348 research outputs found

    Providing Hard Real-Time Guarantees in Context-Aware Applications: Challenges and Requirements

    Full text link

    Exploring the Creation and Humanization of Digital Life: Consciousness Simulation and Human-Machine Interaction

    Full text link
    Digital life, a form of life generated by computer programs or artificial intelligence systems, it possesses self-awareness, thinking abilities, emotions, and subjective consciousness. Achieving it involves complex neural networks, multi-modal sensory integration [1, 2], feedback mechanisms, and self-referential processing [3]. Injecting prior knowledge into digital life structures is a critical step. It guides digital entities' understanding of the world, decision-making, and interactions. We can customize and personalize digital life, it includes adjusting intelligence levels, character settings, personality traits, and behavioral characteristics. Virtual environments facilitate efficient and controlled development, allowing user interaction, observation, and active participation in digital life's growth. Researchers benefit from controlled experiments, driving technological advancements. The fusion of digital life into the real world offers exciting possibilities for human-digital entity collaboration and coexistence.Comment: 10 page

    Designing Ecosystems of Intelligence from First Principles

    Full text link
    This white paper lays out a vision of research and development in the field of artificial intelligence for the next decade (and beyond). Its denouement is a cyber-physical ecosystem of natural and synthetic sense-making, in which humans are integral participants -- what we call ''shared intelligence''. This vision is premised on active inference, a formulation of adaptive behavior that can be read as a physics of intelligence, and which inherits from the physics of self-organization. In this context, we understand intelligence as the capacity to accumulate evidence for a generative model of one's sensed world -- also known as self-evidencing. Formally, this corresponds to maximizing (Bayesian) model evidence, via belief updating over several scales: i.e., inference, learning, and model selection. Operationally, this self-evidencing can be realized via (variational) message passing or belief propagation on a factor graph. Crucially, active inference foregrounds an existential imperative of intelligent systems; namely, curiosity or the resolution of uncertainty. This same imperative underwrites belief sharing in ensembles of agents, in which certain aspects (i.e., factors) of each agent's generative world model provide a common ground or frame of reference. Active inference plays a foundational role in this ecology of belief sharing -- leading to a formal account of collective intelligence that rests on shared narratives and goals. We also consider the kinds of communication protocols that must be developed to enable such an ecosystem of intelligences and motivate the development of a shared hyper-spatial modeling language and transaction protocol, as a first -- and key -- step towards such an ecology.Comment: 23+18 pages, one figure, one six page appendi

    Interactive skin through a social- sensory speculative lens

    Get PDF
    This paper uses a speculative lens to explore the social and sensory trajectories of Interactive Skin, a class of skin-worn epidermal devices that augment the human body in ways that are significant for affective techno-touch. The paper presents and discusses the use of a speculative narrative on Interactive Skin futures produced through an exploratory research-collaboration with a Human–Computer Interaction (HCI) lab, combining data from speculative methods (cultural probe returns and a future-orientated workshop) with an ethnographic sensitivity to writing. The speculative narrative is in the form of a found archive of fictional fragments that are research provocations in their own right. We discuss their potentials, including the ability to foster interdisciplinary dialogue between social and HCI researchers and to agitate the socio-technological space of interactive skin futures, as well as their limitations. The paper concludes that a socially orientated speculative approach can provide useful insights on the interconnection between the senses, society, and technology in the context of emergent affective techno-touch technologies

    Advanced Occupancy Measurement Using Sensor Fusion

    Get PDF
    With roughly about half of the energy used in buildings attributed to Heating, Ventilation, and Air conditioning (HVAC) systems, there is clearly great potential for energy saving through improved building operations. Accurate knowledge of localised and real-time occupancy numbers can have compelling control applications for HVAC systems. However, existing technologies applied for building occupancy measurements are limited, such that a precise and reliable occupant count is difficult to obtain. For example, passive infrared (PIR) sensors commonly used for occupancy sensing in lighting control applications cannot differentiate between occupants grouped together, video sensing is often limited by privacy concerns, atmospheric gas sensors (such as CO2 sensors) may be affected by the presence of electromagnetic (EMI) interference, and may not show clear links between occupancy and sensor values. Past studies have indicated the need for a heterogeneous multi-sensory fusion approach for occupancy detection to address the short-comings of existing occupancy detection systems. The aim of this research is to develop an advanced instrumentation strategy to monitor occupancy levels in non-domestic buildings, whilst facilitating the lowering of energy use and also maintaining an acceptable indoor climate. Accordingly, a novel multi-sensor based approach for occupancy detection in open-plan office spaces is proposed. The approach combined information from various low-cost and non-intrusive indoor environmental sensors, with the aim to merge advantages of various sensors, whilst minimising their weaknesses. The proposed approach offered the potential for explicit information indicating occupancy levels to be captured. The proposed occupancy monitoring strategy has two main components; hardware system implementation and data processing. The hardware system implementation included a custom made sound sensor and refinement of CO2 sensors for EMI mitigation. Two test beds were designed and implemented for supporting the research studies, including proof-of-concept, and experimental studies. Data processing was carried out in several stages with the ultimate goal being to detect occupancy levels. Firstly, interested features were extracted from all sensory data collected, and then a symmetrical uncertainty analysis was applied to determine the predictive strength of individual sensor features. Thirdly, a candidate features subset was determined using a genetic based search. Finally, a back-propagation neural network model was adopted to fuse candidate multi-sensory features for estimation of occupancy levels. Several test cases were implemented to demonstrate and evaluate the effectiveness and feasibility of the proposed occupancy detection approach. Results have shown the potential of the proposed heterogeneous multi-sensor fusion based approach as an advanced strategy for the development of reliable occupancy detection systems in open-plan office buildings, which can be capable of facilitating improved control of building services. In summary, the proposed approach has the potential to: (1) Detect occupancy levels with an accuracy reaching 84.59% during occupied instances (2) capable of maintaining average occupancy detection accuracy of 61.01%, in the event of sensor failure or drop-off (such as CO2 sensors drop-off), (3) capable of utilising just sound and motion sensors for occupancy levels monitoring in a naturally ventilated space, (4) capable of facilitating potential daily energy savings reaching 53%, if implemented for occupancy-driven ventilation control

    Proceedings of the 4th Workshop on Interacting with Smart Objects 2015

    Get PDF
    These are the Proceedings of the 4th IUI Workshop on Interacting with Smart Objects. Objects that we use in our everyday life are expanding their restricted interaction capabilities and provide functionalities that go far beyond their original functionality. They feature computing capabilities and are thus able to capture information, process and store it and interact with their environments, turning them into smart objects

    GECAF : a generic and extensible framework for developing context-aware smart environments

    Get PDF
    The new pervasive and context-aware computing models have resulted in the development of modern environments which are responsive to the changing needs of the people who live, work or socialise in them. These are called smart envirnments and they employ high degree of intelligence to consume and process information in order to provide services to users in accordance with their current needs. To achieve this level of intelligence, such environments collect, store, represent and interpret a vast amount of information which describes the current context of their users. Since context-aware systems differ in the way they interact with users and interpret the context of their entities and the actions they need to take, each individual system is developed in its own way with no common architecture. This fact makes the development of every context aware system a challenge. To address this issue, a new and generic framework has been developed which is based on the Pipe-and-Filter software architectural style, and can be applied to many systems. This framework uses a number of independent components that represent the usual functions of any context-aware system. These components can be configured in different arrangements to suit the various systems' requirements. The framework and architecture use a model to represent raw context information as a function of context primitives, referred to as Who, When, Where, What and How (4W1H). Historical context information is also defined and added to the model to predict some actions in the system. The framework uses XML code to represent the model and describes the sequence in which context information is being processed by the architecture's components (or filters). Moreover, a mechanism for describing interpretation rules for the purpose of context reasoning is proposed and implemented. A set of guidelines is provided for both the deployment and rule languages to help application developers in constructing and customising their own systems using various components of the new framework. To test and demonstrate the functionality of the generic architecture, a smart classroom environment has been adopted as a case study. An evaluation of the new framework has also been conducted using two methods: quantitative and case study driven evaluation. The quantitative method used information obtained from reviewing the literature which is then analysed and compared with the new framework in order to verify the completeness of the framework's components for different xiisituations. On the other hand, in the case study method the new framework has been applied in the implementation of different scenarios of well known systems. This method is used for verifying the applicability and generic nature of the framework. As an outcome, the framework is proven to be extensible with high degree of reusability and adaptability, and can be used to develop various context-aware systems.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • …
    corecore