edges with 0.
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In Step 3 we have weighted only vertices in S2 and T2 and edges between them,

so adjacent vertex pairs in S1 and T1 that were distinguished in Step 2 remain distinguished.

Furthermore, vertices in S2 and T2 have even color such that adjacent pairs in these

two sets have distinct colors. Since vertices in S1 and T1 have odd color while vertices

in S2 and T2 have even color, adjacent pairs of vertices between these two collections

are distinguished. Therefore we have a {0, 1}-VCTW of G.

Theorem 3.14. If G is a graph with ∆(G) ≤ 4 then it has a {0, 1}-VCTW.

Proof. Let G be a graph with ∆(G) ≤ 4. We take a maximum independent set I of

G and let H be the subgraph of G induced by V (G)\ I. Since every vertex in V (H)

has a neighbor in I, we have ∆(H) ≤ 3. By Lemma 3.13, H has a {0, 1}-VCTW

such that no vertex is colored by 0. Extend this to a weighting of G by weighting

every other element with 0. Every vertex in I has color 0, and every vertex in H

has strictly positive color distinct from that of its neighbors in H. Thus adjacent

vertices have distinct colors.

Applying Corollary 3.5 gives the following immediate corollary:

Corollary 3.15. Let G be a 4-regular graph and a, b be distinct real numbers. Then

G has an {a, b}-VCTW.

3.4 Vertex Distinguishing Total Weightings

Allowing the additive identity in the weight set allows for an additional degree of

flexibility in finding VCTW’s. Removing some subset of the edges weighted zero

results in a new graph where the restriction of the original {0, 1}-VCTW to the

subgraph still colors the vertices. This fact also plays an important role in a restriction
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Figure 3.1: H7 Decomposed Into H6 and H5

of VCTW’s where every pair of vertices, regardless of adjacency, have distinct weight

sums.

Definition 3.16. Let G = (V,E) be a graph and S ⊆ R. We call a total weighting

w : (V ∪E)→ S a vertex distinguishing total S-weighting of G, S-VDTW for short,

if W (u) 6= W (v), for every u, v ∈ V .

Note that VCTW’s and VDTW’s are identical for complete graphs. If a {0, 1}-

VCTW of Kn is represented by a symmetric n × n matrix A = (aij) where aii =

w(vi) and aij = aji = w(vivj), observe that the vertices can be permuted in such a

way so that A forms an “anti-triangular” matrix: that is, the anti-diagonal running

from the bottom left to top right has entries all the same value say 1, all entries

above the anti-diagonal are 0, and all the entries below it are 1. This can be easily

seen since each row sum, corresponding to the weight sum of that vertex, must be

distinct from all other rows. If all of the edges weighted zero are removed from the

complete graph, the following graph is produced:

Definition 3.17. Let Hn be the graph defined as follows: V (Hn) = {v1, v2, . . . , vn},

and E(Hn) = {vjvk : j + k ≥ n+ 1}.
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This family of graphs has an interesting recursion property within it.

Proposition 3.18. For n ≥ 3, Hn − vn ∼= Hn−2 ∪ {v0}.

Proof. Denote uj = vj−1, j = 1, . . . , n − 1, a vertex of Hn−2 ∪ {v0}, and use vi,

i = 1, . . . , n − 1, to denote the vertices of Hn − vn. We claim that the bijection

vi ↔ ui, 1 ≤ i ≤ n− 1, is an isomorphism between Hn − vn and Hn−2 ∪ {v0}.

By the definition of Hn, we have vivj ∈ E(Hn − vn) if and only if i + j ≥ n + 1.

Similarly, by the definition of Hn−2, uku` ∈ E(Hn−2 ∪ {v0}) if and only if vk−1v`−1 ∈

E(Hn−2) if and only if k + ` ≥ n + 1. Therefore vivj ∈ E(Hn − vn) if and only if

uiuj ∈ E(Hn−2 ∪ {v0}).

The graphs Hn have several interesting properties that can be obtained easily by

the definition. There is exactly one maximum matching in Hn, the set Mn = {vjvk :

j + k = n + 1}. Furthermore, Hn
∼= Hn \Mn

∼= Hn−1 ∪ {v0}. This last fact implies

that Hn contains Hi as a subgraph for every 1 ≤ i ≤ n. This can perhaps be seen

more clearly by considering the vertices of Hn, call them v1, v2, . . . , vn, and reducing

each index by 1: since (i − 1) + (j − 1) ≥ n implies i + j ≥ n + 1, if vi−1vj−1 is

an edge in Hn−1 then vivj is an edge in Hn for 1 ≤ i, j ≤ n. Therefore v2, v3, . . . , vn

produce a copy of Hn−1 in Hn (see Figure 3.1).

The graph Hn is almost degree irregular: it has all degrees 1, . . . , n − 1, and just

two vertices are of the same degree bn
2
c. By defining w(vivj) = 1, for 1 ≤ i < j ≤ n,

w(vi) = 0 for i ≤ bn
2
c, and w(vi) = 1 for i > bn

2
c we obtain a {0, 1}-VDTW of Hn.

Proposition 3.19. Let G be a graph of order n. If G contains a copy Hn−1, then it

has a {0, 1}-VDTW.

Proof. Weight all elements of the copy of Hn−1 according to the previously described

weighting; weight all other elements of G with 0. Let v0 be the vertex not included
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by the copy of Hn−1. Clearly, W (v0) = 0 and the vertices in the copy of Hn−1 will

have distinct positive weights, thus we have obtained a {0, 1}-VDTW.

Proposition 3.20. Let G be a graph of order n. If G has a {0, 1}-VCTW then it

contains a copy of Hn−1.

Proof. We proceed by induction on n. The statement is clearly true for n = 2, since

H2
∼= P2 and H1 is a single vertex. Assume the statement is true for n = k − 1. Let

G be a graph of order k and let w be a {0, 1}-VDTW of G. Observe that by the

pigeonhole principle, G must contain either a vertex v with W (v) = 0 or W (v) = k.

Suppose G has a vertex v such that W (v) = 0. Let G′ = G − v. Observe that

w′, the restriction of the weighting w of G to G′, is a {0, 1}-VDTW of G′; otherwise

w would not be a {0, 1}-VDTW of G since all edges incident to v in G are weighted

0. Furthermore, there cannot exist a vertex in G′ with color 0, otherwise G would

have two vertices with color 0; so there must exist a vertex v′ in G′ such that W ′(v′) =

W (v′) = k − 1. Since |V (G′)| = k − 1, by hypothesis G′ contains a copy of Hk−1,

and thus so does G.

Suppose G has a vertex v such that W (v) = k. Let G′ = G − v. Observe

that w′, the restriction of the weighting w of G to G′, is a {0, 1}-VDTW of G′;

otherwise w would not be a {0, 1}-VDTW of G since v must be adjacent to all

other vertices in G and each incident edge is weighted 1. Furthermore, there cannot

exist a vertex in G′ with color k−1, otherwise G would have two vertices with color

k; therefore there exists a vertex v′ in G′ such that W ′(v′) = W (v′) − 1 = 0. Since

|V (G′)| = k − 1, by hypothesis G′ contains a copy of Hk−2 that misses some vertex.

By Proposition 3.18, since v is adjacent to every vertex in G′, G contains a copy of

Hk and thus a copy of Hk−1.
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By Propositions 3.19 and 3.20, we conclude the following:

Theorem 3.21. A graph G of order n has a {0, 1}-VDTW if and only if G contains

a copy of Hn−1.

3.5 Conclusion

Here we have confirmed all bipartite graphs, complete multipartite graphs, and

graphs with maximum degree 2 have an {a, b}-VCTW for any pair of distinct real

values a and b; we proved the same for three-colorable graphs when a
b
6= −1

2
. Furthermore,

we have shown that every graph with maximum degree at most four has a {0, 1}-

VCTW. In light of these, I propose the following:

Conjecture 3.22. Every graph has an {a, b}-VCTW for any distinct a, b ∈ R.

Conjecture 3.23. Every graph has a {0, 1}-VCTW.

Conjecture 3.22 is a generalization of Conjecture 3.2, and thus is likely a bit more

difficult to approach. The inclusion of the additive identity as a weight allows for

some useful techniques, as demonstrated by the proofs in Sections 3.3 and 3.4; as

such, I suspect that proving Conjecture 3.23 will be considerably easier than the

original 1,2 conjecture.

Extending the problem to other commutative semigroups would likely yield several

fruitful results. Observe that proving Conjecture 3.22 would also solve the related

problem where weights are multiplied: a solution to the additive problem using

weight set {ln |a|, ln |b|} would provide a solution to the multiplicative problem with

weight set {a, b} for 0 < |a| < |b| while an additive solution with weight set {−1, 1}

would provide a multiplicative weighting for the case a = −b.
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4 Edge List Multi-Coloring of Graphs with Measurable Sets

A variation on traditional graph colorings are list colorings. These were first

introduced in the late 1970’s by Vizing [37] and independently by Erdős, Rubin,

and Taylor [16]. In these problems, rather than having a communal collection of

colors to distribute among the elements of the graph, each particular edge or vertex

has a specified set from which its color can be chosen. The chosen colors must still

satisfy the requirements of a proper coloring. A multi-coloring, as the name suggests,

is one in which a set of colors are assigned rather than just a single one. Each element

is assigned a demand: a natural number indicating the number of colors to be assigned.

For edge multi-colorings, adjacent edges are required to have disjoint color sets.

Edge list multi-colorings of graphs combine both of these elements: edges are

colored with subsets of colors from a pre-determined list of colors for each edge.

This problem was investigated by Cropper, Gyárfás, and Lehel in [15] where they

determined that the class of connected graphs for which a relatively simple necessary

condition for such a coloring is also sufficient is exactly the trees. This idea was

later extended by Hilton and Johnson in [22] to consider measurable sets of colors,

rather than discrete ones.

4.1 Basics and Terminology

The problem of edge list multi-coloring is a generalization of the well-known problem

of finding a system of distinct representatives: given a collection of sets, when is it

possible to pick an element from each set so that every set has a distinct element?

In graph theoretic terms, the problem can be stated as follows: in a bipartite graph

with equal partite sets, when is it possible to find a perfect matching; that is, a

spanning 1-regular subgraph. However, the problem is perhaps most well-known
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when stated in a more traditional manner: in a town with an equal number of men

and women where each man is acquainted with a subset of the women and vice-

versa, when is it possible for everyone to be paired up in marriage? A simple necessary

condition is that each subset of men must be acquainted with at least as many

women: surely if four men know only three women between them, one man will

remain a bachelor. In fact, this obvious necessary condition is also sufficient for a

well-married town. This result is known as Hall’s marriage theorem [18].

Theorem 4.1. Let A1, A2, . . . , An be a collection of discrete sets. There exist distinct

xi ∈ Ai for every 1 ≤ i ≤ n if and only if every I ⊆ [n] satisfies |
⋃
i∈I Ai| ≥ |I|.

This classic result has been extended in many ways. The well-known proof of

Halmos and Vaughan in [19] actually extends to consider the case where there are

infinitely many sets and the case where each set is to have multiple representatives,

rather than just one. Bollobás and Varopoulos in [11] examined the problem when

infinitely many measurable sets are used.

To restructure this problem in terms of edge list colorings, consider each set to

correspond to a list of colors available to some edge of a star Sn = K1,n. The

case where each set requires multiple representatives is exactly an edge list multi-

coloring problem in this setting. The aim of Cropper, Gyárfás, and Lehel in [15]

was to generalize this condition described in Theorem 4.1 for all graphs, not just

stars, and classify those graphs for which this generalized Hall’s condition was sufficient

for the existence of a list multi-coloring.

Definition 4.2. Let G = (V,E) be a graph, L : E → 2N be an assignment of color

lists, and w : E → N be an assignment of demands. For any subgraph H ⊆ G

and color γ ∈ N, define the subgraph of H induced by all edges containing γ in its

color list given by L to be the support of γ in H, denoted by HL,γ. The maximum
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number of edges in a 1-regular subgraph of H is called the matching number and

is denoted ν(H). We say that the ordered triple (G,L,w) satisfies the generalized

Hall’s condition if for every subgraph H ⊆ G we have

∑
γ∈N

ν(HL,γ) ≥
∑

e∈E(H)

w(e).

If there exists a coloring φ : E → 2N such that φ(e) ⊆ L(e), |φ(e)| = w(e) and

φ(e) ∩ φ(f) = ∅ for any pair of adjacent edges e, f ∈ E, then we say that φ is an

edge list multi-coloring of (G,L,w).

As in the original problem, it is clear that satisfying this inequality is necessary

for a list multi-coloring of G to exist: the right hand side denotes the total number

of colors needed to satisfy the demands of H while the left hand side denotes the

maximum number of colors that can be assigned, without regard for satisfying specific

color demands, such that no two adjacent edges share a color. As we have just

discussed, it was known that this condition is also sufficient for stars. In [15], the

authors proved that the class of connected graphs for which satisfying generalized

Hall’s condition was also sufficient for a list multi-coloring to exist were the trees.

Motivated by this result, Hilton and Johnson examined in [22] the corresponding

problem wherein the colors used are measurable sets.

Definition 4.3. Let (X,A, µ) be a measure space. We say that (X,A, µ) is non-

atomic if for every A ∈ A with µ(A) > 0, there exists a B ⊂ A with 0 < µ(B) <

µ(A). Given a non-atomic measure space (X,A, µ) and a graph G = (V,E), let

L : E → A be an assignment of color lists and w : E → R+ be an assignment of

demands. We say that (G,L,w) satisfies the measurable generalized Hall’s condition
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if for every subgraph H ⊆ G we have

∫
X

ν(HL,γ) dµ(γ) ≥
∑

e∈E(H)

w(e).

If there exists a coloring φ : E → A such that φ(e) ⊆ L(e), µ(φ(e)) = w(e), and

µ(φ(e) ∩ φ(f)) = 0 for any pair of adjacent edges e, f ∈ E, then we say that φ is an

edge list multi-coloring of (G,L,w).

One important aspect of non-atomic measure spaces is that given any set A of

positive measure k > 0, for every 0 ≤ ` < k there exists some subset B ⊂ A

such that µ(B) = `. Since we are considering only finite graphs and L : E → A,

it follows that ν(HL,(·)) : X → N is a measurable function. Note also that the

condition that µ(φ(e) ∩ φ(f)) = 0 could be replaced by φ(e) ∩ φ(f) = ∅ for finite

graphs: the latter clearly implies the former, while to get from the former to the

latter we would simply remove these sets of measure zero without affecting Hall’s

condition. The Hilton and Johnson in [22] actually stated the problem as a vertex

coloring one; here I have transposed the terms and results into the more familiar

problem of edge colorings. The authors confirmed that the class of connected graphs

for which satisfying the measurable generalized Hall’s condition was both necessary

and sufficient for an edge list multi-coloring are the trees.

4.2 Hall’s Theorem for Finitely Many Measurable Sets

The proof of the main result in [22] requires the use of certain methods of functional

analysis. A somewhat simplified proof of the same result was presented by Hladký,

Kráal, Serenit, and Stiebitz in [24], although it still relied on analytical methods.

Since the problem is still mostly combinatorial in nature and especially since only
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finite graphs are considered, it seemed that a more elementary proof of the result

avoiding limit arguments must be possible.

In pursuit of this, we considered proofs of the problem for stars; that is, the finite

case of the result of Bollobás and Varopoulos [11]. Both [22] and [24] used this

result. Although certainly true, we were somewhat dissatisfied with the existing

proofs that we found: it seemed as though the correct proofs required too much

machinery for our purposes while the more elementary proofs were either incomplete

or incorrect. Interestingly enough, this result has applications in mathematical

economics; in the book [21] about a topic in this area, Hildenbrand gave a seemingly

incomplete proof of a somewhat weaker result. Here we give a full new proof of

Hall’s theorem for measurable sets in the language of edge list multi-colorings.

Lemma 4.4. Suppose S` is a star and (X,A, µ) is a non-atomic measure space.

Let L : E(S`) → A be an assignment of color lists and w : E(S`) → R+ an

assignment of demands. If (S`, L, w) satisfies the measurable generalized Hall’s

condition, then it has an edge list multi-coloring.

Proof. We proceed by induction on `. For ` = 1, the result is trivial. Suppose the

result holds for all ` < m. Consider some (Sm, L, w) satisfying Hall’s condition.

For each subgraph H ⊆ Sm, define δH :=
∫
X
ν(HL,γ) dµ −

∑
e∈E(H)w(e); since

(Sm, L, w) satisfies Hall’s condition, δH ≥ 0 for every H ⊂ Sm. Let J ⊆ Sm be

such that δJ is minimum among all proper subgraphs. Denote by I the subgraph

Sm \ E(J) with the isolated vertices removed; thus I and J are both stars with

fewer than m edges. Let R =
(⋃

e∈E(J) L(e)
)
∩
(⋃

e∈E(I) L(e)
)

. Choose D ⊆ R such

that µ(D) = min{µ(R), δJ}.

Define L′ : E(Sm) → A as follows: for e ∈ E(J), L′(e) = L(e) \D; for e ∈ E(I),

L′(e) = L(e) \
⋃
f∈E(J) L

′(f). Every edge in J has a color list in L′ disjoint from
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the color list of each edge in I, thus it suffices to show Hall’s condition holds for

(J, L′, w) and (I, L′, w).

For every subgraph H ⊆ J , observe

ν(HL′,γ) ≥ ν(HLγ)− 1 for γ ∈ D

ν(HL′,γ) = ν(HL,γ) for γ 6∈ D .

It follows that,

∫
X

ν(HL′,γ) dµ ≥
∫
X

ν(HL,γ) dµ− µ(D)

≥
∑

e∈E(H)

w(e) + δH − δJ

≥
∑

e∈E(H)

w(e).

Thus (J, L′, w) satisfies Hall’s condition.

Consider H ⊆ I; define H∗ = H ∪ J . If µ(D) = µ(R), then µ(L(e) \ L′(e)) = 0

for all e ∈ E(H), and so Hall’s condition is still satisfied. Suppose µ(D) = δJ ,

and so
∫
X
ν(JL′,γ) dµ =

∑
e∈E(J)w(e). Define DH = D \

⋃
e∈E(H) L

′(e); these

are colors originally present in
⋃
e∈E(J) L(e) that were removed in the definition of

L′ and are not present in
⋃
e∈E(H) L

′(e). Equivalently, DH =
(⋃

e∈E(H∗) L(e)
)
\(⋃

e∈E(H∗) L
′(e)
)

. Recall too that
(⋃

e∈E(J) L
′(e)
)
∩
(⋃

e∈E(H) L
′(e)
)

= ∅. Observe

ν(HL′,γ) + ν(JL′,γ) = ν(H∗L′,γ) for γ ∈ X

ν(H∗L′,γ) = ν(H∗L,γ)− 1 for γ ∈ DH

ν(H∗L′,γ) = ν(H∗L,γ) for γ 6∈ DH .
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Note that if H∗ = S`, then µ(DH) = 0; otherwise δH∗ − µ(DH) ≥ δH∗ − δJ ≥ 0 by

the minimality of δJ . It follows then that

∫
X

ν(HL′,γ) dµ+

∫
X

ν(JL′,γ) dµ =

∫
X

ν(H∗L′,γ) dµ

=

∫
X

ν(HL,γ∗) dµ− µ(DH)

=
∑

e∈E(H∗)

w(e) + δH∗ − µ(DH)

≥
∑

e∈E(H)

w(e) +
∑
e∈E(J)

w(e).

and so
∫
X
ν(HL′,γ) dµ ≥

∑
e∈E(H)w(e). Thus (I, L′, w) satisfies Hall’s condition and

the lemma holds.
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