
GECAF: A GENERIC AND EXTENSIBLE

FRAMEWORK FOR DEVELOPING

CONTEXT-AWARE SMART ENVIRONMENTS

Angham SABAGH

School of Computing, Science and Engineering
University of Salford, Salford, UK

Submitted in Partial Fulfilment of the Requirements of the
Degree of Doctor of Philosophy, September 2011

TABLE OF CONTENTS

LIST OF FIGURES ... v

LIST OF TABLES ... vii

ACKNOWLEDGEMENTS viii

ABBREVIATIONS ... ix

ABSTRACT.. xii

CHAPTER 1: Introduction... 1

1.1 Ubiquitous Computing...2

1.2 Context-Aware Computing... 3

1.3 Smart Environments.. 5

1.4 Research Problem.. 9

1.5 Research Aim and Objectives. 10

1.6 Research Questions. ... 11

1.7 Research Methodology... 11

1.8 Contribution to Knowledge.. 15

1.9 Thesis Layout. .. 15

CHAPTER 2: Context Representation and Applications - Review.. 17

2.1 Introduction to Context and Context Awareness 17

2.2 Aspects of Context Representation.................................. 18

2.2.1 Characteristics of Context Information......................... .18

2.2.2 Context History. ... 21

2.2.3 Context Modelling. ...22

2.3 Aspects of Context-Aware Applications............................. .30

2.4 Applications in Smart Environments................................ .32

2.5 Summary.. 33

CHAPTER 3: Context-Aware Architectures- Review and Analysis. 34

3.1 Software Architecture Styles.34

3.1.1 Client-Server Architecture.34

3.1.2 Layered Architecture 35

3.1.3 Pipe-and-Filter Architecture.................................. 35

3.1.4 Event-Based Architecture. 36

3.1.5 Repository Architecture.36

3.1.6 Model-View-Controller Architecture. 37

3.1.7 Agent Based Architecture. 37

3.1.8 Service-Oriented Architecture.38

3.2 Context-Aware Systems. ... 39

3.2.1 Layered Context-Aware Systems. 39

3.2.2 Centralised, Server Based Context-A ware Systems. 42

3.2.3 Agent Based Context-Aware Systems.43

3.2.4 Other Context-Aware Systems. 46

3.3 Elements of Context-A ware Architecture - Review. 49

3.3.1 Sensory and Context Abstraction. 49

3.3.2 Context Modelling..52

3.3.3 Aggregation.53

3.3.4 Context Reasoning. .. .54

3.3.5 Application... 56

3.3.6 Management and Service Discovery.57

3.3.7 Knowledge Base. .. 58

3.4 Analysis of Context-Aware Systems with Respect to Architecture Styles. . . .59

3.5 Analysis of Context-Aware Systems with Respect to Context

Representation... 61

3.6 Analysis of Context-A ware Systems with Respect to Context History and

Knowledge Base. ...62

3.7 Comparison of Context-Aware Systems.63

3.8 Context-Aware Issues.. 66

3.9 Summary. ... 67

CHAPTER 4: Research Approach and Concepts...................68

4.1 The Conceptual Scheme of The Proposed Framework.68

4.2 Context Representation. .. 70

4.2.1 Context Classification and Definitions. 70

4.2.2 Sensor Terminology. 72

4.2.3 Context Modelling. .. .73

4.3 The Generic Framework Design. 75

4.3.1 The Generic Pipe-and-Filter Architecture.75

n

4.3.2 Basic Guidelines for Arranging the Architecture Components.78

4.3.3 Application Types. ... 79

4.3.4 Context-aware Architecture Deployment Language (CADL).80

4.3.5 System Manager and Scheduler. 81

4.4 Framework Realisation in Smart Environments - Classroom Scenario...... 82

4.9 Summary. ... 83

CHAPTER 5: GECAF Framework - Implementation 84

5.1 The Pipe-and-Filter Components. 84

5.1.1 Getters85

5.1.2 Formatter. ... 85

5.1.3 Adder. .. 86

5.1.4 Interpreter. .. .88

5.1.5 Manipulator.. 88

5.1.6 Outputer.89

5.2 The Interpretation Rule Engine.90

5.3 Deployment of the Framework Filters.93

5.3.1 Instantiating the Framework Filters............................. .93

5.3.2 Using the Creational Pattern for Abstracting the Creation Process..... .94

5.3.2.1 Factory Method Design Pattern.95

5.4 Event Triggered System Initiation.96

5.5 The Conceptual Process for Using the Pipe-and-Filter Framework. 98

5.6 Case Study in a Smart Classroom Scenario...........................100

5.7 Summary. .. 103

CHAPTER 6: Validation and Critical Evaluation................. 104

6.1 Criteria for Evaluating the GECAF Framework. 104

6.1.1 Framework Features...106

6.2 Validating the GECAF Framework.107

6.2.1 Validation Using a Quantitative Method.107

6.2.2 Validation Using Case Study................................. .111

6.2.2.1 Case Study for the Context Toolkit......................... 111

6.2.2.2 Case Study for the SOCAM System. 113

6.3 Summary. .. 114

in

CHAPTER 7: Conclusions and Future Work.....................115

7.1 Conclusions. .. 115

7.2 Framework Limitations. ...116

7.2 Future Work. ..116

PUBLICATIONS ... 118

REFERENCES...119

BIBLIOGRAPHY .. 130

APPENDICES... 133

IV

LIST OF FIGURES

Figure 1.1: Architecture of a sensor node. 8

Figure 1.2: Two configurations of sensor networks.8

Figure 1.3: Research methodology.12

Figure 2.1: Existing work and primitive context............................. 21

Figure 2.2: Context feature space. ..25

Figure 2.3: 3-D Context Model. ... 25

Figure 2.4: Example to modelling a scenario............................... .26

Figure 2.5: Class hierarchy diagram for context ontology.27

Figure 2.6: Context ontology and partial serialisation.28

Figure 2.7: CALA-ONT model and its properties. 29

Figure 2.8: Real World Model. .. 29

Figure 3.1: Layered architecture style. 35

Figure 3.2: Pipe-and-Filter architecture style.36

Figure 3.3: Blackboard architecture style.37

Figure 3.4: MVC architecture style. 37

Figure 3.5: Layered architecture of TEA system.39

Figure 3.6: Context stack architecture. 40

Figure 3.7: Real world modelling architecture.40

Figure 3.8: General architecture..41

Figure 3.9: CADBA architecture. .. 41

Figure 3.10: CASS architecture. ... 42

Figure 3.11: SOCAM architecture.43

Figure 3.12: CoBrA architecture... 43

Figure 3.13: Multi-agent based architecture.................................44

Figure 3.14: CALA architecture. .. .45

Figure 3.15: Multi agent service resembling architecture. 45

Figure 3.16: A-CoBrA architecture. 46

Figure 3.17: Context toolkit architecture. 47

Figure 3.18: CMF architecture.47

Figure 3.19: Sentient object model.48

Figure 3.20: ubi-UCAM architecture.48

Figure 3.21: WCAM architecture. -49

Figure 4.1: GECAF framework components and relationships between them. 69

Figure 4.2: Context classification...70

Figure 4.3: Ontology to represent the relations between context categories. 71

Figure 4.4: Pipe-and-Filter architecture filters.77

Figure 4.5: System Manager and Scheduler 82

Figure 5.1: Getter filter of the GECAF framework. 85

Figure 5.2: Formatter filter of the GECAF framework. 86

Figure 5.3: Adder filter of the GECAF framework. 87

Figure 5.4: Interpreter filter of the GECAF framework........................88

Figure 5.5: Manipulator filter of the GECAF framework. 89

Figure 5.6: Outputer filter of the GECAF framework......................... 90

Figure 5.7: The XML rule engine using the interpreter design pattern93

Figure 5.8: Factory method design pattern.95

Figure 5.9: A simplified UML diagram for the Generic Framework.97

Figure 5.10: Component diagram shows general filter types.98

Figure 5.11: Filter diagram for the Role context. 100

Figure 5.12: Classification to context information in classroom environment. 101

Figure 5.13: Filter diagram for lecture type and font size contexts. 101

Figure 5.14: Smart classroom web page. 102

Figure 5.15: A visualisation of the smart classroom with the designed website. ... 103

Figure 6.1: Architecture components used by the context-aware systems.109

Figure 6.2: Architecture styles of the reviewed context-aware systems. 109

Figure 6.3: Filter diagram representing Presence context. 112

Figure 6.4: Filter diagram representing Meeting context.112

Figure 6.5: In/Out Board and Mailing list implementation using the new

framework. ... 113

Figure 6.6: filter diagram representing Locatedln context.113

Figure 6.7: Filter diagram architecture representing has Activity................114

Figure A. 1: SOAP message. ... 133

Figure D. 1: Interpreter design pattern.................................... 139

Figure K. 1: The context toolkit In/Out Board and Mailing List applications using

iButton docking sensor. 150

VI

LIST OF TABLES

Table 2.1: Examples of context atoms.23

Table 2.2: A comparison to existing modelling techniques.30

Table 3.1: A comparison to the software architecture styles.................... 38

Table 3.2: Comparison to context-aware systems - context representation.........64

Table 3.3: Architecture comparison of context-aware systems. 65

Table 4.1: General filter types. .. 77

Table 5.1: The interpreter's rules.90

Table 6.1: Architectural comparison for different context-aware systems. 108

vn

ACKNOWLEDGMENTS

I would like to thank my supervisor Dr. Adil Al-Yasiri for his contributions of time,

ideas, experience and patience in making this PhD thesis possible. His enthusiasm and

motivation encouraged me to achieve all the requirements sought for.

I would also like to thank my family, parents, sisters, and brother for their continuous

patience and support; especially to my husband for his encouragement and assistance

throughout the period of study.

Lastly, I offer my regards and gratitude to all those who offered their support

throughout this work.

vni

ABBREVIATIONS

4W1H

5W1H

A-CoBrA

ADC

API

CADBA

CADL

CALA

CALA-ONT

CAMUS

CASS

CCA

CDL

CID

CLIPS

CMF

CoBrA

Who, Where, When, What, and How

Who, Where, When, What, Why, and How

Activity-Context Broker Architecture

Analogue to Digital Converter

Application Programming Interface

Context-aware Architecture Based on Context Database

Context-aware Architecture Deployment Language

Context-Aware Learning Architecture

Context-A ware Learning Architecture - Ontology

Context-Aware Middleware for URC System

Context-Awareness Sub-Structure

Context Collecting Agent

Context Description Language

Context Identification Code

C Language Integrated Production System

Context Management Framework

Context Broker Architecture

COBRA-ONT Set of ontologies provided by CoBrA

CONON

CORTEX

CPU

DB

DOM

EID

CONtext ONtology

CO-operating Real-time senTient objects: architecture and

Experimental evaluation

Central Processing Unit

Database

Document Object Model

Event identification

IX

FIFO

GPRS

GPS

GSM

GUI

HTML

ID

US

IR

ISIS

KS

LDAP

MVC

MySQL

ORM

OS

OWL

OWL-DL

PC

PDA

PERKAM

PHP

QoS

RAM

RDF

RF

RFID

First In First Out

General Packet Radio Service

Global Positioning System

Global System for Mobile communications

Graphical User Interface

HyperText Markup Language

IDentification

Internet Information Services

Infrared

Internal Situation Store

Knowledge Source

Light weight Directory Access Protocol

Model View Controller

My Structure Query Language

Object Role Modelling

Operating System

Web Ontology Language

Web Ontology Language Description Logic

Personal Computer

Personal Digital Assistant

PERsonalised Knowledge Awareness Map

PHP: Hypertext Preprocessor

Quality of Service

Random Access Memory

Resource Description Framework

Radio Frequency

Radio Frequency Identification

x

RID

ROM

RFC

RPN

RWM

SICL

SOAP

SOCAM

SQL

ubi-UCAM

UDDI

UML

USB

WCAM

WiFi

WSDL

XML

Rule Identification Code

Read Only Memory

Remote Procedure Call

Reverse Polish Notation

Real World Model

Smart-Its Context Language

Simple Object Access Protocol

Service-Oriented Context-Aware Middleware

Structured Query Language

Unified Context-A ware Application Model

Universal Description, Discovery and Integration

Unified Modelling Language

Universal Serial Bus

Watcher, Controller, Action, and Model

Wireless Fidelity

Web Services Description Language

extensible Mark-up Language

XI

ABSTRACT

The new pervasive and context-aware computing models have resulted in the

development of modern environments which are responsive to the changing needs of

the people who live, work or socialise in them. These are called smart envirnments

and they employ high degree of intelligence to consume and process information in

order to provide services to users in accordance with their current needs. To achieve

this level of intelligence, such environments collect, store, represent and interpret a

vast amount of information which describes the current context of their users. Since

context-aware systems differ in the way they interact with users and interpret the

context of their entities and the actions they need to take, each individual system is

developed in its own way with no common architecture. This fact makes the

development of every context aware system a challenge. To address this issue, a new

and generic framework has been developed which is based on the Pipe-and-Filter

software architectural style, and can be applied to many systems. This framework uses

a number of independent components that represent the usual functions of any

context-aware system. These components can be configured in different arrangements

to suit the various systems' requirements. The framework and architecture use a

model to represent raw context information as a function of context primitives,

referred to as Who, When, Where, What and How (4W1H). Historical context

information is also defined and added to the model to predict some actions in the

system. The framework uses XML code to represent the model and describes the

sequence in which context information is being processed by the architecture's

components (or filters). Moreover, a mechanism for describing interpretation rules for

the purpose of context reasoning is proposed and implemented. A set of guidelines is

provided for both the deployment and rule languages to help application developers in

constructing and customising their own systems using various components of the new

framework. To test and demonstrate the functionality of the generic architecture, a

smart classroom environment has been adopted as a case study. An evaluation of the

new framework has also been conducted using two methods: quantitative and case

study driven evaluation. The quantitative method used information obtained from

reviewing the literature which is then analysed and compared with the new framework

in order to verify the completeness of the framework's components for different

xii

situations. On the other hand, in the case study method the new framework has been

applied in the implementation of different scenarios of well known systems. This

method is used for verifying the applicability and generic nature of the framework. As

an outcome, the framework is proven to be extensible with high degree of reusability

and adaptability, and can be used to develop various context-aware systems.

xin

Chapter 1

Introduction

During the past two decades, many evolutions have triggered new era in computing.

Among those are the rapid growth of the micro-electronics industry, the advances in

communication technology, and the internet evolution. As distributed systems are the

current model of computing; it is therefore not limited to desktop applications.

Moreover, the aforementioned developments drew the attention for the emergence of

ubiquitous computing and context awareness paradigms. The new paradigms utilise

resources effectively to solve the new challenges in almost every aspect of our life

and present a better mode of living. As a result, different applications emerged; one of

these applications is the smart environment. Ubiquitous computing is considered

important and has been regarded as the driving force behind these environments [1]. It

supports the implementation of smart environments, as a broad space of invisible

computational devices are used, and are graciously integrated with human users, so

services are provided for the users without their intervention [2]. Context awareness is

one of the drivers of ubiquitous computing paradigm and another key for providing

prevalent mode of services and interaction in smart environments. A system is

context-aware if it exploits the surrounding information to adapt its behaviour without

explicit intervention from the users. The surrounding information should be captured,

modelled and abstracted to make sense to the application. Hence, a well designed

model is a key to access context information in any context-aware system, and a

general context model is of interest since many applications can benefit from it [3].

Moreover, a generic context-aware framework implementing the general model is

required to assist building these systems. Finally, a generic rule mechanism to form

various context dependent rules is also essential for context interpretation and

abstraction. All these issues are discussed in this thesis and the related enabling

technologies are then presented. Existing work is outlined to give insight into the

previous researches done in this field.

1.1 Ubiquitous Computing

Ubiquitous computing is the third era of computing, and also known as pervasive

computing where one person benefiting from many computers. It is subsequent to

mainframes (single computer for many persons), and personal computers (one

computer is dedicated for one person) [4]. This new computing model uses the

potential of information and computing technologies to implicitly and naturally aid

people in their daily life. It is the age of calm technology, where computing devices

resides out in the world with people. Mark Weiser [2, 5] introduced the idea of

ubiquitous computing by describing the 21st century computers as; "the most

profound technologies are those that disappear. They weave themselves into the fabric

of everyday life until they are indistinguishable from it". This vision, perceives that

computing devices are vanished into the background, so people are freed to using

them without thinking; they give attention to tasks rather than tools (computing

devices) that perform the task.

Ubiquitous computing uses a combination of computing devices that have many

forms and sizes, where each suits particular task. These computing devices are

embedded in almost every object in the environment including cars, clothing,

appliances, and various consumer goods; communicating through an interconnected

network. They could be either mobile (wearable or portable) or fixed; for example

tabs, pads, boards, etc. Ubiquitous computing employs systems that adapt and react

with people, predict their behaviour and requirements. As pervasive systems may be

geographically large, heterogeneous and distributed sensing is necessary to interact

with people and monitor their activities in a scalable mode [6]. Finally, pervasive

systems gather information from many sensors to interpret users' situation which is

based on their action. Therefore, there should be solutions for access rights to this

information to protect it from unauthorised access. The enabling factors for the

revolution of ubiquitous computing are the following: -

 The development of low power consumption microelectronic technology, small,

cheap and light weight; like small cameras, microphones, fingerprint sensors,

tabs, sensor networks, etc.

 The existence of advanced, smart, high performance and new mobile devices

such as Personal Digital Assistant (PDA), smart phones, smart papers, live

boards, etc.

 Increase in processing speed and storage capacity.

 The evolution of the internet, and web technology.

 Advances in communication technology, with high data transfer rate at lower

cost; e.g. fibre optics, wireless and mobile technology (GPRS, Bluetooth, WiFi,

etc.).

 Standardisation of system components.

 Advances in the field of information security.

Ubiquitous computing offers much convenience to our lives, by freeing people

from direct interaction with computers. However, ubiquitous computing applications

are complicated and are difficult to realise, as there are many aspects that should be

considered when building these systems, such as lack of information and others

regarding ethical and social issues.

1.2 Context-Aware Computing

The world is based on the surrounding information that our human bodies are able to

sense and interpret. People are aware of their environment; they interact with the

outside world through their five senses. Through them, they receive information, and

then the nervous system conveys the information to the brain to infer what this

information could be about and finally responds (do an action). It is in a similar

natural way context-aware systems should work. The notion of context and context

awareness is introduced by many researchers, and observed in many applications

since the end of the past century. Different aspects of context-aware systems have

been studied and explored; these include context dimensions, modelling techniques,

system architecture, reasoning techniques and their applications. Frameworks,

middleware, and infrastructure for context-aware systems are also considered and

constructed; although these approaches are still evolving. Security and privacy of

context information is another important issue which inspires users' confidence if it is

well handled.

"Context-awareness is an inherent feature of pervasive computing" [7]; it eases the

interaction with computers, by automating the way of collecting information and

adapting system behaviour. The word 'context' is defined as any information that can

be used to characterise the situation of an entity. A system is context-aware if it

utilises this information to change its behaviour without user intervention [8]. The

surrounding information refers to identity (identification of a user in a service

environment and could include user profile), time (when context is generated and

valid), and location of use (physical and electronic space [9]). Other pieces of

surrounding information are activity (users expression and behaviour), and

environment (nearby people, weather condition, etc). All these pieces of context

information are the primitive contexts which are acquired by software and/or

hardware sensors. For more relevance and reliable context information, some systems

employ the scheme of sensor fusion (combination of multiple sensors [10]). The

acquired information could be either static or dynamic, as these pieces of information

change over time, with location, user's situation and other contexts. Since context

information is dynamic, historical context would be of great importance; it predicts

user's intention, current and future context. Historical context can be used with other

information from internal or external sources to enrich the context-aware system and

form a new context. Consequently, a large repository is required to store historical

data. Recently advances in Cloud computing storage, Google health and HealthVault

will solve the growing problems of data and shared storage.

Context representation provides a vocabulary to express context to be easily

exploited, stored as knowledge base, reused, and enables reasoning. Several

approaches to modelling context are introduced; each represents context information

differently, with some approaches using hybrid models. These models include key-

value, mark-up scheme, graphical model, object oriented, ontology based, and other

application specific models. Reasoning is another feature of context-aware systems; it

is about the abstraction of context to find meaningful information. Moreover, context-

aware systems cover a wide area of applications [11], for example tour guides,

reminder systems, context-aware mobile services, context-aware response to

emergency, etc. Context-aware applications are divided into three different categories

based on how they make use of context information. These categories are: information

tagging for later retrieval and use, information and service presentation to the user,

and automatic execution of a service [8].

The above discussion reveals the main elements of a context-aware system; these

are sensing, modelling, interpretation, aggregation, storage/retrieval, management,

and application (provide services), these are summarised as follows: -

 The sensing element represents a variety of sensors that acquire information from

the environment to form primitive context information.

 The modelling element transforms primitive context information into machine

readable format.

 The interpretation element is used for reasoning i.e. infer the abstracted context

(meaningful context).

 The aggregation element collects and fuses several pieces of abstracted context

data in order to enrich the context information.

 The storage/retrieval element is used either to store the historical context

information and to form the context knowledge base, or to retrieve information

from (external and internal) sources to enrich the context information.

 The application element takes the action and provides services.

 The management element governs and manages the whole system process.

1.3 Smart Environments

Smart environments serve people in their everyday live, at home, work and social life;

functioning invisibly and unobtrusively in the background, freeing people from

tedious and routine tasks. They integrate technology and services, interact with people

and other entities to assist them and deliver a better quality of living. These

environments interact with individuals through embedded devices to automatically

acquire information from their surrounding, predict and process gathered information

so they become meaningful. This information is then used to adapt the environment

according to the user intention and needs by providing customised services without

technical operation or user intervention.

Smart environment belongs to the field of ambient intelligence; it is an augmented

spacious environment occupied with many sensors, actuators and computing devices

[12]. These devices are embedded and integrated into a distributed computing system

to sense the environment, and execute intelligent logic on computing devices to serve

its inhabitants by actuators. These environments predict and automate inhabitants'

actions [13], The decision of the executed action should be precise and error free to

5

avoid correction, which can lead to performing the action manually. Suo et al. [14]

have described three phases of smart spaces; these are individual space (a smart

human-computer interactive space), open smart space (use of mobile devices, roaming

with the users to discover smart space environment and making use of the resources in

the space) and smart community (multiple smart spaces communicating and

coordinating with each other).

The design of such environments need a combination of contemporary

technologies; these include smart devices, wireless mobile communication, new

computing paradigm like distributed computing, middleware, and scalable systems

[15, 16]. Smart environments employ three groups of resources [17]; these are control

resources, context resources, and interaction resources. The application type

determines what resources are required to accomplish its goal. Control resources are

the controllable network devices that are accountable for changing the environment,

such as security locks, fire alarms, etc. Context resources are sensors and environment

information that generates context information. Interaction resources are human-

computer interaction devices such as mobile phones, PDAs, computers TV set etc. In

brief, the following features of smart environments can be found: -

 They are physical spaces with various functions; they use large number of

heterogeneous (static and mobile) devices and sensors, like laptops, smart phones,

Personal Digital Assistants (PDA) (a handheld device that has the function of

cellular phone, fax, provide Internet connectivity, management of personal

information, run application software, etc. PDAs can interface, and synchronise

with computer systems, which may require some optional accessories). Other

examples are Global Positioning System (GPS), cameras, sensor networks,

Radio-Frequency Identification (RFID) technology (a device for tracking which

is used to implicitly acquire identity information), etc.

 The communication infrastructure which uses remote communication between

devices (wired and wireless) is made through technologies like WiFi, Infrared

(IR), Bluetooth, and Radio Frequency (RF).

 They cover wide range of environment types such as homes, offices, workplaces,

classrooms, and vehicles.

 The interaction with these environments is natural as between people in

everyday's life. It will, therefore, free people from attention to computers. The

communication can be accomplished by using voice, gesture, biometric,

implanted sensors, etc; and it should be event driven to avoid delay experienced

in a polling operation.

 They facilitate the collaboration between users and devices through agents or

embedded devices.

 There is a continuous interaction, or automatic capture of events to adapt the

environment, and dynamic capability to manage and process information

changes.

 They have the ability to model captured information; put the information in a

format to become useful and machine readable.

 They have the ability of controlling, reasoning and decision making.

 They are context-aware, and have some perceptual capabilities, i.e. the ability to

predict and be aware of the surrounding situation using low-level details and

abstracted information acquired from different sources, and provide services

without user intervention.

 These environments are user-friendly, seamless interaction, and with good quality

of service (QoS).

 They should employ information security; i.e. what information is collected from

users through sensing and monitoring, and how to prevent unauthorised access.

Smart environments employ pervasive context-aware computing paradigms in their

construction, in particular location aware systems. In these systems various ways of

identifying location can be used. Sensing is the main function of these systems, which

provides means to automatically acquire information about the location. Some

examples to the most common location and identity awareness devices are: -

1. The Radio Frequency Identification (RFID) [18]: This technology employs tags

or transponders (smart cards, labels, etc.) that are carried by users or attached to

objects. The RFID reader (transceiver controlled by microprocessor or digital

signal processor) handles the reading and writing from/into these tags. Then, a

coiled antenna supplements the read/write processes at a distance; where the

antenna size determines the read range. It differs from bar codes in using radio

waves to read data from tags rather than optically scanning the label on barcodes.

The tag is a circuit that reflects electromagnetic energy emitted continuously by

the reader, in order to exchange information. RFIDs come in many sizes and

shapes to suit the applications. They have three types: passive, active, and semi-

passive. Passive tags do not need batteries but need external electromagnetic field

received from the reader to initiate a signal transmission. Active tags need

batteries, and can transmit signals once an external source is identified. Active

tags have built-in electronics including sensors, microprocessors and input/output

ports, which allow them to be used for a variety of applications [19]. Semi-

passive RFID tags use battery to monitor the environment, but rely on the reader

to supply its power for broadcasting signals to the reader. RFID tags have three

storage types; read-write, read-only and write once - read many.

2. Wireless sensor networks [20]: These networks made up of a very large number

of small nodes. Each node is equipped with sensors, analogue to digital converter

(ADC), processor (CPU), storage memory, power supply, and transceiver to send

and receive data, as shown in Figure 1.1. Sensors transform the physical quantity

from the environment into electric signals, which are then converted into digital

(by the ADC) to be processed and stored in the memory. Sensors are powered

with low power batteries, which are mostly not rechargeable. As shown in Figure

1.2, sensor networks consist of nodes which are scattered in a sensor field (some

geographical area), in order to sense the environment. The area is divided into

clusters, and nodes in each cluster communicate with a gateway (or sink) to

collect the data from the nodes. Sensor networks work in one of two modes of

operation, where either the nodes communicate directly with the gateway of the

cluster, or communicate through chaining.

Figure 1.1: Architecture of a sensor node [20]

O Sensor node

A Galewav

Figure 1.2: Two configurations of sensor networks [20]

8

3. Personal Digital Assistant (PDA) [21]: PDAs have small microprocessors, ROM

memory to store the basic programmes, RAM memory to add users' programmes,

and are powered by batteries. They have visual displays and audio capabilities.

PDAs have different types of operating systems (OS): Palmtop, a special version

of Microsoft Windows called Windows CE, Symbian, and Android. The Palmtop

OS is used for handheld devices, the Windows CE is a general purpose OS for

wireless and personal systems, and the Symbian OS is an open operating system

for portable and handheld devices. Android OS is used for internet and mobile

applications.

4. Global Positioning System (GPS) [22]: It is a navigation system based on a

number of satellites placed into the orbit. A GPS system uses triangulation

information to compute the user's location which can be made by measuring the

distance to a number of satellites. In this case the time delay between the

transmitted and the received signal is measured. Two dimensional location can be

measured using the signal of three satellites, while three dimensional location can

be calculated using four satellite signals.

1.4 Research Problem

From reviewing literature, it was found that context-aware systems are not

widespread, where these systems are complex and very difficult to build. Many issues

found with these systems; one of the issues related to these systems is the choice of

the architecture used. It is found that each system use a different architecture style;

however the layered architecture is the predominant one. The layered architecture has

the benefits of hiding the low-level details, and supports separation between context

acquisition and context use. It allows problem partitioning and supports enhancements

and reuse. However, one of the disadvantages associated with such architecture is that

not all systems are easily structured using this style. It does not actually solve

problems of adaptability and restructuring. Besides, defining layers for some systems

is not trivial as implementation can differ vastly from the model and it may be

difficult to find the right levels of abstraction. This architecture style is usually found

in networked and communication systems. Due to the complexity of context-aware

systems, it is difficult to use this architecture style to support various applications as it

lacks the ability to reconfigure, extensibility, and is difficult to standardise. It is to

say, there is an inherit problem with context-aware systems for not being similar.

Also, there is no common pattern of system organisation; yet, each system is different

and deals with different parameters and entities. Nonetheless, context-aware systems

have common usual functions, which can be used recursively. Therefore, there is a

need for a generic and extensible framework to support a variety of context-aware

applications. The framework should facilitate the design of reusable and independent

components that represent the common functions of any context-aware system, which

can be assembled to construct a given application. The framework should simplify

system maintainability, reliability, adaptability, extensibility, scalability, system

development and application deployment rather than using a single monolithic

structure.

1.5 Research Aim and Objectives

• Research Aim

The aim of this research is to propose a generic and extensible framework to support

the design of a variety of context-aware systems. The framework should be made of

standard components which represent the main functionalities of any context-aware

system. These components should be reusable and could be extended to create new

components based on abstracted ones. This would make the framework generic and

extensible which enable application designers to build their own systems. It would

also reduce the complexity of the design and simplify the implementation of a variety

of context-aware applications.

• Research Objectives

Five objectives have been acknowledged to achieve the research aim. The objectives

for this research are as below: -

1. To propose a general context model to abstract context primitives into a machine

readable format. This model should consider dynamically changing context

information such as historical data.

2. To design generic software architecture implementing the general context model

provisions in pervasive computing.

3. To design an architecture deployment language (using XML code), to enable

application developers identify the architecture components, the context in use

10

and also to specify a particular application on the network. An XML rule

language is needed to identify rules used to infer abstracted context in the

interpretation and reasoning processes.

4. To study and apply different design tools such as design patterns and frameworks,

for the benefit of achieving the generic feature of the context-aware systems.

5. To apply the proposed model and the new framework to a typical smart

environment in order to assess their functionalities and performance; also to

discover failures and identify defects.

1.6 Research Questions

A number of questions have come up during the research process; these questions will

be answered in the subsequent stages of the research process, these are: -

1. What is context-awareness? What are the main components of a context-aware

system? Are there general context models and generic frameworks to construct

these systems? Why do we need them, and what problems can be solved using

these artefacts? How do the general model and the generic framework simplify

the system design process? Also, how generic is the solution, and are these issues

really applicable to any system?

2. How to make the context model general and how can we ensure that the

framework is generic, extensible and scalable?

3. What is context history, why do we need it, and how can we add it to the

proposed model?

4. What are the main categories of context-aware applications, and how can they be

implemented?

1.7 Research Methodology

To understand and address questions related to the nature of the research problem the

experimental research methodology is adopted which is primarily described and

analysed by the positivist school [23]. This methodology aims at enabling researchers

to follow a solid structure for defining a set of experimental steps which involve the

definition layout, implementing, processing and analysing the results obtained by

experimentation. This research undertakes the following activities to accomplish the

11

objectives and answer the research questions. Figure 1.3 shows the sequence of these

activities.

Literature Review

Analysing and Identifying Problems of
Existing Context-Aware Systems

JL
Defining the Context Model and

the Generic Framework

JL
Testing and Implementation

Evaluation and
Refinement

Finalise by Case Study

Presenting the Results

Figure 1.3: Research methodology

Activity 1: Literature Review

The first activity of the research is to conduct a review of previous related literature in

order to acquire a thorough knowledge and understanding of pervasive context-aware

systems. This will establish a more detailed definition of the research topic, the

hypothetical framework and also identifying the core problem of existing context-

aware systems. The experience learned from previous literature will prove useful

during the development stage. Different types of context modelling techniques,

context-aware system architectures and application categories are studied in details as

they are essential in the domain of context-aware systems and smart environments.

Also, a literature review has been conducted to gain a deep insight into existing

software architecture styles in order to determine an architecture which best fits to the

proposed system requirements. Finally, a number of researches regarding existing

smart environments have been reviewed in chapters 2 and 3.

Activity 2: Analysing and Identifying Problems with Existing Context-A ware

Systems

Problems pertaining to existing context-aware systems are identified in this activity. It

started with studying the characteristics of context-aware systems and analysing the

12

way context information can be represented and stored. Attention then is given to find

a general model for representing different pieces of context information. Afterwards a

study of existing context-aware architectures has been conducted to analyse their

functionalities in order to identify what building blocks constitute these architectures,

and also to identify their strengths and deficiencies. An analysis of software

architecture styles is carried out to find the most suitable style in designing the generic

context-aware architecture. Application categories of context-aware systems are

studied as well. From this analysis, a number of research questions and related

problems are raised. As an outcome of the analysis, finding a solution to some of the

existing problems and research questions was a big challenge.

Activity 3: Defining the Context Model and the Generic Framework

The contribution of the research is of three parts; firstly, a new and general context

model is proposed and represented using a new XML based language. This simple

model characterises context information as a function of context primitives. Secondly,

an extensible and generic framework is proposed to represent the common

functionalities (architecture components) of the context-aware systems which is

followed by the design of an XML based deployment language for arranging the

architecture components. Finally, an XML rule mechanism which is concerned with

context interpretation is designed and implemented. A detailed design is discussed in

chapter 4.

Activity 4: Testing and Implementation

In order to be confident with the proposed solution, its generic nature and

functionality, the proposed framework should be illustrated and assessed. Therefore, a

typical case study (smart classroom application) is picked to illustrate the proposed

context-aware architecture. Moreover, a scenario is written to examine the generic

framework performance and under different circumstances. The scenario describes a

complex arrangement that deals with different context information aspects

(environmental context information and context history, static or dynamic). The

implemented application should also deals with different types of entities (human or

non-human) such as persons and temperature. Object oriented programming language

and other enabling technologies (Mark-up Languages, scripting language and web

13

services languages) will be used in the implementation. Detailed information is given

in chapter 5.

Activity 5: Evaluation and Refinement

After studying problems related to context-aware systems, a preliminary idea to the

design concept is proposed. It is based on the generic Pipe-and-Filter architecture.

This concept is justified throughout studying and analysing existing context-aware

architectures. Thereafter, an implementation for a given case study is set. Lessons

learned from analysing the implemented case study are then used to find defects in the

research concept and refine the proposed solution (generic architecture). Next,

different case studies are examined carefully and critically evaluated to determine if

further improvement and adjustments are necessary. This analysis resulted in adding

missing building blocks to the designed architecture, refining the context model, and

using an architecture style to govern the system and support multiple contexts.

Afterwards, it was thought of building a framework that can be used by application

developers to create the architectural building blocks. In this case creational design

patterns are adopted to customise the building blocks of the context-aware system and

adjust the design.

Finally, some criteria are used to evaluate the framework and justify our finding.

This is accomplished by using the proposed framework building blocks to realise

existing and well known context-aware systems. The selected systems are capable of

using different context dimensions and application categories.

Activity 6: Finalise by Case Study

The smart classroom environment is finalised in this stage of the research. Such

environment could use a networked system employing web services with advanced

technologies including wireless devices and sensors (such as RFID) to achieve the

required degree of intelligence. Then different contexts are used to test the

functionality of the design.

Activity 7: Presenting the Results

The last activity comprised presenting the results through publications (three papers in

national and international conferences), a poster, and finally writing up of a thesis to

present the complete work to the University of Salford doctoral committee.

14

1.8 Contribution to Knowledge

During this PhD research, literature regarding context-aware systems has been

reviewed, through which a number of issues have been found; one of these issues is

the complexity of these systems. Accordingly, there is a need to propose a generic and

extensible framework that minimises efforts required for building these systems. The

contribution of this research is a new way for building context-aware systems, through

building the generic and extensible framework that supports the design of a variety of

these systems. During the design process a conceptual scheme has been set to show

how different concepts collaborate to build the framework. The conceptual scheme

included descriptions of a number of concepts that constitute the major elements of

the new approach. These elements are a context classification, sensor terminology and

a structure for describing the context model using a Context Description Language

(CDL). Based on the developed context model, the generic framework that employs a

Pipe-and-Filter architecture is built. This framework makes use of the reusable and

independent components which represent the usual functions of context-aware

systems. In this framework, six abstract and reusable building blocks are used. These

are the acquisition, context representation, aggregation, data manipulation,

interpretation, and application blocks. Context-aware Architecture Deployment

Language (CADL) is used to put all these blocks together. CADL can also be used to

represent different contexts which are distinguished using context identification code

(CID). To govern the whole system operation and handle continuous context changes,

the management block is employed. It assists in sequencing events and activates the

whole system operation; see chapter 4.

The new framework depends on context model which arranges context information

in a structured way in order to facilitate context reasoning and abstraction. Context

history is also added to the model to enrich the context information. XML reasoning

rules mechanism is proposed to support context abstraction. Therefore, different

context related rules can be used and are distinguished using rule identification code

(RID).

1.9 Thesis Layout

This thesis is organised as follows: -

15

 Chapter 1 gives a brief introduction to the new computing technologies and smart

environments. It also includes the problem domain, the research aim and

objectives, research methodology, and the contribution to knowledge.

 Chapter 2 depicts a brief review and analysis to context-aware systems,

concentrates on context information dimensions. Context-aware systems

considered context history are also reviewed to address related issues, as context

information is dynamic, and changes over time. Context modelling is also studied

and all modelling techniques were reviewed. A brief review to context-aware

applications and applications in smart environments are also given.

 Chapter 3 presents a literature review and analysis which concentrates on

software architecture styles. Then challenges and issues of context-aware systems

regarding their architectures, and the software elements that constitute these

systems are given.

 Chapter 4 demonstrates the research contribution. It gives details of the design

development of a general context model, a new generic Pipe-and-Filter

architecture and a rule mechanism. It also explains the languages used to

assemble the architecture components and to set the interpretation rules.

Moreover, different action types and applications categories will be given.

Finally, scenario of a smart classroom is given as a case study, which considers

all the relevant issues for the design progress.

 Chapter 5 presents the system framework; it describes the realisation and

deployment of the generic architecture using different creational design patterns.

Considering the smart classroom scenario, different examples are given to test the

framework functionality.

 Chapter 6 adopts a set of heuristics to validate the proposed framework. Then

two methods (quantitative and case study) are used to evaluate the framework.

The quantitative method includes a comparison of some well known context-

aware systems with the proposed framework. The case study method includes

realising existing and well known systems using the framework building blocks.

 Chapter 7 gives concluding remarks of the proposed framework, and discusses

some possible directions for future research.

16

Chapter 2

Context Representation and Applications - Review

The notion of context and context awareness are introduced by many researchers, and

observed in many applications since the end of the past century; although these

systems are still at their early stages. This chapter presents a review of existing work

related to context-aware systems to study their features and design. The background

research covers challenges to context information dimensions: context primitives and

context history. It also covers issues in context modelling and context-aware

applications. At the end of the chapter, smart environment applications with

preference to context-aware pervasive computing are reviewed and discussed in terms

of their capability and performance in handling context information.

2.1 Introduction to Context and Context Awareness

Context-aware systems use the current status of users and other entities in the

environment to adapt their behaviour according to the instantaneous requirements of

the users and other objects that interact with them. Such systems need to define what

constitutes the context (current status) of those entities and take actions accordingly.

Researchers look for a seamless definition to context and context awareness, to assist

them recognise the margins of context-aware computing, help application designers

select context to use, structure context in applications, and choose what context-aware

features to implement [8]. The following shows an overview to how researchers

define context and context awareness.

The notion of context-aware computing was first introduced by Schilit et al. [9];

they defined context as the constantly changing environment. Then, Schmidt et al.

[24, 25] simply defined context as that which surrounds and gives meaning to

something. Schmidt et al. [26] also described context awareness as knowledge about

users and IT devices state, including surroundings, situation and location. According

to Salber et al. [27] context is described as any environmental information that is

relevant to the interaction between user application, and that can be sensed by the

application. A more comprehensive and most usable definition to context and context

awareness is given by Dey et al. [8]. This definition makes it easier for application

developers to specify the context in application scenario; "context is any information

that can be used to characterise the situation of an entity. An entity is a person, place,

or object that is considered relevant to the interaction between a user and an

application, including the user and applications themselves". Their definition to

context awareness is: "a system is context-aware if it uses context to provide relevant

information and/or services to the user, where relevancy depends on user's task".

Another definition to context is given by Gross et al. [28], which described context-

awareness as a set of attributes (name, administrator, human members of context,

location, artefact, applications, events, access control list of a context, and related

contexts). They extend Dey and Abowd's [8] definition to context awareness by

extending user's task to contain information about users whole work context. To

conclude, it was found that Dey's definition is the closest in spirit to our work and

realistic, therefore this definition is adopted in the context of this research. Also, the

characteristics of context information are: dynamic, inconsistent, and dependable on

application situation [29]. Context is the meaningful properties about that which

surrounds and gives meaning to something else [30].

2.2 Aspects of Context Representation

An in-depth review to existing work is done in order to be aware of what constitutes

context, and how context information are represented and used in different

applications. In the following sections challenges to some of these aspects will be

presented.

2.2.1 Characteristics of Context Information

To design a context-aware system, it is important to identify the characteristics of

context information. These include the pieces of context information (context

primitives), how context is described, classified and grouped. Many previous works

show what constitutes a context; for example, Schilit et al. [9] for the first time listed

three important parts of context (where you are, who you are with, and what resources

18

are nearby). While Ryan et al. [31] suggested context types of location, environment,

identity and time. Dey et al. [8] gave a general definition to context, and found that

the presence of other people in the room does not affect the user or the application for

the purpose of this task. Therefore, it is not context; whereas user's location, identity

and time are context. Context-aware applications look at who's, where's, when's and

what's (that is, what the user is doing) of entities and use this information to

determine why the situation is occurring. Therefore, location, identity, activity and

time are important types of information to characterise context, i.e. they use 'activity'

rather than 'environment' as presented by Ryan [31]. An operational definition to

context is given by Dey [32] stating that context is all about the whole situation which

is relevant to an application and its set of users. He couldn't enumerate which aspects

of all situations are important as situation may change. He looked at two pieces of

information: weather and the presence of other people, and use the definition to

determine whether either one was context. Therefore, the weather does not, but

presence of other people is context because it can be used to characterise user's

situation, i.e. the environment is important. Abowd et al. [33] gave a basic definition

to context by the five Ws, these are; who (identity), what (activity), where (location),

when (time), and why (understanding of why a person is doing a given activity).

Salber [27] identified context attributes as location, identity, activity and state. Gross

et al. [28] gave four main dimensions of context (location, identity, time and the

environment or activity) that describes the artefacts and the physical location of the

current situation; whereas Becker et al. [34] stated that three major criteria, i.e.

identity, location and time can be used to access context information. They considered

location as an important aspect that includes the position of entities and the spatial

relation to other entities. Oh, et al. [35, 36] structured context as user context and

system context. According to them, user context represents users' situation in terms of

5W1H. These are who (consists of user's identity, characteristics, and relationship),

where (indoor or outdoor location), what (information of ubiSensor or ubiService

being used by a user), when (time), how (body conditions or gestures of a user), and

why (user's expression, intention, and emotion). Jang et al. [37] also represented user-

centric context information in terms of 5W1H. Where, (Who) is a certain user,

(Where) in a certain location, (When) at a certain time, (What) paying attention to

certain object/services, (How) making a certain expression with physical signs, and

19

(Why) because of certain intention or emotion. Kunito et al. [38] focused on 3W's

these are; when, where and what (environment or surrounding objects) instead of the

full 5W1H suite presented by Oh. Bravo et al. [18, 39] use the 5W's (identity, time,

location, activity, and why a user is carrying a task) to provide guidelines for context

modelling. According to Roussaki et al. [7] context representation scheme was mainly

concerned with location, identity and time. Finally, the common and the most widely

used contexts are location and proximity [40].

In this respect, some existing works gave different ways to describe and discuss the

features of context information and how different pieces of context can be originated

and classified. For example, Henricksen et al. [41] described context as a piece of

information which has a range of temporal characteristics, imperfect, has many

alternative representations and highly interrelated. They categorised context as static

or dynamic, sensed information versus information supplied by users. Henricksen et

al. [42] also gave the properties of context information and discussed the important

design issues when developing applications that rely on imperfect context

information. They characterised four types of imperfect context information due to

noise or sensor failure. These are unknown, ambiguous, imprecise and erroneous.

Gwizdka et al. [43] made a distinction between internal and external context to

describe user's state and environmental state. Gu [44] classified a wide range of

contexts into two main categories; these are direct context and indirect context based

on the means by which context is obtained. Direct context can be further classified

into sensed context and defined context. Sensed context is obtained from physical

sensors (e.g. curtain's status context sensed by curtain sensors), or from virtual

sensors (e.g. a web service). Defined context is typically set by a user. Indirect context

is obtained by interpreting direct context through aggregation and reasoning process,

while aggregated context can be obtained by aggregating direct context. By using

context reasoning engine, deduced context can be obtained and inferred from other

types of context.

To conclude, context information has been described and classified with respect to

either primitive (raw) contexts, or the abstracted (meaningful) context and its

classifications. In Figure 2.1 we prepared a graph about primitive context information

used by several existing works. Regarding context primitives, the majority of existing

work considered identity, time, and location as the most important context

20

information. In general there are three schools to distinguish context primitives. The

first considered activity as another important piece of context to be added to identity,

location and time, the second considered environment as the most important one,

whereas, the third school considered environment, activity and 'why' are important in

addition to identity, location and time.

i State
lEnv
I Act
Loc

i Time

id

Figure 2.1: Existing work and primitive context

2.2.2 Context History

Context history is considered as an important feature for approximation of a given

situation or environment. It evaluates users' behaviour to predict future context values

and user actions, where current context depends on previous ones, and will frequently

form part of context description. For example, person's disability context might

change depending on time and health history and has an impact on current context and

derived context. Historical context information represents volatile context, as it

depends on time as well as past history of context information; so time stamp is used

to create history. This section lists existing work that considers context history, shows

its value in their context-aware systems design, and how to maintain and facilitate its

query. For instance, Schmidt [24] considered historical data as an important feature

for approximation of situation, where historical context can be obtained from changes

in the feature space over time. According to Salber [27], context history is an

important aspect; therefore, history of context information is maintained in the context

Widgets and stored in a database. Korpipaa et al. [45] reserved history space of each

context type in a context database, where context history assists in producing high-

level context. Beigl et al. [46] also considered history as an influence property, and

used the Internal Situation Store (ISIS) to hold the context history and all information

relevant to context-based enhancement of the communication and application.

21

Mantoro et al. [47] explained the importance of location history too, and how it is

used in the context-aware system. They introduced a history database of events to

store user identity and locations, and adopted a technique to control the growth of

context history. Gu et al. [44] used a standalone context database and store each

domain specific ontologies and context history of such domain in one logic database.

Neelima et al. [48] also stored historical context of users and ontology in a database,

which can be exploited for reasoning process. Zhang et al. [49] employed historical

context stored in a database to support context reasoning as well. Oh et al. [35] used a

database to store context history, which can be utilised as a clue to evaluate user's

behaviour. They adopted a history based management technique to resolve user

conflict and device conflict. Another approaches conducted by Al-Yasiri et al. [50]

and Abdulahad et al. [51] intended to add context history to their context model, and

insert this information to existing organisational information stored in LDAP server.

Fahy et al. [52] gave the requirements that support context history. In their work a

sever-based database is used to store context history, applications, and user data, in

addition to inference rules, which can be manipulated using SQL. Kunito et al. [38]

stored RFID detection history in a database. They adopted a history based recognition

to compare between situations at different times to detect situations' change and their

duration, and track of transitions to detect sequence, cycle or pattern. Baldauf et al.

[53, 54] discussed the need to access context history to predict future context and to

deal with sensor conflict, so a centralised high-resource storage is required. According

to Chien et al. [55], historical context stored in a database can be used to build the

application.

In brief, context history is an important element which is considered in all existing

context-aware systems. It takes part during the implementation of context reasoning,

predicting future context, and solving inconsistency in context information.

2.2.3 Context Modelling

In order to describe, exploit and store context information, a flexible vocabulary for

context modelling is necessary. It simplifies the description of different context atoms

and context instances in order to standardise context representation. Context atom

generally refers to a specific piece of context-related information, where a single atom

can be described as an entity with a couple of attributes; the two most obvious are

22

context type and context value. Each context type can have one or more context

values. Context instance is a context value (characteristics) of certain type at certain

circumstances. For example context instance is: Context (Environment: Temperature,

50 °C) [53]. Table 2.1 shows instances of context atoms.

Context type_________Context Value Context
Environment: Temperature 50 °C Hot

Device: Placement - at hand

Table 2.1: Examples of context atoms [53]

Context modelling is important to provide a formal basis for representing and

reasoning about context information, therefore it can be easily used and processed.

Context model must support multiple representations of context and their

relationships and at different level of abstraction [41]. Different efforts have been put

in this area either by conducting a survey to show a classification of context

modelling, or through studying the modelled aspects and presenting their general

characteristics, and also by conducting analysis framework to context modelling.

Other approaches discussed the advantages of modelling context information

probabilistically [56]. A review of different aspects of context modelling is outlined in

this section.

Schmohl et al. [57] carried out a survey discussing context abstraction and its

modelling aspects, taxonomies of approaches to context modelling (theoretic and

conceptual), and argued about different context models. Gu et al. [44], on the other

hand, classified existing context models into three categories; these are application

oriented, model oriented and ontology oriented. A more comprehensive research is

conducted by Strang et al. [3] who presented a comparative study and distinguished

the following context modelling techniques: -

 The Key-value model is easy to manage but it is suitable for simple structure of

context modelling.

 The Mark-up scheme is specific and/or limited to small set of context aspects; it

uses hierarchical data structures of mark-up tags with attributes and content.

 The Graphical model is simple but less formal compared to other methods, for

example, the Unified Modelling Language (UML) diagram, or context extension

to Object Role Modelling (ORM).

23

 The Object oriented model uses the full power of object orientation, by using

objects to represent context information to encapsulate context processing and

representation, so a well defined interface is required to access context.

 Logic based is a formal model and based on logic; it uses facts, expressions and

rules to define context.

 Ontology based model represents concepts and relations between them. It enables

context knowledge sharing and reuse to facilitate context reasoning and

interoperability between applications.

Bettini et al. [58] discussed the requirements and characteristics of context

modelling. These are heterogeneity and mobility, relationship and dependencies,

imperfection, reasoning, usability of modelling formalism, and efficient context

provisioning. They also conducted a survey investigating approaches to modelling and

reasoning techniques for context information which are used by context-aware

applications. Then, existing modelling techniques are evaluated; these are the early

approaches like Key-value and Markup models, domain-focused models, a more

expressive model like Object-Role based, Spatial model, and ontological approaches

to modelling like OWL. Afterwards, they introduced a hierarchical hybrid approaches

to integrate different formalisms and techniques to context modelling. Bolchini et al.

[59] presented the general characteristics of the context model; these are type of

formalism, level of formality, flexibility, variable context granularity, and valid

context constraints.

On the other hand, many researchers adopted the expressiveness and modelling of

context information. Schmidt et al. [24] proposed a structured working model for

context. They used three general dimensions related to human factors, physical

environment, and time, besides using sub-categories to hierarchically representing

context feature space, see Figure 2.2.

24

Figure 2.2: Context feature space [24]

Schmidt et al. [26] used the object oriented model to describe context through a

three-dimensional space (environment, self, activity), see Figure 2.3. Sensors are

represented as time dependent function that returns a scalar, vector, or symbolic value.

Afterwards, the concept of cues is used to provide abstraction of physical and logical

sensors. It is regarded as a function taking the values of a single sensor up to certain

time and provides a symbolic or sub-symbolic output; the context is then derived from

the available cues. They also described context by a set of two dimensional vectors,

each consists of a symbolic value that describes the situation and a number indicating

the certainty that a user or device is currently in this situation.

Context

Self
(device state, physiological, cognitive)

Environment
(physical, social)

Activity
(behavior, task)

Figure 2.3: 3-D Context Model [26]

Henricksen et al. [41] gave a number of modelling concepts to represent, reason

about, and deliver context. In their approach, context is structured around a set of

entities their properties, relations and associations. They introduced a graphical

notation to specify the context model, as shown in Figure 2.4. The graph has a number

of nodes (representing entities such as person, device, and channel) which are

25

associated with their attributes; for example the person node is associated with name,

activity and location.

Activity

works
with f

supotvisi'iir"
by *l

n;ITHO<i^

TSiHiie

i
* located at/

Person

i \
-i channel

Clu-lllliel

Idenlifict

1 Locution
Ccx)t<liiKilcs

^ «,

h located neurf

U authorised "

\» S

Lliamiel

/ \

1 1

\lt)c;ilc<idt

l)ovi<v

/recjiiirc-=.

.Itis type

(Channel
Ty lV .

/]

\

Dev ice
denlificr

il«nlillc(!by

ias u-pc

Dov ice
Type

Legend

Hntily lype
h.iuue

Attribute Ty|W
Name

a.->»wialk>uiiai

Entitv rvpe

Al'riluile
type

1C
Association

Figure 2.4: Example to modelling a scenario [41]

Logic base approach is another type of modelling which is adopted by Wang et al.

[60]. They utilised expressions and conditions such as "and, or, between, >, <" to

define complex conditions. The relational data model is used by Fahy et al. [52],

where a database has been employed to store context and domain knowledge in the

forms of rules and behaviours related to specific applications.

Ontology is adopted by many researchers to represent context information and their

relations. Korpipaa et al. [45] converted the unstructured raw context information into

ontology representation by using RDF (Resource Description Framework) which

facilitates context information reuse. Their ontology describes each context using six

properties; these are type, value, confidence, source, timestamp and attributes; where

context expression must contain at least type and value. Chen et al. [61] used OWL

(Web Ontology Language) i.e. an ontology mark-up language that enables context

sharing and context reasoning. They created a set of ontologies called COBRA-ONT

for modelling context. The ontology defines concepts and relations for describing

physical locations, time, people, software agents, mobile devices, and meeting event.

Gu et al. [62] also proposed an ontology-based context model that leverages Semantic

Web technology and OWL. Context is represented in first-order predicate calculus

and the basic model has the form: "Predicate (subject, value)". In this representation,

subject is a set of subject names (e.g. a person, location, or object), Predicate is a set

of predicate names (e.g. is located in or has status), and value is a set of all values of

subjects (e.g. living room, open, close, or empty). They extended the basic model to

form a complex context or a set of contexts by combining the predicate and Boolean

26

algebra (union, intersection, and complement). They adopted a hierarchical approach

by dividing the context ontology into a common high-level ontology and domain-

specific ontology due to the difficult management and process of large amount of

context knowledge in pervasive computing environments. Figure 2.5 shows a class

hierarchy diagram of the ontology, in which the common ontology has 14 classes that

describes the basic concepts (such as person, location, etc.) and six properties. It also

shows the domain specific ontology (such as vehicle-domain, and home domain)

which defines the details of the general ontology.

ScneduledAclivityT)

Vehicle-domain ontology
Home-domain ontology d_?J) owl:Class ——t>rdls:subClassOf ——^owhProperty

Figure 2.5: Class hierarchy diagram for context ontology [62]

Zhang et al. [49] utilised a Web Ontology based Context model (CONON) for

context representation. The ontology for context entities is structured around

describing objects (entities such as person, activity, etc.) which are linked with their

attributes (e.g. user's status) or with other entity, see Figure 2.6. Roussaki et al. [7]

integrate the maintenance, distribution and administrative facilities of a location-based

context model with the semantic advantages of context ontology to develop a hybrid

context representation scheme.

27

g|——^ XMJ.ifaJbto | I * •ar-\ ^
?5 ± ———Iccaledhi——<TnEtnlty 'ir"~ id——^xstfStr-rq
c v- . ^v1 VT -> description-* JT •• •
j__LT _ ___ __„ _ _

iputa'.k:;ial Entity~^!>

« t_ enqaaedn ' m • *

) xsd:String

rdfs subClassQf ———^atfJiObjaclProperty ———1>owl DatatypeP-upeity CHZ^uvJC'ass

a) Tlu biKicetop-levi.1 context ontology ii O\VL;'RDl; yrv-.ph notation

•^owhClass rdf:D
</owl:C'HS5> <rdfvsubOlassOfi
«_\vi:Datetyp«Properlv df:ID="na/n6"> <towlClass>
<rdfe:domainrrjf:rescHJice=>^Entty'*,'> <ow!:Class rdf:fD
<rd^s range rdf re5ource=*&xsd stringV> <rdfs subClassOf rdf:resource=";^Entiiy"/>

<rdfesubClas.sOf :i'f:resour:;«='*!Enli y"/> <rdf:t
< rdfa bv^:dorrioir rdf rojource»»l^Ertity"il >-
< rdfs ow rnnge rr|-':resourf;«:="r4|! l.nr:a;inn'V>

'"owl jniooOf rcff pur»j.oTypo-*Col:LH;:iun"> 'VowlX3bjix:tPri.porty>1
zfiabout^'THor^Space"'^ <owl:Ot_ectPro>e'ty rdf:ID~t'TocatecNear">

:f:about="^6thsrSp3ce"/> </owl OofectPrC'perty>
c/ow :uniociOf > <owl:DatatypeFrooerty rcf: ID="lonftude*>

<'owl;Class> <rdf;l>'pe rdf TesQUfce="runction<jPrcx>e''!y' />
</owl:equivalentClass> < r;!f« owuoiT'ain rcJf resource=MCcHiC5ni:4LucH:'Dn',l>

< rdfs ow:range rd':resource=" &;t&d:i±>jo ?'/>

b) A part al OWL/XML serialization
Figure 2.6: Context ontology and partial serialisation [49]

Miraoui et al. [63] proposed a service ontology for context modelling which is

based on the concepts of services in pervasive computing systems. Neelima et al. [48]

also used ontologies to model context dimensions, which are described through

contextual element attributes. Chien et al. [55] proposed another approach which

represent context by ontology (implemented using OWL) and used this ontology as a

knowledge base. In their study, context information is divided into three classes; these

are Sensor, Event, and Scenario contexts. Hwang et al. [64] described an ontology-

based context model using F-logic and a rule set which contains reasoning, managing,

judging function using contexts, services, environmental and situational information.

Hong et al. [65] also designed an ontology-based context model called CALA-ONT,

in which context information is expressed in first order logic and used OWL-DL to

define Individuals, Properties, and Classes. CALA-ONT defines four top-level classes

(person, places, activities, and computational entities), sub-classes, and also contains

properties to describe the relations between individuals in top-level and its sub

properties. However, the ontology didn't express all the objects and contexts; see

Figure 2.7.

28

PDA

 ^ES^fiE^
rojfcto: i
Printer.^)

~<^^> FF?..*

iobilfPbon

Figure 2.1: CALA-ONT model and its properties [65]

Regarding application oriented context modelling, Oh et al. [35, 36] proposed the

unified context model, where the preliminary context generator plays an important

role in converting feature extracted from physical sensors into formatted 5W1H.

Kunito et al. [38] proposed an application specific model called Real World Model.

Their model uses XML code in which the tags describe attributes of things (such as

mobile phone, jeans, coats, etc.), attributes of reader (such as name, owner, etc.), and

existence of things, see Figure 2.8. Finally, Choi [66] used the context reducer to

handle context attributes collected from external and internal sources; they didn't give

a specific model as each application has a different model.

<Object id="object00002673">
<TaglD>00002673</TaglD>
<Name>mobile-phone</Name>
<Owner>Hanako</Owner>
<Role>mobile</Role>

</Object>
<Object id="object00002953">

<TaglD>00002953</TaglD>
<Name>jeans</Name>
<Owner>Taro</Owner>
<Role>merchandise</Role>

</Object>
<Object id="object00003409">

<TaglD>00003409</TaglD>
<Name>jeans</Name>
<Owner>Taro</Owner>
<Role>merchandise</Role>

</Object>

<Reader id="readerA102_1">
<Reader1D>A102_1 </Reader1D>
<Name>pari(-reader-2</Name>
<Location>pari«/Location>
<Location>

<Place idref="placeP0017>
</Location>

</Reader>

<Exist>
<Reader idref="readerA102_1"/>
<Object idref="object00002673"/>

<SSI>104</SSI>
<Motion>false</Motion>
<Timestamp> 1122530522640</Timestamp>

</E»st>

Existence of things

Attribute of Reader

<ExistWith>
<Reader idref="readerA104_1 "/>
<Object idref="object000239287>
<Object idref="object00023416'V>
<Timestamp> 1122530522640</Timestamp>

</E»stWith>

Attribute of things Existence of multiple things

Figure 2.8: Real World Model [38]

After reviewing the literature, it was found that different modelling techniques are

distinguished, classified and used. The techniques used are: Key-value, Mark-up

29

scheme, Graphical, Logic based, Object oriented, Ontology based, and application

oriented. However, there are other models in the literature that are not included in this

thesis such as the Context Cube [67]. Each of these models has its own advantages

and disadvantages, where some of these techniques support knowledge sharing and

reasoning, yet they are complicated. Others are simple but have limited capabilities

and are inflexible. Therefore, some existing systems use hybrid models. Table 2.2

illustrates a comparison of some existing modelling techniques to show their benefits

and limitations.

The Modelling
Technique Pros Cons

Key-value

Simple data structure.
Easy to manage.

Inefficient in describing complex
context information, and dynamic
change of context.
Does not support reasoning.

Logic-base
High degree of formality.
Flexible.

Applicability to existing ubiquitous
computing environment is a major
issue.

Mark-up scheme

Can extend, and support dynamic
and complex context information.
Support dynamic context
information.

Most existing models are either
proprietary or limited to small set of
contexts.

Graphical High structure level. Low level of formality.

Object oriented

Have the benefits of abstraction,
encapsulation, inheritance, and
reusability to support dynamic
changes in context information.
Scalable and simplify knowledge
representation.

Need interface to access context
information.
Limited formality.

Ontology

High degree of formality.
Support reasoning.
Knowledge sharing and reuse.
Flexible, and expressive.

Complex way of representing
knowledge.
Do not offer a complete description
of context information.
Require ontology engine to manage
the ontology, which has high
requirements on resources.______

Table 2.2: A comparison to existing modelling techniques

2.3 Aspects of Context-Aware Applications

Context-aware systems employ computing devices that are aware of their

environments to adapt their behaviour accordingly in the final stage. This section

presents an overview to how context-aware systems make use of context information

to change their state, showing ideas and categories of context-aware applications.

30

Schilit et al. [9] gave two orthogonal dimensions to context applications, taking into

consideration whether the task is to get information or to execute a command and

whether the task is executed manually or automatically. They presented four types of

applications; these are proximate selection, automatic contextual reconfiguration,

contextual command and context-triggered actions. Pascoe [68] developed taxonomy

to identify the features of context-aware applications that are similar to schilit's

classes of applications. These features are: contextual sensing, contextual adaptation,

contextual resource discovery and contextual augmentation; the latter represents the

ability to associate digital data with user's context. They stated that context-aware

systems contain all four types of applications. Dey et al. [8] merged the ideas from

Schilit and Pascoe's taxonomies and gave three application categories of context;

these are presentation of information and services to a user, automatic execution of a

service and tagging of context information for later retrieval. They made a comparison

and applied these categories of context and context-aware features to different

application systems. Bisgaard et al. [69] studied the above taxonomies [8, 9, 68] and

took several application examples of mobile context-aware systems already

developed; then applied Dey's application categories [8] to these systems. In their

study, context-aware systems' examples were grouped with the type of context and

context awareness.

Another form of classification to application types is given by Berens [70]. He

categorised the fields of context-aware applications by location-aware, networked,

and mobile devices. These categories are for remembering, helping, automating, and

thinking. Remembering applications require sensing the environment via wireless

networking and the output is mainly text based. Helping applications use the same

technology with more complicated way of acting (for example using written text, light

or vibrations); this necessitates hardware and more intelligent software. Automating

applications need a more complicated way of acting; yet the output of these

applications should have the ability to operate apparatus which need more intelligent

software to recognise more signals and even predict user's requests. Thinking

applications on the other hand use the same hardware as in automating applications

but different software in order to handle wider range of signals. According to Konito

et al. [38], three points to achieve services in ubiquitous computing environment is

considered. Firstly, services should be provided to the user implicitly. Secondly,

31

service availability should be very flexible. Last point is to apply things as a way of

triggering services. Cheng et al. [71] proposed a transactional model for context-

aware applications. In their study context-aware applications are organised as a

number of logic units (activities); each one representing an atomic operation such as

turn on the air conditioner, make coffee, etc. Each unit may have a compensation

module to handle error, exceptions and other abnormal cases. Their model formalises

context-aware applications (or a group of closely related applications) in smart

environments as a set of activities, where data and control flow between these

activities. This method is not helpful for simple applications as it may only have one

or two atomic functional units, and the control flows and dependencies between the

units are very simple. In conclusion, we found that Dey's application categories cover

all application types, realistic and are easy to implement.

2.4 Applications in Smart Environments

Smart environments are the result of pervasive computing and the availability of

cheap, high speed and low-power computing technology. According to Mark Weiser

[72] a smart environment is "a physical world that is richly and invisibly interwoven

with sensors, actuators, displays, and computational elements, embedded seamlessly

in the everyday objects of our lives, and connected through a continuous network".

Many research works have been conducted in this area, mainly to develop the

learning environment. Abowd [73] described classroom 2000 project, a capture

system to support teachers and learners in traditional university environments. Jiang et

al. [12] gave a generalised four characteristics of futuristic classroom; these are

natural user interface, automatic capture of class events and experience, context

awareness and proactive service, and collaborative work support. Shi et al. [74]

described another approach which turns a physical classroom into a natural user

interface for tele-education software. Teachers in this smart classroom can move

freely using conventional teaching methods to teach local and remote students. In this

respect, instructing local and remote students requires smaller workforce than separate

on-campus and tele-education operations. The lecture is recorded as hypermedia

courseware that is available for playback after class. Wang et al. [75] discussed

different technologies that building smart spaces depend on, and focused on three key

issues; these are explicit representation, context querying and context reasoning. They

32

developed a context infrastructure called Semantic Space to address these issues. Yau

et al. [76] also presented a smart classroom environment that uses pervasive

computing to enhance collaborative learning among college students. Then, Bravo et

al. [77] used RFID technology as an identification process in the ubiquitous classroom

to acquire a natural interaction. Another approach conducted by Back et al. [78]

discussed the usability of ubiquitous computing in conference rooms.

The development of smart environment devices has been adopted by many

researchers. Osbakk et al. [79] developed a BlueReminder device using off-the-shelf

mobile information devices to bring ubiquitous computing to a wider audience and

made them available at a larger scale. Lakas et al. [80] proposed an Active Classroom

Probe (a classroom assessment tool) which can be used in an active and cooperative

environment. The probe helps teachers to implement classroom assessments and

analyse their results. El-Bishouty et al. [81] introduced a ubiquitous computing

environment called PERsonalised Knowledge Awareness Map (PERKAM) that

allows learners to share knowledge, interact, collaborate and exchange individual

experiences. It provides learners with a knowledge awareness map to visualise the

space of environmental objects that surround the learners, the educational materials

space, and the peer helper space.

2.5 Summary

This chapter described the context information and how existing works identify

context, context-awareness, and how different pieces of context information are

categorised. This would help in making a decision on the essential pieces of context

including context history. A review of different modelling techniques is then

conducted to visualise how these techniques represent and relate context to support

context abstraction and reasoning. Finally, context-aware application categories are

studied to explain their applicability in smart environments. In conclusion, we found

that hybrid modelling is the most appropriate to represent context information to

overcome the limitations of each model.

33

Chapter 3

Context-Aware Architectures - Review and Analysis

The background research explores the past and present context-aware systems to

obtain a deep insight into existing architectural design, and what software components

constitute these systems. Standard software architecture styles applied to context-

aware systems and other systems are discussed in this chapter. A focus on the Pipe-

and-Filter architecture style is given, which will be adopted later in this research.

Then, analysis and comparison to the existing context-aware systems are presented.

Finally, context-aware systems' issues will be discussed.

3.1 Software Architecture Styles

Software architecture is a software engineering discipline that is centered on the idea

of reducing complexity through abstraction and separation of concern [82]. The

software architecture of a computing system is the structure of the system which

comprises software components, their outside visible properties, and the interaction

between them. In this respect different architectural styles and patterns are reviewed;

the most familiar are Client-Server, Layered, Pipe-and-Filter, Event-based,

Repositories, Model-View-Controller, Agent-based and Service-Oriented

architectures. An overview of each style will be given in the following sections.

3.1.1 Client - Server Architecture

The Client-Server architecture [83] is a distributed system comprising both "Client"

and "Server" software programs. In this architecture the "Client" initiates a service

request to the "Server" which provides service to the request. Although the Client-

Server can be used by programs on one computer, it could also be on a network

interconnecting distributed programs across different locations (client and server are

located on separate physical devices). The Client-Server software architecture has

many features for being message based, versatile and modular infrastructure. The

architecture also improves usability, flexibility, interoperability and scalability.

Examples for this architecture are email exchange, web access and database access.

3.1.2 Layered Architecture

The Layered architecture style [82] is organised hierarchically, each layer providing

services to the layer above it and serving as a client to the layer below it. In some

systems internal layers are hidden from others except the adjacent outer layer and

connectors are protocols defined for communication between layers, see Figure 3.1.

Layered fashion has the advantages of high level of abstraction, support enhancement

and reuse. But, not all systems are easily structured, not reconfigurable, and it may be

difficult to find the right level of abstraction. The most widely known example is the

protocol stack in communication systems.

Layer n

t
Layer 2

Layer 1

Figure 3.1: Layered architecture style [82]

3.1.3 Pipe-and-Filter Architecture

The Pipe-and-Filter architecture [82] consists of a chain of independent components

known as filters. Each filter acts as a single processing component that transforms its

input stream to an output stream based on a set of regulations. The connectors (pipes)

of this style serve as conduits for the streams, transmitting output of one filter to

inputs of another, see Figure 3.2. Filters do not know the identity of their upstream

and downstream filters, and they should not share state with other filters. It has a

number of advantages in allowing designers to understand the overall input/output

behaviour of the system as a simple composition of the behaviours of the individual

filters. This architecture style is reconfigurable, support reuse, easy to examine,

maintain and extend, and support concurrent execution. Each filter can be employed

as a separate task and probably executed in parallel with each other. This style has

also disadvantages, where pipe-and-filter systems lead to batch organisation of

35

processing. The best-known examples of this style are programmes written in UNIX

shell, parallel programming, and distributed systems.

Filter 1 w
I-* Filter 2 > Filter 3

Figure 3.2: Pipe-and-Filter architecture style [82]

3.1.4 Event-Based Architecture

Event-based, implicit invocation architecture style [82] is structured around event

handling. Components are modules with collection of procedures and events in their

interface. The idea is that instead of invoking a procedure directly, a component can

announce one or more events. Other components can register an interest in an event

by associating a procedure with the event. When the event is announced, the system

itself invokes all of the procedures that have been registered for the event. Thus an

event announcement implicitly causes the invocation of procedures in other modules.

This architecture has the advantages of strong support of reuse and eases system

evolution, but it has drawbacks of pre-emptive control by system manager, exchange

of data, and proving correctness is difficult. Examples of this architecture are

operating systems, GUI, and tools such as editors and variable monitors register for a

debugger's breakpoint events.

3.1.5 Repository Architecture

In Repository architecture [82] there are two major components; a central data

structure (blackboard) and a collection of independent components operating on the

central data store. The communications between these two components can vary

among systems. This architecture has two main subcategories these are traditional

database and blackboard which depend on the choice of control discipline. In other

words, processes can be triggered by transactions (Database) or by the state of the

blackboard. Figure 3.3 shows blackboard architecture which has three major parts;

these are knowledge source (KS), blackboard data structure, and control. However

there is no explicit representation to the control. It is applicable for applications

requiring complex interactions of signal processing, such as speech and pattern

recognition systems.

36

Blackboard
(shared data)

' - -Memory

Figure 3.3: Blackboard architecture [82]

3.1.6 Model-View-Controller Architecture

The Model-View-Controller (MVC) architecture [84] style separates the modeling of

the domain, the presentation, and the actions based on user input into three separate

classes, see Figure 3.4. The model represents the information of the application, the

view for displaying all or a portion of the data and controller for handling events that

affect the model or view(s), for example the web services. The MVC pattern

introduces new levels of indirection and therefore increases the complexity of the

solution slightly.

View * k Model

Figure 3.4: MVC architecture [84]

3.1.7 Agent Based Architecture

An agent is a software entity that is situated in some environment and has human's

properties such as autonomy, reasoning, learning, knowledge level communication,

and mobility, etc. [85] Agents work on behalf of individuals or as part of some wider

problem solving initiative. Agent based architecture consists of agents that exchange

information and services with other agents [48]. They have many advantages, for

being naturally distributed, support modularity and scalability especially with multi-

agent architecture, i.e. agents can be added or removed rather than adding new facility

to a system. Agents have the capability of reconfiguring with new changes, and have

the capability of carrying out tasks in parallel which accelerates the computation

process. Finally, they can dynamically collaborate and share resources. Multi Agents

architectures use agents that collaborate to carry out a task by sharing the workload

37

and cooperate to achieve their goals. An example of this architecture is CoBrA [61]

that uses an intelligent agent (broker) central to it.

3.1.8 Service-Oriented Architecture

A Service-Oriented architecture [86] is a collection of services that communicate with

each other. Its concept is built upon the older concepts of distributed computing and

modular programming. The communication process can involve either simple data

passing or it could involve two or more services managing some activity. Some means

of connecting services to each other is needed. Service-Oriented Architecture aims at

a loose coupling of services, so each interaction between services is independent of

any other interaction. It is a design framework for realising rapid and low-cost system

development and improving total system quality. Table 3.1 shows the benefits and

limitations of the above architectures.

Architecture
Style

Pros Cons

Layered
High level of abstraction. Support
enhancement and reuse.

Not reconfigurable. Not all systems easy
structured. Difficult to find the right level
of abstraction.

Pipe-and-Filter

Extensible, scalable and reconfigurable.
Easy to examine and maintain. Guide
for problem solving. Support decupling,
reuse and concurrent execution.

Lead to batch organisation of processing.
Interactive applications are difficult.
Lowest common denominator on data
processing (latency, parse and un-parse).

Separation between the presentation
and application logic. Easy to edit and
implement.

MVC
Increases the complexity of solution.
Change in the model lead to change in
view.

Repository
Flexibility of configuration and
problem solving. Management of
multiple level of abstraction.

No guide for problem solving.
Congestion problem and need connection
to blackboard at system build time.

Strong support for reuse.
Event based

Pre-emptive control by system manager.
Event announcers do not know the
effected components.

Centralised

Easy to implement.
Simpler design.

Single point of failure and law fault
tolerance. Congestion and B.W problem.
Dedicated server, increase cost and limit
usability.

Agent based

Natural distributed and support
concurrent execution. Scalable and
reconfigurable. Dynamic collaboration
and share resources.

Managing agents is time intensive. High
communication cost, and B.W problem.
Not suitable for real time applications.

Service oriented

Scalable and loose coupling of
services. Low cost system
development.

Communication between applications
becomes time and code intensive. Not for
applications with high data transfer rate.

Table 3.1: A comparison to the software architecture styles

38

In conclusion, the Pipe-and-Filter architecture style is chosen because the style

itself gives guidelines to problem solving, which better fits the design of context-

aware systems. It has the benefits of high level abstraction, reconfigurable, scalable,

extensible, easy to examine and maintain, support decoupling and reuse, and support

concurrent execution.

3.2 Context-Aware Systems

Several research activities have been reported that consider the design of context-

aware architectures, their implementation and evaluation [87]. Other research works

[53, 40, 54, 88, 59, 89, 90, 91, 92, 93] conducted surveys of existing context-aware

systems and presenting different architectures to analyse these systems and simplify

their development. There is a variety of software architectural styles which are used in

existing context-aware systems, such as layered, agent based, centralised server based,

etc. The following sections discuss these systems according to their architectural

styles. Some context-aware systems may use more than one style in their design; in

this case these systems are grouped and discussed according to their dominant style.

3.2.1 Layered Context-Aware Systems

This section presents context aware systems that use the layered architecture in their

design. Besides, many other multi-style systems use this approach in the internal

components structure. For example, TEA-system [24] employs a layered architecture

for multi-sensory context-awareness, see Figure 3.5. The lower layer is the Sensors

layer, which represents a collection of hardware and software sensors. Next, the Cues,

which provide an abstraction to software and hardware sensors. The Context layer

then derives the abstracted context from the available Cues. Finally, the Scripting

layer provides mechanisms to include context information in applications.

Applications and Scripting ^H Software

Context

Cue
1,1

Cue
1,2

Cue
1,i

Sensor 1

Cue Cue
2,1 2,2

Cue
2,J

Sensor 2

Cue
n,l

Cue
n,2

Cue
n,k

Sensor n

i

Hardware

Figure 3.5: Layered architecture of TEA system [24]

39

Another system that uses the layered style is the Context Stack [49]. As shown in

Figure 3.6, the architecture employs five-layers, these are: acquisition, representation,

aggregation, interpretation, and utilisation. The architecture uses a database as a

context knowledge base and storage of context history.

Context Model

Utilization
Layer

Reasoning Learning

Interpretation
Layer

Aggregation
Layer

Representation
Layer

Acquisition Layer

^fr' Smart Phone Service

_________.t-——— ——— ——— ——— ——
-situation- -H Stepping | .—j ——— .

CljIir^locatedln-^CSea^am^™3^61-*^^
---^-. - -comams---l-^ ightlevel—— ̂ T^]
Reasoning ;ocateoYn - Jk . _ _ !~ locatedln .^; Jj^re;;;;>

h 1
Virtual Context

Knowledge Ba&e
Jl KX^ *N- -_ 1 — noiselevel — N~Tow~~]

04cOCBedroam> Cfedr,°m^ ||ghtLeve. ^^-^^

-locatedln-* , locatedln -^c-HbYnV';.
4^_ ^ *- —

User's Location Noise Level : Light level
« Bodroom ' < 20 dBA ; ..< SOLux.....

Legend:

_^^^ Context
Flow

Explicit
—— »• Relation/

Properly

Interpreted
— — *• Relation/

Property

Cl J^ Entity

| | Attribute

-j- —————————— ,
^ RFID ' '
IM Location 4)) Nois* $; Light
IK!! Sensor Sensor -J Sensor

Figure 3.6: Context stack architecture [49]

The Real World Modelling (RWM) [38] is another layered architecture designed to

achieve services in the ubiquitous computing environment. As shown in Figure 3.7,

the architecture has four phases, phase-Pi for obtaining the real world information,

phase-P2 for building the real world model, phase-P3 for service determination, and

phase-P4 for service provisioning. Databases are also used as a knowledge base and to

keep necessary context information and context history.

Diflercncc Duration Sequence
detection detection detection

History Ordinality .
M detection } Prcd'«'on

Ilistorv orii-mcd phase "."-*"

Ordinal ity
DB

Probability based Rule based
semantics semantics
detection detection

ScmaiUiL onculcd (i

Semantics rule
DB Things

ontology
\ IJB

UIS
DB J Attribute

\ GISDB Krlmux: location -j-jn^ detcvtion Simultancit>' Existence Combination
reference iki«tlnn detection detection detection

|_________ Ke;uicrjvianiigcr_ ______\j(Keaucr Manager]/• Keauer Manager

Figure 3.7: Real World Modelling architecture [38]

The General architecture [57] also uses a layered style which consists of five levels,

see Figure 3.8. The lower level (lexical) abstracts sensor signals into context events.

40

Then, the syntactical/representation level translates these context events to atomic
context information, which are reasoned about through the reasoning level for more

sophisticated processing. The planning level evaluates, detects and schedules changes

in context. Finally, the reaction to context changes is executed in the interaction level.
Again a database is used as a persistent storage of context information.

Context Application Interaction Level

Communication Interface

Actuators |

Inference Engine

Context Repository i

Context API

Planning Level

Reasoning Level

Context Capturing Interface Syntactical Level

Lexical If vel

Figure 3.8: General architecture [57]

Another system is the 'Context-aware Architecture based on Database' (CADBA)
[55] which uses the layered style, see Figure 3.9. CADBA imported the concept of
physical and logical context independence. The architecture components are: devices,
device manager, domain knowledge, context interpreter and context aggregator,
context model, context management, context database, and service provider. Database
is also used to store domain knowledge.

Service Provider Context Interpreter

Domain knowledge
S~——————~X S~——————-N S-—————~^

Acniatoi Actuator Sensor Seusoi

Figure 3.9: CADBA architecture [55]

Many other research works have used the layered style, such as in CAMUS [94] (a
framework for network-based service robots). They proposed an architecture which
uses five layers: context source and service, device access and control, context
processing, context management, and Application. Also, the service architecture [95]

41

is proposed for integrating body sensor networks and social networks to provide users

with the needed services at the right time i.e. improve reliability and real-time

response. The architecture has four layers: device, access, control, and service layers.

3.2.2 Centralised, Server Based Context-Aware Systems

A number of systems use a centralised style (server based) as the predominant style,

but internally the components may use other styles to communicate with each other.

For example, the Context-Aware Sub-Structure (CASS) [52] is a server-based

middleware that supports context-aware applications on hand-held and mobile

devices. The architecture employs distributed sensor nodes. As shown in Figure 3.10,

the middleware contains SensorListener, RuleEngine, ContextRetriever, and

Interpreter. These components are in charge of listening to the updates from the

sensor nodes, retrieve/store the data from/to a knowledge base to solve problems, and

also perform context reasoning. CASS inference engine uses forward chaining

technique.
CASS Middleware

Hand-held computer

Figure 3.10: CASS architecture [52]

The Service-Oriented Context-Aware Middleware (SOCAM) [44] is also a server

based reasoning architecture, see Figure 3.11. It consists of context providers for

abstracting context from different resources, context interpreter for context reasoning,

context-aware services for adapting the system, and service locating service for

advertising the context providers and interpreters to the users. The context interpreter

represents the central server to this architecture; it aggregates context information

from the distributed context providers and offer it to the clients. Although the

predominant SOCAM architecture is server based, its internal components are

arranged in three layers. SOCAM supports ontology based reasoning (include RDF

and OWL) and user defined reasoning.

42

y

Context-aware application

/
Serviw-locating service

V\

•^ — *~ Dataflo
^ „ Control

signalin
\

and
gflow

i

\

\
£ —— !
£
'5
&
S o

/

Context-aware application

Context reasoner

Context knowledge base

External context provider

>

A
-* ——

\

;

C^__

Con
—— •» data

/
Internal context provider

l̂ext ,
lasej

Figure 3.11: SOCAM architecture [62]

3.2.3 Agent Based Context-Aware Systems

Agent based architecture is used by many context-aware systems; however some use

multiple independent agents to process the system's information and services. An

example of agent based architecture is the Context Broker Architecture (CoBrA) [61,

96]. The architecture supports pervasive context-aware systems by exploiting

Semantic Web technology, and uses OWL for modelling ontology of context for

reasoning. Figure 3.12 shows the agent based architecture with a specialised server

called the context broker (autonomous agent) central to it. The broker provides a

context model that can be shared by devices, services and agents in the space. It also,

acquires context information from resource-limited devices, support reasoning,

resolve consistent knowledge, and solve privacy. The context broker has four

functional components (Context Knowledge Base, Context Reasoning Engine,

Context Acquisition Model, and the Policy Management Model) which interact in a

layered manner.

Information Servers ,
(Exchange Server, iCal, j

YahooGroups, etc.)

Context-Aware Devices

Semantic Web &
Web Services

(RDF, DAML+OIL 8> OWL)
i Database

(Mysqg

Context-Aware Agents
Contexts in External Sources

Context
onltdye time

CwiLCAL
Reasoning Engine

Contexts in the Intelligent Spaces

Siiwrt Tdg Sensors '•. Environment Sensor* I
(Radio Frequency Identification); • (Xanooo & xio technology) J

Devite & Gddyel Senwjib.
(Java king, jjfljffiffigpl etc)

Figure 3.12: CoBrA architecture [61]

43

Another example of agent based architecture is the multi-agent based architecture

[60] which uses multiple independent agents to represent several parts of the context-
aware system. The architecture consists of three agents that communicate in a layered

style, see Figure 3.13. These are: context collecting agent, context reasoning agent,
and an information agent. The first agent collects user's information from devices.

The second agent stores user profiles and defines executed commands according to
different context. The last agent translates commands into actual actions.

Figure 3.13: Multi-agent based architecture [60]

The Context-Aware Learning Architecture (GALA) [65] is also an agent based
which supports user-centric ubiquitous learning services. It consists of personal
agents, computing entities, physical sensors, activity agents and context-aware
manager centring in a ubiquitous school space, refer to Figure 3.14. The context-
aware manager agent acquires context information from other agents and shares a
knowledge base. It consists of a context providing module, a context knowledge base,
a context reasoning engine and a learning service coordination module that
communicate in a layered style. The manager controls a context module using (OWL-
DL) ontology for reasoning.

44

Vbiquifout School Space

Connected by WiFi. Bluetooth. Ethernet, and so on.

Personal Agents

has Jsage

preseniln

Contexts
RDFOWL

Contexts
EDF/OWL

Computing Entities

Context-aware Manager
Learning Service

Coordination Module

Context Reasoning Engine

[~ i" " ____'~!^n^
Context KB I

Context Providing Module

I Contexts

Physical Sensors

Contexts
' RDF/OWL

RDF/OWL

UNeedFor

Activity Agents

partiapateln

locatedln

Figure 3.14: GALA architecture [65]

Another example is the Multi Agent, Service Resembling Architecture [48], refer to

Figure 3.15. This architecture is used for generic location aware applications. The

architecture consists of five components. First, the Context managing component; it is

used for acquiring context and performing reasoning using ontology. Second, the

Service identifying component; it has the responsibility of identifying application and

firing services. Then the Sensor zone which uses sensors to acquire and represent

context using ontology. The last two components are Repository and Intelligent

artefacts.

Back End

Appl'n Patt-rm

Service

Ontologier

Filtered Context

Sen**
ralAfpl
Pattern*

t&toncal
Context

Date

Context

Context Manipulation Layer

Context Manager
Context

Context
Fflteonc

V*hM»

—————————— ».

Context
Revolting

Context
Date

Figure 3.15: Multi agent service resembling architecture [48]

45

Finally, A-CoBrA [97] merges the proposals of both the General architecture [57]
mentioned earlier and CoBrA architecture. The architecture employs number of
agents; these are: Sensors and Actuator agents, Activity Context Broker agent, and
Activity context-aware agents. All these agents communicate in a layered style.
Again, a database is used as a context repository, see Figure 3.16.

Interaction Level

Planning Level

Context , Repository Reasorvng Level

—| Syntactical Level

Lexical Level

Figure 3.16: A-CoBrA architecture [97]

3.2.4 Other Context-Aware Systems

Many other styles are used by a number of context-aware systems, such as peer-to-
peer, MVC, and blackboard architectures, etc. For example, the Context Toolkit [98,
99, 100] consists of three main components: Widgets, Aggregator, and Interpreters,
see Figure 3.17. The toolkit relies on the concept of context widgets which can be
defined as software components that provide applications with access to context
information. They hide the complexity of actual sensors, abstract context information,
and provide customisable building blocks of context sensing. The aggregators are
meta-widgets which have the ability to aggregate real world context information. The
interpreters abstract low-level context into higher level information. Although the
toolkit uses peer-to-peer style, Widget's underlying components interact in a layered
manner. The toolkit stores context history in a database.

46

Figure 3.17: Context toolkit architecture [99]

The Context Management Framework (CMF) [45] uses a different style in their

design (the blackboard-based approach). It is composed of a blackboard based context

manager, resource server, context recognition service, and application (refer to Figure

3.18). During communication, the context manager functions as a central server,

whereas other entities (except security) act as clients. The resource servers send

collected context information to the blackboard to be processed. The resource server

works with the recognition service (which abstracts context) to convert raw data into

context ontology. The security module detects the consistency of the received context

and check trustworthiness of context incoming from the environment. CMF uses

fuzzy logic to reason about high-level concepts.

Figure 3.18: CMF architecture [45]

CORTEX [101] is a middleware based on the notion of sentient object model (an

entity that consumes and produces events), see Figure 3.19. In this architecture the

sensors produce software events in reaction to real world situations; the actuators

consume the processed events and accordingly change the state of the real world using

hardware devices. CORTEX middleware is based on a component framework to

provide services to the sentient objects. These services are for discovery,

communication, and changing resource allocation. The inference engine uses rules for

reasoning based on C Language Integrated Production System (CLIPS). The

architecture maintains context history in a database. The CORTEX architecture has an

47

event model that allows for dissemination of events in an ad hoc network
environment.

Sensory
Capture

and
Fusion

Context
Repr«ient»tion

nference
Engine

Figure 3.19: Sentient object model [102]

ubi-UCAM [35] is a unified context-aware application model for ubiquitous

computing environment, which provides user-centric services for multiple users. It

has two independent and reusable modules: ubiSensors and ubiService. The ubiSensor

consists of physical sensor, feature extraction module, preliminary context generator,

and self configuration manager. The ubiService consists of Self Configuration

Manager, Context Integrator, Context Manager, Interpreter, and Service Provider. The

internal components for each of these two modules communicate in a layered style,

see Figure 3.20.

ubiService

Service Provider

£g.

I i
Context Monaco'

Ccnloxt Integrator

Self Configuration
Manager

LbiServIce

L

ut>iS£nso r
Self Configuration

Manager_f_ _

Preliminary Context
Generator—— —— p-—— —

Siqnal Processing
(Feature Extractor)

t
Physical Senscr

ub Sensor

*C: litr-gait
U'JC 1/stM l

SS So'vci'
FC: F.nafCo

Figure 3.20: ubi-UCAM architecture [35]

WCAM (Watcher, Controller, Action, and Model) [66] architecture uses the MVC

style. It is composed of four modules, which reduces complexity by separation of

concerns. These components are: (1) the Watcher which uses physical and logical

sensors to sense the external environment, (2) the Controller which bridges context

and services, (3) the Action to represent a set of services and (4) the Model for

48

managing the whole system. Each of the four modules is composed of a number of

elements that internally communicate in a layered style, see Figure 3.21.

{ Watcher ' /'" Controller •.,•" Action

Figure 3.21: WCAM architecture [66]

3.3 Elements of Context-Aware Architecture - Review

The following sections present an in-depth review and description of the main
elements (functional components) that are normally found in context-aware systems.
The rationale behind this description is to become aware of what elements constitute
these systems, how these systems work, and what problems and gaps they might have.
This information will be useful in identifying the design requirements of the generic
framework which we are proposing in the next stages. The new proposed framework
can be used in the development of a variety of context-aware systems with a wide
range of applications.

3.3.1 Sensory and Context Abstraction

Context-aware systems gather context information from heterogeneous sources. These
systems exploit different types of distributed sensors to acquire raw data from the
surrounding environment. The acquired data can then be represented in a low level of
abstraction, so that it can be easily processed and used in the application level. This
section focuses on sensor types and sensory functional components of various

context-aware systems.

Various types are distinguished and different names are given to the sensors of
context-aware systems. For example, Schmidt et al. [24, 26, 103] distinguished

between two kinds of sensors; physical sensors (electronic hardware components that

measure physical parameters in the environment) and logical sensors (all information

gathered from the host of awareness component); e.g. GSM cell and current time.

49

They also gave a brief overview of available sensor technologies and the context
information that can be obtained with them. These are; Optical /Vision (photo-diode,
color sensor, IR, UV-sensor), Audio (cheap microphone), Motion (mercury switches,
angular sensors and accelerometers), Location (GPS, GSM cell, active batch, radio
beacons), etc. Henricken et al. [41] used hardware and software sensors to acquire
context information. Indulska et al. [6] classified sensors to three types: physical,
virtual, and logical; where logical sensor is a combination of physical and virtual
sensors. For example, location information can be physical, virtual or logical. Physical
information are gathered by physical sensors; e.g. GPS device. Virtual information
can be acquired from calendar application which contains person's location, a travel-
booking system, or from email which contain location information. Logical
information can be provided by a physical or virtual sensor with information from
other resource to infer the physical location of an entity. Finally, there are three
categories of context acquisition, these are direct access to hardware sensors, through
middleware infrastructure, and context server [104, 54].

Context-aware systems have components that collect and abstract context
information. Some of these systems have dedicated components to handle different
pieces of context information, while others are tightly coupled with other components.
For example; the TEA-system [24, 103] uses Sensors layer to measure the physical
parameters in the environment. The Cues which represent the second layer provide an
abstraction of physical and logical sensors. The Cues also make changes of hardware
(sensors) transparent to the next layer (context recognition layer) and reduce the
amount of data provided by the sensors. The context Widget [98] is another context
sensing block that abstracts the context information; it hides the complexity of the
actual sensors from the application. It is a reusable and customisable software
component that mediates between the user and application to access the context
information from their operating environments. The resource servers in CMF [45] are
also sensing components that acquire raw data from sensors (microphone,
accelerometers, light channels, temperature, humidity, touch sensors, GPS, internet
and other networked resources) and aggregate them to semantic information before
sending them to context manager at a determined intervals. The Context Acquisition

Module in CoBrA [61] is a library of procedures that forms a middle-ware abstraction
for context acquisition. It acquires context from sources and its task is similar to the

50

context Widgets which shields the low-level sensing implementation from high level

applications. SOCAM [44] uses independent components (external and internal

context providers}. They abstract low-level sensing implementation (obtained from

heterogeneous internal or external sources) to high-level manipulation (useful

contexts) and convert them into OWL representations to be shared by other

components. Context information can be sensed by physical sensors (e.g. curtain

sensors used to sense curtain's status) or virtual sensors (e.g. web service). On the
other hand, CASS [52] uses distributed sensor nodes (could be mobile or static) to

listen to context updates. In CORTEX [101] the sentient object model interacts with
their environment using sensors and actuators. It can abstract context from the
environment using incoming events from sensors and other sentient objects, where
sensors produce software events in reaction to a real word stimulus. ubi-UCAM [35]
uses various kinds of ubiSensors to represent user's situation. ubiSensor consists of
physical sensors, feature extraction model, preliminary context generator, and self
configuration manager. The preliminary context generator converts features extracted
from physical sensors into formatted 5W1H context, and the self configuration
manager multicasts preliminary context to the ubiService. The Context Acquisition

Layer in Context Stack [49] also acquires raw context from various ubiquitous context
sensors to be passed to the upper layers. In the RWM architecture [38], the real world
information is detected in phase-Pi using RFID tags, cameras, GPS, and other
sensors. Another example, is the Multi-agent based architecture [60] in which the
Context Collecting Agent is responsible for collecting users event information from
various mobile or stationary devices used in daily life. Context information is
translated into some entries (such as device id, data type, value, and date time) to be
presented to the context reasoning agent. The Watcher in WCAM [66] consists of
sensors (physical and logical) that sense values from internal or external environment
to provide logical views of sensors. The Context Providing Module in CALA [65]
obtain different pieces of context information from various sensors through the

personal agent, activity agent, and computing entity. The lexical level of the general
architecture [57] also uses sensors (including software components) to acquire raw
environmental data, which is refined to context information through the context

capturing interface. The Context Managing Agent in Multi Agent Service
Reassembling Architecture [48] acquires data from the Sensor Zone, where sensors

51

are polled by an intelligent agent. Then the context information is distinguished and

modelled. The Device layer in CADBA [55] framework represents the physical

equipment, devices, and drivers used by the context-aware system to acquire context

information. Finally, the Sensors agent in A-CoBrA [97] employs interfaces for
capturing context information.

In conclusion existing context-aware systems either use fixed or reusable
software/hardware components to abstract context information. Examples of reusable

sensing components that abstract context information are: Cues, Widgets, Context

Providers, Sensor nodes, Watcher, and Sensors agents. The devices that communicate
with the Context Collecting Agent (CCA) are also reusable components that collect

context information which could be mobile or stationary.

3.3.2 Context Modelling

Context modelling is the process of representing context information into machine
readable format using relationships between the sensed information to be easily used,
processed and interpreted. This section presents an overview of the modelling
components and/or associated modelling techniques for various context-aware
systems. For example the preliminary context integrator in ubi-UCAM [35] converts
features extracted from physical sensors into a formatted 5W1H context. Phase-P2 of
RWM architecture [38] builds the real world model, which describes various
situations, events, and states. The syntactical/representation level of the General
architecture [57] translates context events to atomic context information, where the
raw data is abstracted into discrete data structures so it can be processed by software.
On the other hand, many systems use ontology for modelling context information. For
instance, the resource server and context recognition services in CMF [45] use
ontology and fuzzy logic to represent and transform raw data to high level context,
which is stored in the context manager as a knowledge base. CoBrA [61] uses
COBRA-ONT (expressed in OWL) for modelling context, which is stored as a
knowledge base to support reasoning. SOCAM [44] also uses ontology for modelling
context; it converts the abstracted contexts (formed by the context providers) to OWL
representation to be shared by other components. The Context Stack [49] uses web

ontology based context model (CONON). In this system, the Representation Layer is

an abstraction layer that converts sensor data into semantic information. CALA [65] is

52

another example who uses ontology (CALA-ONT) which is formed by the context

providing module. Here the context information is expressed in first order predicate

logic and the context model is written using OWL-DL. In Multi Agent Service

Reassembling architecture [48] the 'context management agent' filters context

dimensions (time, location, identity, and activity) into a suitable profile to distinguish

context and represent it by ontology. CADBA [55] uses the resource layer to

represent the domain knowledge which can be described by ontology semantic

network.

To conclude, context representation is an important component of the context-

aware system. It provides a vocabulary to maintain, express and relates context to

support context reasoning.

3.3.3 Aggregation

As raw pieces of context information are sensed and modelled, they have to be

enriched to create a reliable context. User profile, preferences and context history, etc.

are significant information that enriches the context-aware system. These pieces of

information can be aggregated and fused at some stage during information processing

to obtain higher level of abstraction. Context aggregators are responsible for

augmenting existing information about a specific entity to be utilised in the reasoning

process. This section presents approaches that have the concept or the functionality of

context aggregation. For instance TEA-system [24] uses the sensor fusion to obtain

contexts that cannot be derived from single sensor. The principle of Cues is based on

the fusion of multiple simple sensors in the awareness component and the association

of patterns in the sensory data with specific context. The context Toolkit [99] also

uses aggregator to collect context information of real world entities, where the servers

are used to aggregate context information. In CORTEX [101] the Sensory Capture

component performs sensor fusion to solve uncertainty of sensor data and make

higher-level context from multi-modal data sources. The Aggregation Layer in the

Context stack [49] is another example that aggregates and relates context from

distributed context sensors to form a centralised knowledge base by using relational

database, thus simplifying context query and interpretation. On the other hand, the

Context Integrator in ubi-UCAM [35] periodically collects preliminary context from

various ubiSensors, classify context (to each element of 5W1H) and uses the fusion

53

method to create integrated context. The Context Reducer of WCAM [66] gathers

context attributes from external or internal resources such as database, and variables.

Then the context attribute collector gathers context attribute values from the system

and manages the storage of context attributes periodically. Another example is the

Context aggregator in CADBA [55], which gathers low-level context information

acquired from sensors to form a higher level context. In this system context is divided
into classes: Sensor context, Event context, and Scenario context.

In brief, aggregators are used to collect contexts in order to enrich and solve
consistency of context information. These components could be either explicitly or
implicitly shown in the context-aware architectures.

3.3.4 Context Reasoning

A vital functional component of the context-aware system is the reasoning
component. It is used to derive high-level context information from low-level context
(from the surrounding environment) and aggregated context using appropriate
reasoning rules, ontologies, etc. This section presents an overview to the reasoning
components of various context-ware systems and/or the reasoning mechanisms. For

example, the Context Layer of TEA-system [24] is used to compute current context
from available cues, by using simple if-then rules or other AI methods. In the context
toolkit [98], the interpreter component is responsible for abstracting raw data to
higher level context information either by using a simple lookup table or a complex
AI- based inferences. Another example is the Context Reasoning Engine in CoBrA
[61]. It is a reactive inference engine to reason about stored knowledge using a set of
ontologies and heuristic knowledge; it also detects and solves inconsistency of
information. SOCAM [44] architecture also uses Context Interpreter that provides
logic reasoning services to process context information. It consists of Reasoning
Engines and Context Knowledge Base. The Context Reasoning Engines uses ontology
reasoning (RDF schema and OWL-Lite) and (user defined) inference rules to infer
deduced context, resolve conflicts and maintain the consistency of the context

knowledge base. The RuleEngine in CASS [52] employs a stored knowledge base that
contains rules used by the Inference engine. The RuleEngine uses the forward chain

method to infer over context in the database which is based on the context conditions

and their goals. In CORTEX [101] the Inference Engine is the brain of the sentient

54

objects; it includes intelligence and control logic which realises the mechanism of

decision-making. On the other hand, the Context Inference Engine within ubi-UCAM

[35] infers the "Why" context among 5W1H. The inference is based on context

transition (infers context by observing change of other context) and complex fusion.
Again the Interpretation Layer in Context Stack [49] controls the reasoning rules

and/or the learning mechanisms to deduce high-level implicit knowledge from low

level explicit context information. The reasoning mechanisms use first order logic and

ontology. In the RWM architecture [38], Layer 3 (Phase-P2) interprets the real world

situation from data about time, location, and objects. Layer 4 performs a more abstract
interpretation including history and semantic. The Context Reasoning Agent in the

Multi-agent based architecture [60] receives real time events from the collecting
agent. Then it uses SQL grammar with logic base and device profile to generate
corresponding commands according to different contexts. The Context Reasoning
Agent could be mobile or stationary. In WCAM [66], the Model includes the
Inference engine which uses rules to infer high level context from the gathered
context attributes; whereas the Context reasoning engine in CALA [65] interprets the
context information using ontology and rule based reasoning. In contrast, The
Reasoning module of the Multi Agent Service Reassembling Architecture [48]
performs the reasoning of context information using ontologies. Rule based reasoning
is also used to identify the right application using location context. The planning level

of the General architecture [57] uses rules to derive context independently by the
inference engine. The inference engine then triggers the actuators that are affected by
context updates. The Context layer in CADBA [55] processes and generates context,
where the context interpreters interpret structures of raw data from sensors and
represent information as law level context. Finally, the Activity Context Broker in A-
CoBrA [97] is responsible for reasoning about context knowledge in context

repository.

In summary, reasoning is an important function to infer the meaningful context in
context-aware systems. The reasoning process can be carried out using rules such as
AI rule base, forward chain, heuristic knowledge, SQL grammar, application specific,
or ontology. Different naming are given to reasoning components, i.e., context layer,

reasoning engine, reasoning agent, planning level, inference engine, ruleEngine,

interpreter, and interpretation layer.

55

3.3.5 Application

The application component id concerned with the action (adapting the context-aware

system behaviour) which is driven by context changes. The following are some

examples of application components and application concepts for different context-

aware systems. TEA-system [24] uses the Scripting Layer which provides

mechanisms to include context information in the application using semantics; these

are, entering a context, leaving a context, and while in the context. CMF [45] employs
the client's Application component in order to transparently gain higher-level context

from the manager and deliver responses to the clients in an event based manner. In

SOCAM system [44], the Context-aware services component uses different abstracted
levels of context to adapt the system behaviour. Different services which are
advertised by the service locating services component can be accessed by the users
and applications. The ubiServices in ubi-UCAM [35] also provides application
services according to the user's needs by recognising context. Then the Service
Providers within the ubiServices manage and operate services after receiving
information about the service execution. In the sentient object model [105], the
producer interface is responsible for producing events to adapt current context via
some hardware devices. The Context Stack [49] uses the Utilization Layer to hosts the
context-aware services, which abstracted information to customise the system
behaviour according to the current situation (it is responsible for predicting context
and triggering certain actions). On the other hand, Phase-P4 of the RWM architecture
[38] is responsible for many tasks, these are: identifying information about service
provisioning, resolve device connection, and evaluating services. The Information

Processing Agent in Multi-agent based architecture [60] is another example of the
application component. This agent translates the received commands into actual
actions (either simple or complex). The Action in WCAM [66] represents a set of both
traditional and context-aware services. Subsequently, the Action manager coordinates
the context adapter within the Action to support traditional services with context-

aware information. In General architecture [57], the interaction level is responsible for
context changes through interacting with users and other hosts. Again, the Multi

Agent Service Reassembling Architecture [48] employs the 'Service Identifying

Agent' to specify the appropriate application and the related services. Moreover, the

56

application layer in CADBA [55] builds and executes the application according to the
context and the related history.

In summary, different services or actions are provided for different systems through

the application functional components. These actions could be either an interaction

with users or trigger and adapt the environment to provide services.

3.3.6 Management and Service Discovery

Different functional components of the context-aware system should collaborate to
process the context information and adapt the system behaviour. The context

management, is the process of organising multiple components of context-aware
system and also responsible for context sharing to create the final illustration to the
users. The management component is part of some context-aware systems, which will
be presented in this section. For example, the Widget's Discoverer [98] is used for the
resource discovery (locate components that are relevant to a given application's
functionality); whereas the Context manager in CMF [45] is a centralised server for
managing a blackboard, stores context and delivers responses and changes to the
clients using different mechanisms. On the other hand, the intelligent Broker in
CoBrA [61] maintains and manages a shared contextual model, where various policies
are used by the policy management module to handle the accessing and changing of
context information. In SOCAM [44], the Service Locating Service provides a
mechanism that enables users or applications to access services announced by context
providers and interpreters. The Context Manager within ubiService [35] is responsible
for matching integrated context with an appropriate service to be executed. Phase-PS

of the RWM architecture [38] is also concerned with service detection and
coordination. WCAM's Controller [66] bridges events, contexts and services from
other components of the architecture according to the model. Important issues of this
controller are scalability and dynamic configuration. Another example is the Learning

Services in GALA [65], which coordinates and provides learning services based on

context information through a user defined learning support rule. On the contrary, the
planning level of the General Architecture [57] detects and evaluates context, makes
plans and schedules context reactions. Finally, the Activity Context-Aware agents in

A-CoBrA [97] coordinate the sensor and actuator agents to assist the interaction with

users.

57

In summary, the management components are used in a number of the context-

aware systems. However, within each system this component has different function

and task; it is accountable for governing the system, locating or specifying the

services.

3.3.7 Knowledge Base

Many context-aware systems have dedicated context repositories to store context

history, user profile and other entity related information. This information could be

exploited during context processing. Storing and retrieving this context information is

necessary to enrich context; it can also be used to derive new context values or predict

future context. As an example, the context toolkit [98] stores historical data in

distributed databases which could be retrieved by interpreters, but it is harder to

maintain and manage. Widget uses two mechanisms to store context in local cash and

persistent store. On the other hand, the CMF [45] uses the blackboard (context

manager) so components post data to this common space to be available to other

components. The Context Knowledge Base in CoBrA [61] serves as a persistent

storage for context information which is represented by semantic web languages

(OWL and RDF). Stored knowledge can be queried by components using a set of

APIs. It also contains ontologies and a set of heuristics associated with a smart space.

The Context Knowledge Base in SOCAM [44] also contains a set of APIs so other

components can modify context knowledge in the context database. CASS [52] again

uses a database for persistent data storage to store context, application, user data and

domain knowledge as context awareness rules and behaviours of specific applications.

In this system the Context Retriever is responsible for retrieving context from a

database through the services of the interpreter. In ubi-UCAM [35], the context

database keeps necessary context, related information, and context history to support

the generation of final context. This operation is controlled by the Context Manager,

In the Context Stack [49], the Aggregation Layer has the task of storing context

history and relations with sensed context. This can form a centralised context base and

supports the interpretation which is based on current and past context. The RWM

architecture [38] also stores user profile, context history and semantics in a database

which can be retrieved at some stages. For example, phase PI (layer 2) has the task of

retrieving id information from database since RFID has a limited capacity. GALA

[65] also uses a Context Knowledge Base to maintain and share context knowledge on

58

behalf of the personal agent, which is restricted by the resources and the computing

entity. The Multi Agent Service Reassembling Architecture [48] again uses a database

to store ontology, context and historical data, which can be accessed using the Context

Managing Agent. The Service Manager accesses the repository to identify application
patterns and atomic services of the subtasks. The storage layer in CADBA framework

[55] stores and queries the context information (such as user profile, device context,
and location data) in the domain knowledge.

In brief, nearly all existing systems store context information (including context
history), user profile, ontologies in a dedicated database. So, these pieces of
information can be shared and retrieved at some stage during information processing.

3.4 Analysis of Context-Aware Systems with Respect to Architecture

Styles

After introducing various context-aware systems and studying their architecture
aspects, an analysis will be given to evaluate their architecture style and to be aware
of what building blocks constitute these systems. From the review it was found that
the majority of these systems are application-specific and restricted to specific
scenarios. Most of them used fixed components; such components are difficult to
change or extend to cope with new requirements requiring new contexts. They use
different software architecture styles in their design; some also use multiple styles.
Typical styles used in such systems are layered, agent-based, and service-based,
although other styles are also used. For example, a number of systems use the layered
architecture such as TEA-system [24], Context Stack [49], RWM architecture [38],
General architecture [87], CADBA [55], the conceptual layered architectural
framework [54], CAMUS [94], and the service architecture [95]. Also, the context
toolkit [98] although uses the concept of context widgets that cooperate in peer-to-
peer, the Widget's underlying components interact in a layered manner. Another
system that uses the layered architecture internally is the ubi-UCAM system [35],
which is built around a framework that has two main independent and reusable
components (ubiSensor and ubiServices) providing user centric services to multiple
users. Some systems use Agent-based style such as CoBrA [61], although the Broker
internal components communicate in a layered manner. The multi-agent architecture

[64] also uses agent-base architecture; however the agents communicate in a layered

59

manner. The Multi Agent Service Reassembling architecture [48] uses an agent-based

and service-based architecture. GALA [65] uses an agent-based and centralised

architecture, with a context-aware manager agent central to it. Another research work

that uses this style is the agent-based mobile service architecture [106]. A number of

systems use centralised or server-based architectures; CASS [52] and SOCAM [44]

are two examples. Although SOCAM used the centralised architecture, the internal

components communicate in a layered manner. Many systems adopt other

architectural styles; for example, the context toolkit [98] uses peer-to-peer, while

CMF [45] uses a blackboard style. Further styles are also employed in some systems;

for example CORTEX [101] is based on the sentient object model, which consists of

three main components and designed for context-aware applications in ad-hoc mobile

environments. The communication between these sentient objects based on events.

The WCAM [66] adopts the MVC style, using four independent components; some of

these components still use the layered architecture.

A comparison between various context-aware architectures based on some

categories of styles has been conducted by many researchers. For example, Bolchini

et al. [59] divided context-aware architecture styles into centralised and distributed.

While, Miraoui et al. [90] used three styles to differentiate between context-aware

systems; these are Client/Server, peer to peer, and hybrid. According to Lee et al.

[107] two main representation styles can be differentiated; these are centralised

(Context Server) and decentralised (peer to peer). Their advantages and disadvantages

have also been given.

From the above analysis and discussion, it was found that the layered architecture is

the predominant one; it has the benefit of hiding the low-level details, and supporting

separation between context acquisition and context use. Due to the complexity of

context-aware systems it is difficult to use this style to support different applications as

this architecture lacks the ability to reconfigure, extend and it is difficult to standardise.

Other systems using a server based or centralised broker architecture has the benefit of

creating thin clients, thus freeing the clients from processing resource-intensive tasks.

Nonetheless, such an architecture style has the drawback of a centralised solution

which causes a single point of failure as all other components communicate directly

with the centralised module. This contradicts with the nature of pervasive systems

which are distributed having independent devices. The centralised approach requires a

60

dedicated server which increases its cost and limits its usability. Bandwidth problem

may arise if too many clients (demanding computation) are connected to one sever.

Finally, the agent-based solution may not be suitable for real-time applications where

response time must be deterministic. The agent based architecture used by some

systems has the drawbacks of high communication cost, and requires high time

response due to the competition for bandwidth, especially when several agents send

data at the same time.

3.5 Analysis of Context-Aware Systems with Respect to Context

Representation

This section presents analysis concerning context representation and modelling. It was

found that TEA-System uses an object oriented model. It encapsulates context

information into objects (the Cues) which allows data abstraction, reusability and

controlled access to information. Object oriented approaches require the

implementation of an infrastructure to support context operations. The Toolkit uses

the attribute value tuple which is a simple model that has poor support to reasoning

and knowledge sharing in comparison to other modelling tools such as ontology.

Also, the toolkit does not use environmental information in the modelling. Some

context-aware systems use ontology in their context modelling, which enables context

reasoning, knowledge sharing and reuse. However, it is complicated when used with

generic and extensible applications as it cannot handle changing information in a

scalable manner (complicated to build general ontology). As an example; CoBrA,

SOCAM, Context stack, GALA, Multi-agent service reassembling architecture,

CADBA, and A-CoBrA use ontology to represent concepts and relations between

them. SOCAM uses OWL and divides their ontology into upper general ontology and

domain-specific ontologies. GALA uses OWL to represent a learning environment.

The Context stack also uses a web ontology based model (CONON) to facilitate

context representation, semantic data sharing and reasoning. On the other hand

CORTEX and CASS uses the relational data model, while ubi-UCAM uses

application oriented model.

In summary, we believe that existing context models range from simple to

sophisticated; each one has its benefits and limitations in supporting a given

application. Therefore, a hybrid model can solve the limitations of these models and

61

increase consistency of the systems. Also, the model should exploit the environmental

information and become flexible with various applications.

3.6 Analysis of Context-Aware Systems with Respect to Context

History and Knowledge Base

Context history is considered in the design of nearly every context-aware system,

where context information is dynamic and changes over time. However, employing

history in some of these systems is not clear. Cues considered history as it is a

function taking sensor values over time and providing an output. The Context toolkit,

CASS, CORTEX, and CADBA store context history in a database. CoBrA, SOCAM,

CALA, A-CoBrA, and Multi-Agent Service Reassembling uses database as a

knowledge base to store context history and ontology that support knowledge sharing

and context reasoning. CASS uses database to store context information, its history,

and rules used by the inference engine and the applications. The ubi-UCAM and

WCAM uses database to store context history to support the generation of final

context and context related to services. The RWM architecture is another example that

uses database to involve history and semantic. On the other hand, the Context Stack

supports knowledge reuse and reasoning using ontology and context knowledge base

through adopting a relational database. The Multi Agent architecture uses database

server to store messages, context and reference information for estimating locations.

CADBA uses context database to store system context and historical context

information.

We believe that context history is an important element of context information;

therefore it should be well integrated and used in the context representation. Existing

context-aware systems use either distributed or central databases to keep context

history. Distributed storage is harder to maintain and manage, while the central store

has the drawback of single point of failure. Therefore, using a backup database server

can overcome the last problem. Both approaches use dedicated databases other than

the organisational databases attached to these systems. In my opinion, context

information and context history can be attached to the organisational database rather

than a dedicated store to avoid redundancy, inconsistency of information and reduce

data overhead as context information is growing with time.

62

3.7 Comparison of Context-Aware Systems

After demonstrating various context-aware systems and studying their different

aspects, a number of criteria are used to compare these systems. The comparison is

made according to the architectural style, the main architecture components, context

representation, reuse, and context history. Tables 3.2 and 3.3 summarise the features

of context-aware systems, and as listed below: -

• Context Modelling: in this category context model can take one of the values:

key-value, mark-up scheme, graphical model, object oriented, logic based, and

ontology based model, see to Table 3.2.

• Context History: it is considered an important feature and will often form part of

the context description of all existing systems although it is not exploited

properly see Table 3.2.

• Reuse: two forms of reuse are utilised in this discussion, these are: context reuse

and component reuse. Context reuse indicates that systems may use ontology, or

knowledge base to support knowledge sharing and history. Component reuse

refers to the reusability of components to ease system structuring, reconfiguring,

and maintainability, see Table 3.2.

• Architectural Style: the architectural styles used in this comparison are: Layered,

Agent based, Server based, blackboard, peer-to-peer, centralised, and MVC. Peer-

to-Peer is used by distributed computing networks, where each computing entity

has equivalent capabilities and responsibilities; each can functions either as a

client or as a server. Centralised architecture is used by some systems for

distributed applications; this may involve multiple processes which depend on

one central process to serialise all events. Normally, the central unit is responsible

for the management, Table 3.3 summarises this study.

• Architecture Functional Components: typical functional components used for

context-aware systems are sensing, reasoning, aggregation, modelling,

application, management and services, and context repository. However different

names were given by each system. Table 3.3 shows the main functional

components that each system supports.

From Table 3.2 it was found that each system uses different context primitives

which are sensed from the environment. All the systems consider history as an

important aspect of context information which can be reused in subsequent states.

63

Many existing work used ontology to model context information. Also, the majority

of the systems have reusable components (mainly for the sensory component).

Finally, we found that the context toolkit and SOCAM systems are the most well

known systems which are cited and referenced by many researches. They are closest

in spirit that gives us guidelines to inspire the new proposed framework. Therefore,

these systems will be used in the evaluation of the framework.

Context-aware systems

TEA-System

Toolkit

CMF

CoBrA

SOCAM

CASS

CORTEX

Ubi-UCAM

Context Stack

RWM

Multi Agent Architecture

WCAM

GALA

General Architecture

Multi Agent Service
Reassembling Architecture

CADBA

A-CoBrA

Context
primitives

4W

4W1H

5W1H

5W1H

4W

3W

3W

4W1H

4W

3W1H

Context
history

J

J

J

J

J

J

J

J

J

J

J

J

y
y
j

j

j

Reuse

Context
Component

Context
Component

Context

Context
Component

Context
Component

Context
Component

Context
Component

Context
Component

Context

Context
Context

Component
Context

Component
Context

Component
Context

Component

Context

Context

Context
Component

Context Model

Object oriented

Attribute value tuples

Ontology
RDF

OWL

OWL

Relational data model

Relational data model

Application oriented,
unified model

Object-oriented, OWL

Application oriented,
RWM

Logic base

Application oriented

OWL & RDF

Data structure

Ontology

OWL

OWL

Table 3.2: Comparison to context-aware systems-context representation

64

ON

Co
nt

ex
t-a

w
ar

e
sy

ste
m

s

TE
A

-S
ys

te
m

To
ol

ki
t

CM
F

Co
Br

A

SO
CA

M

CA
SS

CO
RT

EX

U
bi

-U
CA

M

Co
nt

ex
t S

tac
k

RW
M

M
ul

ti
ag

en
t a

rc
hi

te
ct

ur
e

W
CA

M

CA
LA

G
en

er
al

 A
rc

hi
te

ct
ur

e

M
ul

ti
A

ge
nt

 S
er

vi
ce

Re

as
se

m
bl

in
g

Ar
ch

.

CA
D

BA

A
-C

oB
rA

A
rc

hi
te

ct
ur

e

St
yl

e

La
ye

re
d

Pe
er

-to
-P

ee
r *

Bl
ac

kb
oa

rd

A
ge

nt
 b

as
ed

Se
rv

er
 b

as
ed

 *

Se
rv

er
 b

as
ed

Se
nt

ie
nt

 o
bj

ec
t

m
od

el
D

ist
rib

ut
ed

 *
Fr

am
ew

or
k

La
ye

re
d

La
ye

re
d

M
ul

ti
A

ge
nt

 *

M
VC

A
ge

nt
 b

as
ed

La
ye

re
d

M
ul

ti
A

ge
nt

La
ye

re
d

A
ge

nt
 b

as
e

*

Co
m

po
ne

nt
s -

 M
ain

 F
un

ct
io

na
lit

ie
s

Se
ns

in
g

Cu
es

W
id

ge
ts

Re
so

ur
ce

 se
rv

er

Co
nt

ex
t

ac
qu

isi
tio

n

Co
nt

ex
t p

ro
vi

de
r

Se
ns

or
 L

ist
en

er

Co
ns

um
er

ub
iS

en
so

r

A
cq

ui
sit

io
n

re
al

wo
rld

in

fo
rm

at
io

n
ph

as
e

Co
nt

ex
t c

ol
le

ct
in

g
ag

en
t

W
at

ch
er

Co
nt

ex
t p

ro
vi

de
r

Le
xi

ca
l l

ev
el

Se
ns

or

Zo
ne

De
vi

ce
 la

ye
r

Se
ns

or
s a

ge
nt

s

A
gg

re
ga

tio
n

A
gg

re
ga

to
r

Se
ns

or
y

ca
pt

ur
e

Co
nt

ex
t

in
teg

ra
to

r

A
gg

re
ga

tio
n

Re
as

on
in

g

Co
nt

ex
t l

ay
er

In
te

rp
re

te
r

Co
nt

ex
t

re
as

on
in

g
en

gi
ne

Co
nt

ex
t I

nt
er

pr
ete

r

Ru
le

En
gi

ne

In
fe

re
nc

e
en

gi
ne

In
fe

re
nc

e
en

gi
ne

In
te

rp
re

ta
tio

n

Se
m

an
tic

re

co
gn

iti
on

Co
nt

ex
t r

ea
so

ni
ng

ag

en
t

M
od

el

Co
nt

ex
t r

ea
so

ni
ng

en

gi
ne

Re
as

on
in

g
lev

el

Co
nt

ex
t r

ea
so

ni
ng

Co
nt

ex
t l

ay
er

A
ct

iv
ity

 c
on

te
xt

Br

ok
er

M
od

el
lin

g

Co
nt

ex
t

re
co

gn
iti

on
 se

rv
ice

s

Co
nt

ex
t

re
pr

es
en

ta
tio

n
Pr

el
im

in
ar

y
co

nt
ex

t g
en

er
at

or

Re
pr

es
en

ta
tio

n

Re
al

w
or

ld
 m

od
el

ph
as

e

Co
nt

ex
t m

an
ag

er

Sy
nt

ac
tic

al
lev

el

Co
nt

ex
t m

an
ag

er

Co
nt

ex
t c

ap
tu

rin
g

In
ter

fa
ce

A
pp

lic
at

io
n

Sc
rip

tin
g

lay
er

A
pp

lic
at

io
n

co
nt

ex
t-a

w
ar

e
se

rv
ice

s

Pr
od

uc
er

Se
rv

ice
 p

ro
vi

de
r

U
til

isa
tio

n

Se
rv

ice
 p

ro
vi

sio
n

In
fo

rm
at

io
n

pr
oc

es
sin

g
ag

en
t

A
ct

io
n

In
te

ra
ct

io
n

lev
el

A
pp

lic
at

io
n

pa
tte

rn

A
pp

lic
at

io
n

lay
er

A
ct

ua
to

r a
ge

nt

M
an

ag
em

en
t/

Se
rv

ice
s l

oc
at

in
g

D
isc

ov
er

er

Ch
an

ge
 d

et
ec

tio
n

Po
lic

y
m

an
ag

em
en

t

Se
rv

ice
 lo

ca
tin

g
se

rv
ic

es

Co
nt

ex
t m

an
ag

er

Se
rv

ice

de
te

rm
in

at
io

n

Co
nt

ro
lle

r

Le
ar

ni
ng

 se
rv

ic
es

Pl
an

ni
ng

 le
ve

l

Se
rv

ice
 id

en
tif

yi
ng

ag

en
t

A
ct

iv
ity

 c
on

te
xt

-
aw

ar
e

ag
en

ts

St
or

e/

Re
tri

ev
e

Co
nt

ex
t

m
an

ag
er

Co
nt

ex
t

kn
ow

le
dg

eb
as

e

Co
nt

ex
t

Re
tri

ev
er

Co
nt

ex
t

pr
ep

ro
ce

ss
or

St
or

ag
e

la
ye

r

re
le

va
nt

 c
on

te
xt

re

tri
ev

al

Us
e

of
 co

nt
ex

t
Re

po
sit

or
y

Tu
pl

e
sp

ac
e

DB DB DB

kn
ow

le
dg

e
ba

se
DB

kn

ow
le

dg
e

ba
se

D
B

kn
ow

le
dg

e
ba

se

DB DB DB

kn
ow

le
dg

e
ba

se

DB D
B DB

kn
ow

le
dg

e
ba

se

Co
nt

ex
t R

ep
os

ito
ry

DB

O
nt

ol
og

y,
 s

er
vi

ce
s

DB
 fo

r d
om

ai
n

kn
ow

le
dg

e
DB

kn

ow
le

dg
e

ba
se

Ta
bl

e
3.

3:
 A

rc
hi

te
ct

ur
e

co
m

pa
ris

on
 o

f c
on

te
xt

-a
w

ar
e

sy
ste

m
s.

W
he

re
 *

 r
ef

er
s t

o
m

ul
ti-

sty
le

 a
rc

hi
te

ct
ur

e
w

ith
 th

e
pr

ed
om

in
an

t s
ty

le

3.8 Context-Aware Issues

As an outcome of reviewing literature, studying and analysing the characteristics of

various context-aware systems the following issues are drawn: -

1. Issues Related to Context Modelling

Context modelling has an important role in information processing of context-aware

systems. Therefore, context models should be general, well organised, and adaptable

in order to support context abstraction, reasoning, and context reuse. In this respect
problems related to context modelling are identified as follows: -

a. Context information such as identity, time, location, activity, environment and
other derived context are not fully exploited in the existing context-aware

systems. Also, it lacks the possibility to cast off unused context. Moreover, there
is no clear definition to context history which describes its role and use in
context modelling.

b. Existing models have limited capabilities in context representation and
abstraction (rigid representation to abstracted context), and restricted support to
context reasoning. Also, some of these models require a large knowledge base
for reasoning.

c. Complex representation to context, especially with application specific systems
and some ontology based modelling. Ontology based model represents concepts
and relations between them; it has the advantages of enabling context
knowledge sharing and reuse to enable context reasoning and interoperability
between applications. However, existing ontologies have the drawbacks of
lacking generality (cannot be used for a range of applications). It is a
sophisticated concept of knowledge representation and reasoning. It may be
imprecise or incorrect for certain applications and also cannot handle changing
information in a scalable manner. Ontologies require storage mechanisms and
engines for managing, with high requirements on resources; so, editing and
updating existing ontologies are complex tasks.

2. Issues Related to Context-A ware Architectures

By reviewing various context-aware systems and studying their architectures, it was

found that most existing context-aware systems implement the layered architecture

style in their design. This style has the advantages of high level of abstraction in

66

design (allows problem partitioning) and support enhancements and reuse. However,

it has its disadvantages too, for not all systems are easily structured using this style.

Besides, defining layers for some systems is not trivial with implementation can

differ vastly from the model, and it may be difficult to find the right level of

abstraction. Using layered architectures with context-aware systems makes it

difficult to support extensibility and reconfiguration (i.e. updating or removing

services according to context). There is an inherit problem with context-aware

systems, where they are not similar as the case with network systems. Moreover,

there is no common pattern of system organisation, for each system is different and
deals with different parameters and entities. In general, most existing architectures
do not handle dynamic changes in context or application. Nonetheless, context-
aware systems have common usual functions which can be used recursively (Table
3.3).

3.9 Summary

Advanced techniques care for designing reusable and independent modules which can
be assembled to ease system maintainability, reliability, adaptability, system
development and simplify application deployment rather than using a single
monolithic program. After investigating existing context-aware systems and
considering context-aware issues, we aim at designing a generic context-aware
architecture that can be used by a variety of systems. It is to note that context
dimensions, context history, and modelling techniques of existing systems are studied
and analysed in chapter 2; whereas the functional components of context-aware
systems and their architecture styles are studied and analysed in this chapter in order
to find the best fit to the proposed solution. From the discussion given in this chapter,
and considering the requirements of the existing systems, we concluded that a generic
and extensible context-aware framework using the Pipe-and-Filter architecture style is
needed. This framework can simplify the construction of these systems, so context-

aware applications can be widespread.

67

Chapter 4

Research Approach and Concepts

Despite the development made in ubiquitous computing and context-aware systems,
these fields are still evolving, and their applications are still limited. Throughout
reviewing literature much experience has been gained, along with getting through

many existing problems to find answers to these questions. These problems were
concerned with the conceptual issues in this field and others related to the architecture
of context-aware systems. This chapter provides an outline to our findings and
presents the research contribution, which will be represented by a conceptual scheme.
The scheme includes classification of context information, some definitions and
terminologies used, the proposed context-aware architecture, and finally a scenario to
demonstrate a case study of these systems in a smart environment. All these subjects
will be discussed in this chapter with the proposed design of the context-aware

framework.

4.1 The Conceptual Scheme of The Proposed Framework

A conceptual scheme can be used to help in the communication of the main ideas
behind the design process. In this research a new framework for developing context-
aware smart environments will be proposed. The new framework helps in solving
problems related to the context-aware architecture and the complexity of designing
these systems as mentioned in the research problems in chapter 1. Figure 4.1 shows a

conceptual scheme (similar to mind map) which is employed in the design of the
proposed framework. This Figure illustrates how different concepts collaborate to

realise the architecture.

A Calcgon

Context \
Classification ,'

Data
Repository

Smart environment Pipe-and-Filter Architecture

CADL

Getter Manipulator

Adder Interpreter

Describe

Formatter U Application

Deplo\

Events
Terminology—y—'

SW (HW

Trigger

System Manager
and Scheduler

Figure 4.1: GECAF framework components and relationships between them

Firstly, context information is classified into different classes and categories. Then
using ontology we show the relations between these classes and categories, and how
each context can be derived and used. This classification with the definition of some
unclear terms are utilised in specifying which context type to use, the structure of the
context model and the structure of the Context Description Language (CDL code).
Context history is one of the context categories that is identified in this chapter to
better understand and use in the context-aware system design; where context history is
kept in a data repository as a knowledge base. Afterwards, the main building blocks
(components) of the context-aware system were identified and adopted in the Pipe-
and-Filter architecture to put them together in different arrangements (depending on a
given application). As the interpreter has an important role in any context-aware
system for reasoning about context information, an XML Rule Language has been
developed to be used by application developers. Consequently, a Context-aware
Architecture Deployment Language (CADL) has been designed; it is written in XML
code to describe the architecture's components. The sensor's terminology defines and
discusses important terms related to various sensor types; it has an important role in

the proposed design as it characterises context sources and describes how different

69

pieces of context information are acquired. To govern the context-aware system
operation, a 'system manager and scheduler' has been proposed. It is used to schedule
events triggered by the software and hardware sensors. It also manages deploying and
implements the context-aware system using descriptions from the CADL code.
Finally, the proposed framework is implemented in a smart environment scenario as a
case study using different application's categories. In the following sections we are
going to describe the elements of the framework.

4.2 Context Representation

This section demonstrates a classification to context information, and shows the
relations between them. The rationale behind this classification is to be aware of what
constitutes a context, what are the relations between different types of context in order
to simplify context reasoning. Moreover, definitions and terminologies are presented
to explain some useful terms.

4.2.1 Context Classification and Definitions

Several approaches have defined and given classification to context information and
its different terms. To better understand what constitutes a context and how it is used,
we present a new classification to context information which shows how each context
can be derived. Ontology to describe the relations and associations between these
categories is also used, see Figures 4.2 and 4.3. Context information can be classified
into present, historical, and predicted (or futuristic) context; these categories can be
further classified as demonstrated below: -

Classification of Context Information

1. Present (instantaneous) context 2. Historical context
e.g. 1. Past Role

2. Past Attendance
3. Temp history

. Health history

3. Predicted (future) context
e.g. 1. Predicted health problem

2. Predicted temp
3. Predicted location
4. Predicted weather

Sensed Context (4W1H)
e.g.
1. Time (When)
2. Location (where
3. Identity (who)
4. Activity (what)
5. Environment (How)

Derived Context

Directly derived Context
e.g. 1. Role

2. Attendance
3. Temperature level
4. Disability

- Sight problem
- Deafness problem

5. Loneliness.

Indirect (Semantic) Context
e.g. 1. Fire

2. Comfort
3. Health problem
4. Lectures missed
5. Noise

6. Student knowledge
7. Understanding.

Figure 4.2: Context classification

70

Used as

Figure 4.3: Ontology to represent the relations between context categories

1. Present context: is the instantaneous context or the current situation that

characterises an entity; it can be either sensed (primitive) or derived context.

• Sensed contexts (4W1H) represent different pieces of raw context information

which can be sensed by hardware, software, or both sensors (see section

4.2.2). These are the identity (who), location (where), time (when), activity

(What) and environment (How).

• Derived context can be direct or indirect (semantic context). Directly derived

context can be imitated from primitive context, with entity characteristic i.e.

information retrieved from internal or external databases. Indirect context can

be inferred by abstracting different pieces of context information.

2. Historical context: is considered as an important feature for approximation of a

given situation or environment. Context changes with time; it has an impact on

context-aware systems and can be used to derive other contexts. In this respect,

some context information is considered dynamic. Referring to Figure 4.1 we can

conclude that historical context is a time variant entity. To better understand and

use context history, a comprehensive definition is proposed: -

'The past context information or status of an entity that affects context-

aware systems behaviour (i. e. the system adapts its behaviour according to

the changing status of an entity rather than its absolute value). Contextual

information is a time variant entity, therefore context history represents

the order and time of events which may be used to accurately predict the

action of an entity or the intention of a user in current or future state'

71

3. Predicted context (futuristic context): is the anticipated context which could be

derived from entity characteristics, present and historical context. This context

can be derived and stored to take action in subsequent status.

All the above mentioned categories of context could be either static or dynamic

depending on context information and the application, i.e. primitive contexts like,
time, location, activity, and environment could be static or dynamic. On the other
hand context information in some situations may have different interpretation. For
example, a person's role in a store environment is a static value and does not change
(shoppers, supplier, shop assistant, etc.). However, a person's role in a university
environment may change with time, location, or in conjunction with other sensed
information (virtual or sensed). In this case, a person could be a postgraduate student
or teaching assistant when time, location environment and activity change. Another
example is within a hospital environment, where a person's role my change from
physician to patient depending on persons health situation or activity. Temperature
context can also be changed with time, location and environment, etc. In the literature
there is less emphasis on the context history; hence from the study of this thesis it can
be concluded that this element will be highlighted in the implementation chapter.

4.2.2 Sensor Terminology

Context information is captured from physical environment as well as electronic
world using different types of sensors. These sensors can take different names
depending on how context information is sensed. From reviewing the literature, one
can quickly realise that sensor terminology is not standardised, and the existing works
use dissimilar terms to define sensor types. To solve the confusion in using sensors
terms, we introduce a general naming convention as shown below: -

1. Hardware sensors: are sensing (physical) devices such as RFID tags, Camera,
GPS and temperature sensors that measure the physical parameters (raw context
information) from the environment.

2. Software sensors: are the logical data acquired from host devices (system's

internal or external databases like LDAP [108] or system files such as system
calendar, a stored picture or stored address). The term 'software' is used when
contextual information is stored using software means.

72

3. Hybrid sensors: combine the information from both sensor types (hardware and

software) to derive a new piece of context. For example, person's identity can be

detected by combining a profile captured using a camera with a picture retrieved
from a database.

In reality, to apply the above terminologies, context can be acquired from two

sources these are: hardware and software sensors. However, the information acquired

from hybrid sensors is derived by combining the information from both hardware and

software sensors through aggregation, and interpretation processes.

4.2.3 Context Modelling

A general context model is important to simplify context representation, so that

context-aware applications can be built easily. To represent context information and

consider all context dimensions (context primitives, context history, etc.), a general

and simple model has been proposed. This formal model characterises context

information as a function of four Ws and one H (or 4W1H); these are Who, Where,

When, What and How; refer to equation 4.1 below.

Context = Entity (ID, Time, Location, Activity, Environment)...... (4.1)

These five parameters represent the primitive pieces of context information

(Identity, Time, Location, Activity or Task and How the Environment is). Therefore,

abstracted context information can be derived from these 4W1H and other terms (such

as context value and context history). Depending on the context in use, each of these

parameters could be assigned an applicable value or denote not applicable. As time
(When) context could be a series of time periods, it is used to order events and

identify when information is detected (to be considered as historical data afterwards).
To illustrate this concept, context information primitives are represented using a

Context Description Language (CDL) which is XML language used for wrapping the
elements of the formal context model. Each context primitive is modelled by a mark

up tag with attributes and values as shown in example 4.1.

Example 4.1: CDL code to represent 4W1H

<contextPremitive name="context_name" value="context_value">
<ID>identification code</ID> <! — Who —>
<Time>Time and date of occurrence</Time> <! — When —>
< Location > location </Location> <! — Where —>
<Activity>what activity</Activity> <! — What —>
<Environment>existence of others</Environment> <! — How —>

</contextPremitive>

73

Where,

Name: refers to context type such as temperature, attendance and role.
Value: raw information collected from sensors which depend on context type such as

degree Celsius or m/sec, or derived context such as attendance status and
person's role.

ID: is an identification code attached to an entity to reference the characteristics of
given pieces of context.

Time: is a date/time-value describing when the context is sensed.
Location: refers to where context information is detected.
Activity: refers to context activity and its current situation, e.g. walking, running or

sleeping.

Environment: refers to the surrounding conditions such as existence of other people,
resources in the room or weather conditions.

The proposed model is simple since context is represented in a general form
(employ all context terms) using a fixed number of tags to define each context
primitive parameters (4W1H). Also, it is flexible as each of these parameters may or
may not exist (can take a 'null' value). Since context information is dynamic and
changes over time, history is added to the model. Besides, context value is added as it
represents the actual (abstracted or meaningful) context. Example 4.2 illustrates the

proposed model in CDL code with history and value. Context Identification Code
(CID) is also added to reference a particular context during information processing.

Example 4.2: CDL code with history

<Context CID="cl">
<contextPremitive name="Role" value="student">

<ID>@103</ID>
<Time>l April 2011 9:30 Am</Time>
<Location>Classroom N233</Location>
<Activity>Sitting</Activity>
<Environment>Occupied</Environment>

</contextPremitive>
<History time="l March 2009 9:30 Am">Lecturer</History>

</Context>

Indirectly derived context is also represented in XML as given in example 4.3. This
document gathers different abstracted contexts to be further enriched or reasoned
about to derive an indirect context.

74

Example 4.3: Indirect formatted context in CDL

<context n a me=" Lecture type", value="Recap">
<contextl name="Role">

<cl time="10">Lecturer</cl>
</contextl>
<context2 name="Attendance">

<cl time="10">21</cl>
</context2>

</context>

4.3 The Generic Framework Design

Due to the inherited complexity of context-aware systems and bearing in mind the

analysis given in the previous chapter, it is argued that using an open architecture is

important for designing such systems. It handles diverse applications, supports reuse,

and considers adaptability and extensibility, so developers can adopt it to customise

their design when building their own systems.

4.3.1 The Generic Pipe-and-Filter Architecture

To design an open architecture, different software architecture styles have been

reviewed, followed by studying and analysing the usual functional modules of

existing architectures. All context dimensions (primitive contexts, user's profile and

context history) for context representation are also considered. In view of these

requirements and considering the main components of the context-aware systems used

in the analysis, a generic framework has been proposed. The framework provides

reusable building blocks to simplify system integration and minimises development

efforts. The framework employs the Pipe-and-Filter architecture style, in which

context information (with machine readable format) is passed through a chain of

components (known as filters or processes) to be processed and transformed in a

variety of ways. These filters have functional cohesion and can be used in different

contexts. When systems are constructed, a number of filters may be joined together

and configured seamlessly to suit the implemented system requirements. This is

similar to the UNIX pipe where a number of tools may be strung together to form a

larger functionality. Conceptually, the framework can be implemented using six major

building blocks (filters) to build a context-aware architecture. These building blocks

perform context acquisition (getting), modelling (formatting), enriching (aggregating),

reasoning (interpreting), storing/retrieving (manipulating), and processing

(application) context information. In the proposed architecture the pipes (XML

75

documents) are joined to glue the components together, where the output document of

one filter becomes the input to another. This gives a smart solution which makes the

system easily maintained or modified by eliminating, changing or adding new filters.

The framework allows developers (through a deployment language based on XML) to

design flexible, extensible, and adaptable systems by means of reusable filters that are

independent of each other. New context and services can be easily added by using and
rearranging various filters due to the architecture adaptability. Developers may choose
from a pool of existing filters to perform a specific process or they may build new
ones and use them in the pipe. Accordingly, when a new filter is developed it must
conform to one of the general types in order to be used in the pipe.

General filter types of the proposed framework are presented in Table 4.1. Figure
4.4 (a) shows the major abstract filters, whereas Figure 4.4 (b) shows a possible
arrangement of the architecture filters in context-aware systems. Figure 4.4 (b) shows
that the environment acts as a pump (producer), while the sink (or consumer) is a data
target or the action (or application) of the context-aware system. The "Getter''1 filter
detects and retrieves primitive context information (ID, location, time, activity, and
environment) from different dimensions, either physically from the surrounding
environment or logically from the internal system. The "Formatter" filter takes
primitive or indirectly derived pieces of context information and place them in a
machine readable model i.e. represent context information using CDL code (described
in section 4.2.3). The "Adder" filter is used to aggregate context information
depending on a given format. It can either gathers derived with formatted context
information, collects several pieces of retrieved context information or links primitive
context information with historical context (from database) and other data resources.
This will enrich the context information to become more accurate and practical. These
pieces of context information will be advertised in a machine readable model (using
CDL code) to be processed in the next stages. Example 4.2 illustrates the modelled
context information with the augmented historical data.

76

Filter type

Getter

Formatter

Adder

Interpreter

Manipulator

Outputer

Operation
Context

acquisition and
retrieving.

Modelling or
Formatting.

Context
aggregation

Reasoning and
Processing
Storing and

retrieving context
information

Adapting context-
aware

environment

Description
Extract primitive context information from the environment
using different types of sensors.

Model context information in a formal XML code, using the
CDL language.
Augment the retrieved or interpreted context information to
the formatted XML code.
Reason about context using a given XML rule language
(specified by the application designer).
Store context for later retrieval as a historical context. This
is achieved by specifying the path of data, i.e. URL, file
name, etc.
Outputer filter specify the application type (automatic,
tagging, or presentation) and use the abstracted context to
change the environment.

Table 4.1: General filter types

CML

XMl

Formatter XML

Rule

XMI

Database
i

"1

XML

(a) Main architecture filters

(b) A possible arrangement of the architecture filters

Figure 4.4: Pipe-and-Filter architecture Filters

77

The "Interpreter " filter is used to reason about a given context either directly from

context primitives or indirectly from the derived context. Directly derived context
information can be reasoned about by interpreting formatted primitive context

acquired from hardware and software sensors. In this case the output represents the

abstracted context value; see example 4.2. On the other hand, indirectly derived
context uses primitive, derived and aggregated context information to infer a

meaningful context. The Interpreter utilises an XML rule language (see section 5.3),
which arranges the interpretation rules and the relation between different contexts in
an XML document. The interpretation rule mechanism benefits from mathematical,
logical, conditional, and other functions. These rules are retrieved during runtime and
arranged in Reverse Polish Notation (RPN). The rule mechanism is implemented
using the Interpreter design pattern [109]. The "Manipulator" filter has the role of
either storing context information for later retrieval, or retrieving stored context
information (historical context or others) from internal or external databases. The
"Outputer" filter is used to change system behaviour according to the final abstracted
context (performs an action). Outputer applications are of three categories: automatic,
tagging, or presetting. Besides, different application types can be implemented, these
are: hardware, software or distributed application such as SOAP [110]. Finally, the
deployment of these filters along with the allocated services can be realised through
an application developer interface which is set in an XML document (CADL code,

see section 4.3.4).

4.3.2 Basic Guidelines for Arranging the Architecture Components

The key characteristic of this architecture is being customisable for the targeted
environment. Like any architecture using the Pipe-and-Filter style, there are certain
guidelines that should be followed when using and arranging its filters to design a
context-aware system; these guidelines are: -

1. The "Getters" should be used as starting filters to acquire primitive context
information from the surrounding environment or from the internal system.

2. The input to the "Formatter" is one or more primitives, derived or indirectly
derived context produced by the Getter, Manipulator or Interpreter filters.

3. The "Adder" takes a single piece of context (either from Getters, Manipulator,
Interpreter or even from an Adder itself) to be aggregated in an XML document.

78

4. The "Interpreter" takes an XML formatted context (Formatter output) or

aggregated context (Adder output) to produce a single piece of context
(abstracted context).

5. The "Manipulator" can either be used to store interpreted context, or retrieve

context information (context history, or any other information) from internal or

external sources (databases) to be fed to the Adder or the Formatter.

6. The "Outputer" takes the abstracted context from the Interpreter or the Getter to
adapt the system's behaviour (takes an action).

4.3.3 Application Types

Context-aware systems use context to provide relevant information and/or services to
the user. According to Dey et al. [8], context-aware applications have three different
categories, these are: presentation of information and services to a user, automatic
execution of a service, and tagging of context information for later retrieval. The
proposed framework which employs the Pipe-and-Filter architecture has a number of
filters; where the 'Outputer' filter represents the final stage of the architecture. It has
the role of providing services (take an action according to context changes), which are
related to the specified application. In this filter all the application categories proposed
by Dey [8] have been considered. Moreover, two types of actions are identified, these

are: -

1. Hardware action: is an action associated with the output devices (actuators)
which are connected to the context-aware systems. These devices (local or
remote) can change their states according to a context value. This value could be
either 'discrete' (e.g. on/off to change door status), or 'continuous' (e.g. a given
voltage to change device temperature, speed, etc). In either case, a number of
parameters should be specified; these are device address, output value, data type
(discrete or continuous) and transmission type (serial USB port, Blue-tooth, IR,
Parallel port, etc.). These parameters can be specified by the application
developer in the CADL code.

2. Software action: is an action where the software alters its status according to
context changes. The output value could be a "discrete" value (e.g. to switch-on

or shut-down a screen), 'continuous' (e.g. to represents speaker volume, font size,
etc.), or string (e.g. a web site address, email address, etc.).

79

As stated earlier, there are three application categories: tagging, presentation, and

automatic execution. The first type monitors system's changes without changing the

environment, while the second presents information/services to the user, which could

be either software or hardware action. The third type takes an immediate action

according to the context, which could be either software or hardware and depends on

the application.

To develop distributed applications different protocols and languages can be

employed to facilitate accessing web services. Remote Procedure Calls (RFC), SOAP

(Simple Object Access Protocol), WSDL (Web Services Description Language),

UDDI (Universal Description Discovery and Integration) [111], message queues,

middleware, etc. are the de-facto protocols for communicating between application

components in a service-oriented distributed application. SOAP is the widely used

protocol in most application examples. Therefore, explicit support to SOAP has been

included in the framework (as a software action) and as an example of delivering

distributed applications. A brief overview of the SOAP protocol is described in

appendix A.

4.3.4 Context-aware Architecture Deployment Language (CADL)

To build an open and generic framework, a user language is necessary to assemble the

architecture filters and specify the types of services. It should be an easy-to-learn

syntax and usable by application designers, in addition of being extensible. A simple

user interface language is of great importance to build a user specific application and

abstract the context-aware system formation. This language would greatly lessen the

amount of code that needs to be maintained and reduce the maintenance cost. In this

respect, a new mark-up language is developed to realise and assemble the context-

aware architecture filters. Context-aware Architecture Deployment Language (CADL)

is the new developed user interface language based on XML; its code can be written

by the application developers to build their specific context-aware system. This

CADL code should conform to a given XML Schema (see appendix B). According to

this language the application developer can specify the architecture filters (processes

as used in the CADL code) to be assembled, the contexts in use, the interpretation

rules, the application type and category, in addition to the address and value type used

by the output functions. This language is extensible as various contexts can be

80

included; it also has generic elements ''Element" which can be used to set different

parameters for different applications. The CADL code also differentiates between

different events fired by different sensors and associate a CID with the relevant event.

Example 4.4 illustrates the skeleton of the CADL language. More information about

CADL structure will be given in chapter 5. There are other description languages that

can be tailored to other specifications. For example, Siegemund [112] used a higher

level description language called Smart-Its Context Language (SICL); however it is

used to facilitate the development of context-aware services and applications.

Example 4.4: The skeleton of the CADL code, highlighting the main elements of the

code.

<?xml version="1.0"?>
<Filters xmlns:an="http://www.w3.orQ/2001/XMLSchema-instance"

an:noNamespaceSchemaLocation="CADLSchema.xsd">
<events>

<event id="an_event_id" CID="context_id">
<description>a_given context</description>

</event>

</events>
<process type="main_filter_name" CID="context_id">

<class name="concrete_class" address="associated_address"
context=ttcontext_value" RID="rule_ID">
<source no="file_number" type="file_type">source_file_name</source>

<target type="file_type">target_file_name</target>
<Element name="element_name" value="element_value"
type="element_type" fileType="file_type">source_file_name</Element>

</class>

</process>

</FMters>

4.3.5 System Manager and Scheduler

Context-aware systems are responsible for acquiring, processing, managing, and

distributing context information with respect to the applications' requirements and

services. To govern the whole system process, an event driven system manager is

essential to sequence events fired from heterogeneous and distributed sensors (such as

RFID readers, system timer, temperature sensors, etc.) and manages the context-aware

system. In reference to Figure 4.1, we are going to explain in details the system

manager and scheduler. As shown in Figure 4.5, the System Manager has a central

First-In-First-Out (FIFO) queue to sequence contexts in the order of their occurrence.

As an event occurs, the primitive pieces of context information (4W1H) are acquired

from the attached sensors; then abstracted and attached with an Event Identification

81

code (BID) and finally saved in a queue. The BID is a unique identification code

attached to each event, and is associated with context primitives. To specify the

context in use, the application developers CADL code can map each event with a

Context Identification Code (CID). The system manager has also a timer that issues

an event every x seconds, to read the queue head and proceed with the Pipe-and-Filter

sequence according to the CADL code.

System Manager and Scheduler
<?•'*$
» " •Trier L.'

.. Data queue. .

Reader

Trigger

-i Sensor

Implement

Pipe-and-Filter
context-aware
architecture

Application

Figure 4.5: System Manager and scheduler

4.4 Framework Realisation in Smart Environments - Classroom

Scenario

As an illustration for a detailed scenario that interprets the generic feature of the new

proposal, we use the smart classroom scenario to validate the proposed framework. To

illustrate the framework main concepts, a smart classroom scenario has been chosen

as a case study. A context-aware classroom is a smart environment equipped with

many context-aware innovations. Such innovations comprise networked computers,

electronic boards, intelligent displays, etc. Consider a student who has particular

needs because of personal circumstances such as short sighted and hearing

difficulties. Such a student requires that all fonts of delivered materials to be adjusted

(enlarged) and voice amplified. These particular requirements are only needed when

this student is present in the classroom and when a lecture is delivered. Presence of

other students may place other requirements on the environment; for example how

many students are currently present but were absent from previous lectures. This

smart environment has to detect time, identity, role of the classroom inhabitants and

their history, and then interpret the information as context to adapt the behaviour of

the target application. Target applications could be a projector intensity setting, size of

82

presentation slides, speaker volume or even web browser software (running on

individual PCs) displaying other information related to the delivered lecture. Bill (a

fictitious student) has found such an environment particularly useful to aid his

learning considering his personal problem (short sighted and hearing disability).

It is nearly 8.45 O'clock on Monday morning when Bill arrives at the University

building and intends to attend his first lecture of the day. As Bill enters the classroom,

his picture together with attendance time is displayed on a smart e-board hanged on

the side wall. When Bill sits down, his personal computer (PC) displays the student's

web page, and the font size is adjusted according to his need. Several messages are

displayed telling him about his homework, history of attended lectures, e-mail, etc.

Few minutes later, most of the students become inside the classroom, sitting in front

of their PCs. As Professor Smith (a fictitious lecturer) enters the classroom, and

becomes near the front e-board, a recap of the last lecture is displayed on the e-board,

because students' attendance was less than 20% in the preceding lecture. The

lecturer's voice amplifier is also adjusted according to students' needs. The PC

displays of all students are switched to the lecture webpage viewing the lecture notes,

student e-book and other links. The above scenario will be referred to in the next

chapters to demonstrate the implementation of the framework.

4.5 Summary

In this chapter, a new way for building context-aware systems is proposed. The new

approach is based on a generic and extensible framework which employs the Pipe-

and-Filter style to arrange the architecture building blocks. The framework is

customisable and can be used to instantiate the architecture building blocks of various

context-aware systems. Two languages have been proposed; one for the deployment

of the architecture building blocks and another for the XML rules (used in the

reasoning process). These languages assist application developers to customise their

own systems. Finally, a scenario for a smart classroom is given; it illustrates the

requirements of smart environments, summarises the use of context dimensions, and

demonstrates various applications. This scenario will be realised in the next chapter

through the implementation of the extensible framework.

83

Chapter 5

GECAF Framework - Implementation

This chapter describes the extensible framework implementation including the

employed (Pipe-and-Filter) architecture and its main filters in use, their creation and

association. A description of rule mechanism for abstracting context information is

also given. Moreover, a demonstration to customise the main building blocks to a

particular application is presented, followed by the implementation of the system

manager and scheduler. Then, the implementation of the case study for the smart

classroom is given.

5.1 The Pipe-and-Filter Components

A Framework is a set of collaborating classes that form a reusable design for a

particular class of software [113]. We devised a context-aware framework as an

instance of the Pipe-and-Filter architectural style. This style is mainly concerned with

stream transformation that the functional behaviour of the system can be derived

compositionally from the constituent filters' behaviour. Each filter in the Pipe-and-

Filter architecture reads a stream of data from its input, do some sort of transformation

on it, and produces a stream of data on its output [82]. The connectors (pipes) of this

style serve as conduits for the streams, which are represented by XML documents in

the architecture. The architecture is implemented using six abstract filter types that

perform acquisition (Getter), enriching and aggregation (Adder), modelling

(Formatter), reasoning (Interpreter}, storing and retrieving context information

(Manipulator), and Application (Outputer). The realisation of the architecture's

abstract filters involves identifying classes at different levels of abstraction and

interfaces, and establishes relationships among the classes and inheritance. An

overview of these filters and their implementation details are given in the following

sections. To create the framework components object-oriented software is built, in

which different design patterns are used. This software is written in Java, and other

enabling software technologies, i.e. XML, DOM, XML Schema, and HTML with a

scripting language such as PHP. SOAP protocol is employed to access Web Services
in distributed applications. A database server to store users' profile, context
information, historical context and other information is then used.

5.1.1. Getter

The Getters are the first filters in the context-aware architecture, as they are
accountable for acquiring primitive context information from distributed
heterogeneous sensors. The UML diagram shown in Figure 5.1 represents the
prototype of the 'Getter' filter, in which 'GetContext' is an abstract class that
implements the 'Getter' interface. The concrete classes 'ID', 'Time', 'Location',

'Activity', 'Environment' and 'Value' can then be used to instantiate different types of
Getters objects. The Getter interface defines a generic method 'getContext', so each
concrete class can tailor the method to read sensor's data and then place the low level
abstracted context in an XML document. Example 5.1 illustrates the target XML
document of the 'ID' Getter.

«l(Tterfac«»
Getter

«getCootext(XMLF»a : Strng. CIO Stnng) void

Ai
GefConltJrr

-Builder DocumentBuider
•XMUie . Stnng
•CIO . Strng
-context . String
»feadCornext(String CID String XMLFio) :
*save<Stnng context, Strng XMLFIe) : void

Stnng

1 ——— • 1 1 1 1 1
K> Time Location Activity Environment Value

Figure 5.1: Getter filter of the GECAF framework

Example 5.1: The target XML document of the 'ID' Getter.

<?xml version="1.0" ?>
<context>

<al time= "10">@103</al>
</context>

5.1.2. Formatter

The Formatter is used to model the context information in a machine readable format
in order to support context reasoning. Figure 5.2 shows a UML diagram representing

85

'FormatContext' (an abstract class implements the 'Formatter' interface), which

defines a generic method 'FormatToXML'. The concrete class 'FormatParameter'

tailors the generic method to get primitive contexts from the Getter's outputs (the

pipes or XML documents) then transforms the modelled context information into a

target XML document (CDL code); see example 5.2. The concrete class

'FormatlndirectContext' arranges different pieces of primitives and/or abstracted

context information (direct or indirect) in a given format; see example 5.3.

«lnterface»
Formatter

+formatToXML(90urce : String 0. context: String. XMLFile : String): void

7TT

FormatContext

FormatParameter FormatindlrectContext

Figure 5.2: Formatter filter of the GECAF framework

Example 5.2: Formatted primitive context
<?xml version="1.0" ?>
<Context CID="cl">

<contextPrimitive name="personAttendance" value="Present">
<ID>@103</ID>
<Time>10</Time>
<Location>classroom 245</Location>
<Activity>Sitting</Activity>
<Environment>Occupied</Environment>
<Value>a_Value</Value>

</contextPrimitive>
</Context>

Example 5.3: Formatted indirect context
<?xml version="1.0" ?>
<Context name="Fire" value="ON">

<contextl name="Temperature">
<cl time="10">50</cl>

</contextl>
<context2 name="Humidity">

<cl time="10">0.4</cl>
</context2>
<context2 name="Smoke">

<cl time="10">Yes</cl>
</context2>

</Context>

5.1.3. Adder

The Adder is used to enrich context information by aggregating context information

from different sources. The UML diagram shown in Figure 5.3 represents the Adder

filter, in which 'AddContext' is an abstract class that implements the 'Adder'

86

interface. The Adder interface defines a generic method 'addContext'. The concrete

class 'AddValue' which is a type of adder, tailors the generic method to add the

abstracted context value to the formatted primitive contexts and as illustrated in

example 5.4. The 'AddHistory' is another concrete class which is used to add

retrieved context history to the formatted primitive contexts; see example 5.5. The

'aggregateContext' is also a concrete class which is basically used to aggregate
abstracted context with the indirectly formatted context information; see example 5.6.

Different applications may use different adder classes or define new ones.

«lntcrface»
Adder

+addContext(CID : String, source : String, target : String): void

AddContext
CID : String

-XMLFile: String
TagNan^e: String
+getContextFron'Source(CID : String. XMLFile : String): void
+aggrcgateToTarget(TagName : String, CID : String): void
+addTagToTarget(TagNamc : String): void

AddValue AddHistory aggregate Context

Figure 5.3: Adder filter of the GECAF framework

Example 5.4: Add value to formatted context
<?xml version="1.0" ?>
<Context CID="cl">

<contextPrimitive name="Role" value=" Lecturer">
<ID>@103</ID>
<Time>10</Time>
< Location >classroom 245</Location>
<Activity>Sitting</Activity>
<Environment>Occupied</Environment>

</contextPrimitive>
</Context>

Example 5.5: Add history to formatted context
<?xml version="1.0" ?>
<Context CID="cl">

<contextPrimitive name="Role" value="Lecturer">
<ID>@103</ID>
<Time>10</Time>
< Location >classroom 245</Location >
<Activity>Sitting</Activity>
<Environment>Occupied</Environment>

</contextPrimitive>
<History time="9">Student</History>

</Context>

Example 5.6: Aggregate Context information

<?xml version="1.0" ?>
<Context name="TypeOfLecture">

87

<contextl name="Role">
<cl time="10">Lecturer</cl>

</contextl>
<context2 name="Attendance">

<cl time="10">0.15</cl>
</context2>

</Context >

5.1.4. Interpreter

The Interpreter filter is responsible for context reasoning by making use of an XML

rule language set by the application developer (to be discussed in section 5.2). Figure

5.4 shows the Interpreter's UML diagram, in which an abstract class

'InterpretContext' implements the 'Interpreter' interface. The 'Role',

'TypeOfLecture', 'FontSize', 'Fire' and 'Temperature' are some examples of concrete

classes for instantiating interpreters' objects. The Interpreter interface defines a

generic method 'ImplementRule ', which is used to retrieve either formatted primitive

contexts, or indirectly formatted contexts from source XML documents. Then

according to the associated XML rule language they reason about the abstracted

context, and finally save the results to a target XML document; see example 5.7.

«Interface"
Interpreter

+implorr<entRulc(CID : String. RID : String, source : String, target : String): String

InterpretContext
-XMLFile: String
-source: String
-context: String
-CID : String
-CorrparedTirre : String
*retrwePrimitivcs(XMLFile : String): vok)
retrwclndirectContcxtf source : String, CorrparedTirrc : String. XMLFile : String): int
savelnterpretedOut(CID : String, time : Stnng, context: String, XMLFile : String) : void

^
1

Role
1

TypeOfLecture
1

FontSIze
1 1
Fire Temperature

Figure 5.4: Interpreter filter of the GECAF framework

Example 5.7: The target XML document of the Interpreter

<?xml version="1.0" ?>
<context>

<al time="10">Review</al>
</context>

5.1.5. Manipulator

The manipulator filter is responsible for storing and retrieving context information

into/from internal or external data sources such as a database server. The UML

diagram in Figure 5.5 shows the abstract class 'ManipulateContext' which implements

the 'Manipulator' interface. The concrete class 'Store' stores context history, while

the concrete class 'Retrieve' retrieves historical context information, user profile, or

other information from a database server by tailoring the generic method 'Manipulate'

within the Manipulator interface. More specialised manipulator filters may be added

by developers to build their applications.

«Interface"
Manipulator

MartipulatefCID : string. Time : String, path : String, XMLFite : Stnng): void

ManipulateContext
XMLFfle: Stnng
•CID: String
*ctoseDB(): void
saveToTargetFflefrss: ResoltSot. CID : String. XMLFte : String): void

+readSourceFile(XMLFile : String): String

Figure 5.5: Manipulator filter of the GECAF framework

5.1.6. Outputer

The Outputer filter is accountable for delivering the final action of an application
(adapt its behaviour according to context in use). Figure 5.6 shows the Outputer UML
diagram, in which the abstract class 'Application' implements the 'Outputer'

interface. The concrete classes 'SOAPapplication' and 'LocalApplication' are some
application types that are used for different types of actions. The 'Output' Method is a
generic method which supports different application categories (automatic, tagging, or
presentation). These categories can be set through the application developer interface
(CADL document). In 'SOAPapplication', SOAP protocol is used to access
distributed applications on remote or local server (such as US PHP server). In this
case the application address, the name of the remote procedure and its parameters
should be specified by the CADL document. The context-aware system then runs a
specified application according to the returned result.

89

Interface"
Outputer

*Outputi.CID, XMLFile. category, address, applNarre. location : String, parameters : String DQ. int noOfParamcters): \/oid

Application
-CID : String
-XMLFile : Stnng
-category : String
-applNarrc : String
-address : String
^etneveContextiCID : String. XMLFile : Stnng) : String

_L
SOAPappllcatlon LocalAppllcatlon

Figure 5.6: Outputer filter of the GECAF framework

5.2 The Interpretation Rule Engine

It is well known that the abstraction of the context information is implemented using
the Interpreter filter. This section presents a technique for reasoning and processing
context information to bring it closer to the level of abstraction. The interpreter filter
uses an XML document (written by an application developer) to express rules used in
the reasoning process. This XML document describes the reasoning rules
(mathematical, logical or other expressions) in a structural way, so they can be
retrieved in Reverse Polish Notation (RPN). The rules that the interpretation rule
engine supports with descriptions of these rules are shown in Table 5.1. The XML
Schema which describes the legal structure of the XML rule document is given in

appendix C.

Rule
AND

OR

NOT

GT

GE

LT

LE

Equal

Plus

Minus

Times

Divide

subStr

Description
Logical AND (D)

Logical OR (U)

Logical NOT

Conditional operator: Greater Than (>)

Conditional operator: Greater or Equal (>)

Conditional operator: Less Than (<)

Conditional operator: Less or Equal (<)

Conditional operator: equality (=)

Mathematical operator: Addition (+)

Mathematical operator: Subtraction (—)

Mathematical operator: Multiplication (.)

Mathematical operator: Division (-5-)

Sub of a string subStr (aString, Start, NoOfCharacters)

Table 5.1: The interpreter's rules

90

Example 5.8 shows the XML rule code which describes expression (given in equation

5.2) for interpreting the 'TypeOfLecture' context. This expression shows that if

students' attendance in the last lecture is below or equals to 20%, person's role is

'Lecturer' which is represented by the abstracted role context (context 1) and the

environment is occupied then the returned value will be 'Review', otherwise

'NOReview'.

Example 5.8: The Rule expression and the XML rule document for 'TypeOfLecture'

context.

TypeOfLecture = (Role='Lecturer') fl (PastAttendee < 20%) D (EnvironmentOccupied).(5.2)

<?xml version="1.0" ?>
<rule xmlns:an="http://www.w3.org/2001/XMLSchema-instance'

an:noNamespaceSchemaLocation="ruleSchema.xsd ">
<context name="typeOfLecture" RID="2">

<operation name="And">
<parameter type="complex">

<operation name="And">
<parameter type="complex">

<operation name="LE">
<parameter type="simple" source="external" value="p3.xml" />
<parameter type="simple" source="fixed" value="20" />
<returnValue>

<case value="true" return="true" />
<case value="false" return="false" />

</returnvalue>
</operation>

</parameter>
<parameter type="complex">

<operation name="equal">
<parameter type="simple" source="internal" value="contextl" />
<parameter type="simple" source="fixed" value= "Lecturer" />
<returnValue>

<case value="true" return="true" />
<case value="false" return="false" />

</returnValue>
</operation>

</parameter>
< return Value >

<case value="true" return="true" />
<case value="false" return="false" />

</returnValue>
</operation>

</parameter>
<parameter type="complex">

<operation name="equal">
<parameter type="simple" source="external" value="G4.xml" />
<parameter type="simple" source="fixed" value="Occupied" />
<returnValue>

<case value="true" return="true" />
<case value="false" return="false" />

</returnValue>
</operation>

</parameter>
<returnValue>

<case value="true" return="Review" />
<case value="false" return="NOReview" />

</returnValue>
</operation>

</context>
</rule>

91

The following steps show how to represent an expression that contains

mathematical, logical, conditional operations, and special functions using the XML
rule document. It typically includes a number of constraints when writing the XML
rule document and is as given below: -

1. The XML rule document has a root element called 'rule'.

2. The root element has many child 'context' elements representing a number of
rules for each abstracted context. The 'context' element has two attributes
representing context name and an associated rule identification code (RID) which
is used to specify the interpreted rule.

3. Within each 'context' element there is a hierarchy of structured elements
representing the expression syntax tree of an operation; where each 'operation'

element has 'name' attribute, number of 'parameter' elements and 'returnValue'

element associated with the results of the operation.
4. Each parameter type can be either 'complex' or 'simple', denoted by the

parameter 'type' attribute. Complex parameter contains recursive operations,
while simple parameter has an associated value. The association may be achieved
via mark-up within the XML document itself, or via some external means. Simple
type can take either a 'fixed' value (given in the XML document), 'external' (read
from another XML document), or 'internal' (calculated within the interpreter
filter at run time). The internal values can be either primitive contexts value (ID,
time, location, activity, environment, and value) or indirect context (context 1...

contextn).

The mechanism used for associating and reading XML rule document within the
interpreter filter is based on the Interpreter design pattern [109]. The Interpreter
pattern describes how to define a grammar for simple languages, representing
sentences in the language, and interpret these sentences; see appendix D. The basic
idea of using the interpreter pattern in the XML rule engine is to have a class for each
expression (terminal or non-terminal). The abstract syntax tree (tree representation of
the abstracted expression taken from the XML rule document) is an instance of the
composition pattern and is used to evaluate or interpret the expression. Figure 5.7
shows the UML diagram representing the XML rule, and the following steps show the
XML rule implementation and its classes: -

92

1. A number of classes that are inherited from the super class 'Expression' are used;

these represent the mathematical, logical, conditional and special functions (e.g.

And, Plus, LE, etc.) in addition to simple expression which could be the result of

evaluating other complex expression.

2. An XML rule document which represent the expression to be interpreted.

3. An ' expressionEvaluator' class is used to read the expression from the XML rule

document and then evaluate the expression; where the retrieved expression is

represented in RPN.

4. The abstract method <Interpret()' within the Expression abstract class is

responsible for interpreting an expression or the subparts (parameters) of an

expression.

ExpressionEvaluator
•t-parseXMLO
+getComplexNode()
+eval()

XML rule Document

Expression
-HnterpretQ
+setCaseReturn()
-t-setOperandsf)
-t-printCaseVal()

simple And Plus LE

Figure 5.7: The XML rule engine using the interpreter design pattern

5.3 Deployment of The GECAF Filters

The deployment process of the GECAF filters explained in chapter 4 involves

interpreting the CADL document which contains a description of the filters

arrangement, source and targets of these filters, application types, etc. Throughout the

deployment process, reflection and generics (Java features) are employed to instantiate

the filters' objects. Design pattern is also used for abstracting the creational process of

the architecture's filters. All these techniques will be discussed in the following

sections.

5.3.1 Instantiating The Framework Filters

Reflection and generics are two features of Java that play an important role in making

the framework extensible and generic; they are part of the instantiation process of the

93

framework filters. These concepts will be discussed in this section, and the related

codes used for building the framework are given in appendix E.

Reflection is a Java feature that enables programme to introspect (examine) itself,

so class information could be found at run time without knowing the methods and
classes at compile time [114]. In other words reflection enables the developers to

specify new classes to be added to the system without having to compile the whole
system. Consequently, reflection can make the software flexible as the information
(e.g. class name) does not need to exist at compile time and it will become available
after the deployment of the application.

The new framework uses a fixed number of abstracted classes representing the
main filter types such as 'GetContext', 'FormatContext', 'InterpretContext', etc.
However, concrete classes are changeable and are specified by the application
designers (at run time) through the CADL code. This CADL code holds information
to describe the concrete filter names (class names), and other parameters loaded
during parsing to create runtime data structures. Reflection is used to instantiate
objects of concrete classes during runtime while parsing the CADL document.
Therefore, there is no constraint on filter's type set in the CADL code, and many
applications can be easily adapted for customised solutions. In this case reflection is
used to create new instances of concrete classes. This is accomplished by calling the
' newlnstance' method to instantiate an object returned by 'forName' whose class
name (retrieved from CADL) is not known at compile time. Once the concrete object
is instantiated, the associated method (e.g. getContext(..)} of an object can be called at
run time; see example E. 1 (appendix E).

Generics is another important feature of Java; it is the ability to write generic code
which is independent of an application. Throughout the implementation, this built-in
feature of Java has been used; so one piece of code ('Creator' class) is employed to
build a generic creator for the filters which is irrespective of how many and what type
of filters are instantiated. Therefore, different filter types can be specified at run time
after retrieving their names from the CADL code; see example E.2 (appendix E).

5.3.2 Using Creational Pattern for Abstracting The Creation Process

Creational design patterns abstract the instantiation process by making the system

independent of how its object is created, composed, and represented. A class

94

creational pattern uses inheritance to vary the class that is instantiated, whereas an
object creational pattern will delegate the instantiation to another object [109]. A
creational design pattern has been used to build flexible, customisable and reusable
object-oriented design and to avoid redesign or at least minimises it. The following
section presents a description of the use of a creational design pattern (Factory
method) in the creation of the architecture's filters. However, there are other methods
which can be used for the creation of objects such as the Abstract factory, the Builder,
and the Prototype [82].

5.3.2.1 Factory Method Design Pattern

The Factory Method [109] defines an interface for creating an object, but let the
subclasses decide which class to instantiate. Factory method lets a class defer
instantiation to subclasses. It allows the creation of an application framework without
the need to bind application-specific classes into the code. By providing hooks for
subclasses, it allows the extension of the original object model and the creation of new
classes that fit into the framework. Hence, the factory method pattern supports coding
to an interface to handle future change.

Figure 5.8 shows the Factory Method UML diagram in which the 'Creator' hides
the creation and instantiation of the 'Product' from the client. This is an advantage to
the client as they are now insulated from future modifications, so the 'Creator' will
look after all of their creation needs and allowing decoupling. Furthermore, as the
'Creator' and the 'Product' conform to an interface known by the client, the client
doesn't need to know about the concrete implementations of either. As shown in
Figure 5.8 the 'Creator' provides an interface (factoryMethod), which is used by the
subclasses (ConcreateCreator) to create the objects. Other methods in the abstract
Creator can operate on the created Products.

«lnterfoc«»
Product

«abstract» Creator
>factoryM<jthQd() : Product

: void

ConcreteProduct ConcrateCreator
+factoryMcthod(): Product

Figure 5.8: Factory method design pattern

Figure 5.9 shows a class diagram of the framework. In this diagram, the 'Creator'

is an abstract class provides an interface ('create' method) to create the objects. The

95

concrete classes 'GetterCreator', 'FormatterCreator', 'InterpreterCreator\

'AdderCreator ', 'ApplicationCreator', and 'RepositoryManipulatorCreator' are used
to instantiate the architecture classes. Each of these classes uses reflection to
instantiate the concrete filters of the architecture. For example, the 'GetterCreator' is
used to create objects of 'ID', 'Time', 'Location', 'Activity', 'Environment', and
'Value'; see example E.3 (appendix E).

5.4 Event Triggered System Initiation

"An event can be defined as a signal to the program that something has happened".
[115] Event sources can be external action such as detecting the presence of a person
or internal such as a timer lapse. The program can choose to ignore or respond to an
event. Events are processed by registered listener objects. In order to be used as a
listener, a class must implement a listener interface. Therefore, when an event occurs,
the object on which the event occurred (source) sends the event to all registered
listeners interested in that event by invoking the appropriate method of the listener
object. An event object is passed as an argument to the method. The Listener object
can then take an action based on that event or can ignore it. The System Manager and
Scheduler of the architecture (described in section 4.3.5) is responsible for managing
and sequencing the context-aware system events which are fired by various types of
sensors (refer to Figure 4.5). The following points describe the mechanism of the
System Manager and Scheduler: -

• The class 'Manager' which represents the system manager creates and starts the
events' listener. It also instantiates an object of a queue. Sensors' events (e.g.
RFID reader and other sensors) keep a combination of their values attached with
an event identification code (EID) in the queue. The event handler reads and
schedules these events which are processed in the order they are received.
Multiple processes serve the queue, and each process can progress at a different
speed. Sensors' events which are accountable for delivering primitive context
information (4W1H) to the queue might be processed at a point of time different
from timer events that read queue's head every x seconds. Therefore, there is a
difference between the time that one event is taken off the queue head and the
others accumulated at the queue end.

96

sO

G
et

te
r

*g
et

C
on

te
xt

()
A

Cr
ea

to
r

+c
re

at
o(

)

_r
G

et
te

r-C
re

at
or

V
En

vi
ro

nm
en

t

«i
n

l»
rt

ac
o

»

F
or

m
at

fC
on

tm
t

Fo
rm

at
Pa

ra
m

ot
or

1
v

Fo
rm

a<
fn

dl
f*c

tC
of

lt«
xt

In
to

 rp
re

te
rC

 re
at

or

Fo
rm

at
te

rC
re

at
or

A
dd

er
C

re
at

or

Re
po

sl
to

ry
M

an
l p

ul
at

or

«l
n

te
rf

ac
e»

In

er
pr

et
er

A i
In

to
rp

ro
tC

on
te

xt

V
R

ol
e

pa
st

e
la

&s
At

te
nd

an
ce

A
pp

llc
at

lo
nC

re
at

or

«
ln

te
rf

a
c«

»

Q
ui

p
lit

er
+O

ut
pu

t() A i
A

pp
lic

at
io

n

V SO
 A

Pa
p p

le
at

 Io
n

Lo
ca

lA
pp

llc
at

lo
n

A i
A

dd
C

on
te

xt

V Ad
dH

i&
to

ry
ag

gr
eg

at
eC

on
te

xt

Fi
gu

re
 5

.9
: A

 s
im

pl
ifi

ed
 U

M
L

di
ag

ra
m

 fo
r t

he
 G

en
er

ic
 F

ra
m

ew
or

k

• When the timer fires an event, the action listener reads the queue's head. Then, if
entries were found, it will be saved in six XML documents (ID, Time, Location,
Activity, Environment, and Value) and the manager continues listening to events
triggered by the sensors. Thereafter, the system manager reads the application
developer CADL code, makes a mapping between BID and CID, and continues in
the Pipe-and-Filter architecture stream. As the context-aware system proceeds in
its processes (filters), the abstracted context value will be found to make changes
to the environment accordingly.

5.5 The Conceptual Process for Using The Pipe-and-Filter
Framework

A Framework is a system that sets the logical flow of the applications and gives a
general way for structuring them. A framework to design and develop context-aware
systems has been created; so application developers who are aware of context-aware
systems' main functional blocks (filters) can use it by following a set of instructions
to realise their own systems. They can also use the employed architectural style (Pipe-
and-Filter) to benefit from all its advantages, modularity, abstraction, low coupling,
and high cohesion (all the properties that the style aims at). The framework also
achieves faster development by using proven patterns and reusable components
(filters). The framework provides a pool of ready-to-use filters (see component
diagram in Figure 5.10), and enables users to build new ones by inheriting from the
interfaces and methods and adding them to the pool.

«Gett«f»

«Outputer»

Figure 5.10: Component diagram shows general filter types

The following is a list of instructions that can help application developers to
construct and customise their own systems: -

98

Stage 1. Define the meaningful (abstracted) context used in the design process e.g.

context is 'Role', then specifies the elements of the context model to represent

the useful context, e.g. Context= f (ID, Time, Location...).

Stage 2. Identify the major filter types used for building a context-aware system, such

as Getters (e.g. ID, Time, Location, etc.), Formatter (e.g. FormatParameter, and

FormatlndirectContext), Interpreter (e.g. Role, LectureType), etc. Then draw the

filter diagram. If new filters are required, create them by implementing the

interfaces or inheriting from the abstracted classes in the framework.
Stage 3. Write the CADL code (XML deployment language) which sets up the flow

of the architecture, establishes which communicates with what, and define the
flow of information and actions. This CADL code which defines the structure of
an application should conform to the CADL's XML schema (see appendix B).

Stage 4. Write the XML rule code and associate a RID with each context. The XML
rule code should conform to the XML schema given in appendix C.

Stage 5. Design an application (for example 'Smart Classroom' website), then select
and build the required hardware and the associated interface.

The following points represent rules that should be followed when writing the
CADL code; the skeleton of the code is given in example 4.4: -

1. The CADL document has a root element called 'Filter'.

2. The root element has many children ('process' elements) which represent
different filter types. This process has an associated context identification code
(CID) to specify the interpreted context and an optional 'category' attribute used
with the application filter.

3. Within each 'process' element there is a hierarchy of structured elements
representing the concrete class, source and target, and other elements. The
'class' element has different attributes depending on the concrete class in use.
These attributes could be 'name' representing class name, 'context' representing
context name, 'RID' representing Rule identification code, or 'address'

representing application address.

4. Each 'class' element could have a number of children: 'source', 'target', and/or

a number of 'Element' children used by the application filter.

99

5. The 'source' element has a text content that represents the source file name; it

also has two optional attributes, these are 'type' attribute that specifies file type

(e.g. xml, html, etc.) and 'no' attribute that represents the source file number.

6. The 'target' element has a text content that represents the target file name, and

an optional attribute 'type' specifying the file type.

7. The 'Element' is a generic element which can be of any number; each element

could have a number of attributes like 'name', 'value', 'type', and 'fileType''.

8. The CADL code has a child element 'events'. This element includes different

events and a mapping between their RID (Rule identification code) and CID.

Figure 5.11 shows a component diagram with filter arrangement representing

person's 'Role' context; the CADL code is given in appendix F.

<<Fofmalt«r»
Format

Parameter*

XML Rule!

«Output»r»
^J ROU, q3U-V

Pf

I

Figure 5.11: Filter diagram for the Role context

5.6 Case Study in a Smart Classroom Scenario

To conceive the smart classroom scenario (refer to section 4.4), networked computers,

RFID tags and readers, and simulated sensors have been utilised; where, we have

specifically implemented an RFID in the case study to represent the Getter that reads

the student ID from the environment. A number of meaningful contexts which are

adopted in the scenario are also represented using the framework components. Using

the design instructions given in section 5.5 the following steps should be followed: -

Stage 1. Specify the required (primitive and the meaningful) contexts. For example,

primitive contexts are: 'ID', 'Time', 'Location' and 'Environment'. Abstracted

contexts are: 'Role', 'Student attendance history', 'Lecture type' and 'Font size'.

'Lecture type' is an indirect context that can be inferred using three contexts:

Person's Role (Lecturer), Students' Attendance (e.g. 20%), and Environment

(Occupied). Person's Role is a function of the context primitives ID, Time, and

100

Location. Past students' attendance can be inferred from students' attendance

history. Classification to context information for the classroom environment is

given in Figure 5.12.

Stage 2. To realise these contexts the required filters have to be identified as given

below. Then we use the filter diagram to build the architecture, see Figure 5.13.

1. Getters are used to acquire the primitive contexts: ID, Time, Location, and

Environment.

2. Formatters are of two types: format the acquired parameters, and the indirect

context (attendance history, Role and Environment).

3. Interpreters used are: person's role, lecture type and font size.

4. Manipulator is used to retrieve attendance history from data repository.

5. Outputers are accountable for taking an action by displaying a classroom web

page with a given lecture. In this case application category has to be specified

with each Outputer, which could be tagging and automatic in this case study.

Sensed Contaxt

Time \ / location \ / Environ. \ !

Figure 5.12: Classification to context information in classroom environment

Figure 5.13: Filter diagram for the lecture type and font size contexts

Stage 3. A CADL code is written to deploy the architecture filters which conform to

the XML Schema set in the design, refer to appendix G.

101

Stage 4. This stage is concerned with writing the XML rules for the interpretation

process including all the abstracted contexts specified in stage 1 (refer to

appendix H); the XML rule code should conform to the rule XML Schema. An

example to the rule expression of'TypeOfLecture' context is given by: -

TypeOfLecture = (Role = 'Lecturer') H (PastAttendance>'20%') D (Environment = 'Occupied')

Stage 5. In this stage and for demonstration purposes, a website has been designed as

part of the smart classroom application using HTML code and PHP; refer to

appendix I. Then, the required sensors have been selected (e.g. RFID reader and

tags, simulated sensors) with the associated software interface. All remote

procedures for the SOAP application are also written using SOAP and PHP.

Also, a database server is installed to store all the required information to this

application. Figure 5.14 shows a smart classroom web site page. Figure 5.15

shows a visualisation of classroom with the designed web page; where the

lecture font size changes with the existence of the special need student 'Bill' as

given in the scenario (refer to section 4.4). The Figure also illustrates the RFID

functionality of the system in the smart classroom scenario.

'; University of Satford
A Greater Mjncheitcr Uncwjrvty

Youi Btackbo»n»

Sand

Context and Context-Awareness

What is Context?

'context is any information that can be used to

characterise the situation of an entity. An entity

is a person, place, or object that is considered relevant

to the interaction between a user and an application,

including the user and application themselves'

(D«y)

What is Context-Awareness?

Figure 5.14: Smart classroom web page

102

ous •ronputir
, i r,rt V i r mt w»r>^ -

Figure 5.15: A visualisation of the smart classroom with the designed website

5.7 Summary

This chapter presented the implementation of the new framework, which adopts the
Pipe-and-Filter architecture style. First, the framework filters were created and then

the factory method was employed as a creational design pattern to create the filter's
objects. Afterwards, the System Manager and Scheduler building block is built to

schedule and capture the environmental contexts and also to manage the whole system
operation. Event driven programming has also been used for the users' interaction.

Finally, a set of instructions to customise the architecture filters and a smart classroom

case study are given.

103

Chapter 6

Validation and Critical Evaluation

Since context-aware systems are still developing and there is no standard prototype to

build them; there should be some criteria to evaluate and test the new approaches in

order to show their applicability to different scenarios. To evaluate the GECAF

frameworks, a set of heuristics have been utilised which test systems' performance.

Then different techniques have been used to validate the new system. Firstly, we have

used a quantitative method through literature survey and comparison to identify

commonality and differences between existing context-aware systems' design.

Secondly, a case study and scenario based experiments were used to demonstrate the

use of the framework in the implementation and testing of various context-aware

systems with different scenarios. These techniques will be discussed in this chapter.

6.1 Criteria for Evaluating the GECAF Framework

The evaluation criteria represent the systems features that can be used to make a

decision on the performance of a given system. It also shows the limitations and

drawbacks of the system design. Some research was needed in order to decide what

criteria can be used for evaluating context-aware systems. To evaluate context-aware

systems, Oh et al. [87] adopted an approach using a set of heuristics, these are:
separation of concerns, flexibility and openness, scalability, support for reuse, support

during development, debugging and deployment, explanations and accountability,
security and privacy, reliability, match between context-aware system and real world,

manual override, and reconfiguration and management. Another approach that studies

the requirements of context-aware systems is presented by Fahy et al. [52]. They gave

a number of requirements for designing context-aware systems. These requirements

are: supporting large number of applications, provision to context history, support for

interpretation, higher level of context abstraction, event based in detecting context

changes, and extensibility. According to Fahy, context-aware systems should also

support transparent use of distributed context sources, and the separation between
context use and application. Again, Choi [66] gave ten requirements for the context-

aware systems, these are: distributed system, heterogeneity, mobility, dynamic
adaptability, context modelling, extensibility, scalability, configurability, portability,
and support for restructuring. Another study which considered the requirements of
context-aware system is made by Bratskas et al. [116]. These requirements are:
modularity/Plug-ability, privacy/security, decision-making, tolerance to failure,

support distribution, technology used for context modelling and communication, and
mobility.

As a conclusion, we have adopted the evaluation criteria and the requirements of
existing works, then create a modified one to evaluate the new framework. The
following heuristics summarise and group the reviewed work: -

1. Reusability: Context-aware systems have reusable building blocks that support

data acquisition, aggregation, context modelling, reasoning, storing/retrieving,
taking action, and managing. These modules are independent (support separation
of concern) and can be used in different scenarios.

2. Support for Context history: Context-aware systems should consider context
history as an important term in context modelling.

3. Scalability: The architecture should be scalable, i.e. applicable in small systems
and also in large scale applications with large number of users.

4. Extensibility: As context-aware systems are not similar, their architecture should
be extensible, so new building blocks can either be added or extended from the

abstracted ones.
5. Adaptability: The architecture should support adaptability, i.e. easy to reconfigure

with new changes in context during run time.

6. Event Based: The system should be event based to avoid delay of polling

operation.
7. Reliability: The context-aware system must have tolerance to failure and have the

ability to recover.

According to the above heuristics the framework can be evaluated and as given in

the following sections.

105

6.1.1 Framework Features

The GECAF framework has a number of features as listed below: -

1. The framework shows a new way of building context-aware systems. The

framework has support for decoupling and reusability in terms of context reuse

and component reuse, where the framework utilises a number of reusable

components that can be employed in building various context-aware systems. It is
also customisable and support re-configurability, where the framework
components can be used in different scenarios as the Pipe-and-Filter style is
employed.

2. The GECAF framework is extensible and can be evolved, where new concrete
building blocks (concrete filters) can be added to the framework. These concrete
filters can use all the features of the abstracted ones. Moreover, it is considered

generic as the abstracted filter types represent the usual building blocks of
context-aware systems.

3. The framework considers context history as important information and the
effective context, which is used to enrich the context information and predict
user's behaviour in current and future state. Therefore, it is incorporated as part of
the proposed model.

4. The GECAF framework uses both structured and object oriented approaches for
context modelling. Therefore using multiple modelling techniques can overcome
the limitations in each of these techniques.

5. The employed architecture is reconfigurable during run time; these changes are
made according to the interpretation rules which can be customised or set by the
application designers. A reconfigurable architecture improves the system's
extensibility by allowing the system to change at run time.

6. The framework is event driven, where the System Manager (a main building
block of the framework) is event driven, which can be triggered by the

environmental sensors.
7. The framework supports context information enrichment as it has the aggregator

and the Manipulator building blocks to retrieve context information from

different resources to enrich the context information.

8. The system is reliable as it uses a generic rule mechanism for rule processing

which gives the same reasoning outcome if the same context occurs.

106

6.2 Validating The GECAF Framework

The validation of the new approach involves analysis of various existing context-

aware systems, modelling, and experimentation by case study. In this research we

adopted two methods to validate the generic nature of the proposed architecture which

will be discussed in the following sections. Firstly, a quantitative method has been

used; it reviews and analyses various context-aware systems to study and examine

their design and behaviours. Secondly, the GECAF framework is used in

implementing various case studies or realising existing systems by employing the

framework building blocks.

6.2.1 Validation Using a Quantitative Method

This method involves reviewing existing context-aware systems, and then thoroughly

examines the requirements of these systems to analyse their functionalities. From the

analysis given in chapter 3, different items are classified and arranged, see Table 6.1.

The table demonstrates an idea about the architectural styles of each system. It also

shows the main building blocks that constitute various context-aware systems

(sensing, modelling, reasoning, storing/retrieving, aggregating, application, and

managing services). It is to mention that components given in the comparison were

found to be the only components supported by various context-aware systems which

already exist.

The table shows that existing context-aware systems use some or all of these

functional components, which could either be reusable or tightly coupled (implicitly

involved) with other components. From this comparison an analyses for the necessity

of using all these functional components to build a generic context-aware system was

carried out, as all these components can be put in various arrangements. The table also
shows that existing systems use different modelling techniques to represent and relate

the context information, where ontology based is the most used one. In reference to

section 4.2, about the context history we found that all the existing work considers

history as an important category of context information, therefore it was considered

and used as part of the model. The histogram in Figure 6.1 illustrates the main

components for various context-aware systems with the number of systems employing

these components. Figure 6.2 shows a pie chart presenting the contribution of each

style to the total architectural styles used by the reviewed context-aware systems. The

107

chart shows that the layered architecture is the dominant one with 35% of the systems

using this style. However, with this style not all systems are easily built [82] and it is
not easy to find the right level of abstraction, so it is difficult to be used with complex
context-aware systems. Therefore, a generic framework cannot be built using this
architecture style, and as explained before.

Context-Aware
Systems

TEA-System

Toolkit

CMF

CoBrA

SOCAM

CASS

CORTEX

Ubi-UCAM

Context Stack

RWM

Multi Agent Architecture

WCAM

CALA

General Architecture

Multi Agent Service
Reassembling
Architecture

CADBA

A-Cobra

Architecture

Style

Layered

Peer-to-Peer *

Blackboard

Agent based

Server based *

Server based

Sentient object
model

Distributed *
Framework

Layered

Layered

Multi Agent *

MVC

Centralised

Layered

Multi Agent

Layered

Multi Agent *

Functional Components

sC/J

era

J

y

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

Reasoning

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

Aggregation

y

J

J

y

J

J

J

Context Modelling

J

J

J

J

J

J

J

J

J

Application

J

J

J

J

J

J

J

y

y
y

Managing & Services

y
y
y
y

y

y

y
y
y

y

y
y

Data
Manipulation

y
y

y
y
y

y
y

Context Repository

y
y
y
y
y

y
y
y
y

y
y

y

y
y

Context history

y
y
y
y
y
y
y
y
y
y
y
y
y
y

y

y
y

Reuse

Context
Component

Context
Component

Context

Context
Component

Context
Component

Context
Component

Context
Component

Context
Component

Context

Context

Context
Component

Context
Component

Context
Component

Context
Component

Context

Context
Context

Component

Context Model

Object oriented

Attribute value tuples

Ontology
RDF

OWL

OWL

Relational data model

Relational data model

Application oriented,
unified model

OWL

Application oriented,
RWM

Logic base

Application
oriented
OWL&

RDF

Data structure

Ontology

OWL

OWL

Table 6.1: Architectural comparison for different context-aware systems
Where * refers to multi-style architecture with the predominant style.

108

Number of Systems
18
16
14
12
10

8
6
4
2
0

? ,f

Figure 6.1: Architecture components used by the context-aware systems

• layered

• p2p

m blackboard

• Agent

• Server Based

• Sentient object

Distributed

• MVC

Figure 6.2: Architecture styles of the reviewed context-aware systems

To match up the functionality of the GECAF framework with the existing context-

aware systems, the following points are concluded: -

1. The abstracted filters of the new framework represent the reusable building

blocks which have common functionalities with the above systems. As shown in

Table 6.1 all context-aware systems employ the sensing building block which

gathers context information from the environment. Likewise our framework uses

'Getters' to gather primitive context information from the environment. For

example, an ID getter can be used to acquire user ID, and a Value getter can be

used to acquire discrete context information (e.g. Temperature, Voltage, etc). The

table also shows that the majority of the existing systems utilise a reasoning

component which is essential for abstracting the context information. In the

GECAF framework this component is known as the 'Interpreter' filter which

109

employs a rule mechanism for reasoning. The interpretation rules can be set by

the application developers through the XML rule code (whose schema is defined

in appendix C). As shown in Table 6.1, some systems use the aggregators to

enrich the context-aware system; however, this functionality is implicitly

involved in other systems. In the GECAF framework this component is known as

the 'Adder' filter. It is used to aggregate the context information to enrich the

context-aware system by adding historical context or other information retrieved

from internal or external sources using the 'Manipulator' filter; where the later

component is part of some architectures functionality. Context representation is

considered by all existing systems. However, 50% of the existing systems use

modelling components while others considered it as part of the reasoning

components (especially with systems using ontology). To compare, the modelling

component is known as the 'Formatter' filter; it is used to represent and relate the

primitive contexts or the indirect context information. Application component is

again employed by many existing systems, which is known as the 'Outputer'

filter in the GECAF framework. Finally, the functionality of management and

services is supported by the new framework through the use of the 'System

Manager and Scheduler' and the CADL code.

2. The GECAF framework's components can be used in different arrangements to

build various systems, as it employs the Pipe-and-Filter style to arrange these

components. This comparison reveals that the framework employ all the existing

systems' functionalities, so various systems can be built with these building

blocks. Therefore, we believe that the framework is generic. It is also extensible,

because we can either use the existing concrete filters or create new ones by

inheriting the features and properties of the abstracted filters.

3. The comparison also shows that context information can be reused and shared.

The developed context model considers context history as an important feature,

which can be shared by many contexts. Context history is important for the

enrichment and abstraction of context information which can be used as a

knowledge base.
4. Table 6.1 shows that different context models have been employed by various

systems, with the majority using the ontological one. Concerning the new system,

the context model employs a structured technique to represent the context

110

information. Object oriented method is also used to represent context information
in different level of abstraction. We believe that multiple techniques are better to
be used in order to overcome the weaknesses of each of these methods.

In brief, and according to the above discussion this approach is viable as it is
generic and extensible. Therefore, the framework helps application designers to build
their own systems without the need to go into every detail about the specifications of
the design.

6.2.2 Validation Using Case Study

In an attempt to verify the finding of this study and examine the applicability of the
proposed framework, the new frameworks' building blocks have been employed to
rebuild some existing systems. Two well known systems have been selected; these are
the context toolkit [100] and SOCAM [44]. The idea of choosing these systems is due
to being widely cited.

6.2.2.1 Case Study for The Context Toolkit

The context toolkit has five main components: BaseObject (for communicating
context with application), widgets, interpreters, aggregators, and discoverers. The
context toolkit relies on the concept of the context widget (a software component for
data handling that mediates between the acquired environmental data and its use)
which can be shared by many applications. It acquires and abstracts context
information from the environment using sensors, and also provides services to the
applications. Each widget has a 'state' (attributes queried by applications) and a set of
behaviours or 'callbacks' to make changes in the environment.

Using the new framework, the 'Presence' widget which senses the presence of a
person in a room can be built. It provides callback notifications to the application
when a new person arrives, or when a person leaves. In this case the attributes of
location, time, and identity are used; where location attribute is constant. A 'Meeting'
widget is another example that is built on top of the 'Presence' widget, where meeting
is represented by the presence of more than one person in a room. Equations 6.1 and
6.2 present the interpreting expressions for Presence and Meeting contexts; whereas
Figure 6.1 and Figure 6.3 show the simplified representation of both Presence and
Meeting contexts using the Pipe-and-Filter architecture components. The Presence

111

context is interpreted using a combination of the primitive contexts (location, time,

and identity), while the Meeting context is interpreted using indirectly derived

contexts. The XML rules used by the interpreters are given in appendix J.

Presence = (ID = an_ID) H (Time = a_Time) D (Location = a_room).......... (6.1)

«Formatt«r»
FormatParam.^ | ^ | «lr»terpro»r»

Pr«s*nc« I |
|P2

Figure 6.3: Filter diagram representing Presence context

The Meeting context is built on top of the presence context, by using an aggregator to

aggregate the presence of people. The XML rule for interpreting Presence and

Meeting contexts is given in appendix J.

Meeting = (Presence = YPresence) D (attendeeNo >!).......... (6.2)

Figure 6.4: Filter diagram representing Meeting context

The In/Out board and the context-aware Mailing List are two applications for the
context toolkit, see details in appendix K. According to the Pipe-and-Filter

architecture the In/Out board applications can be implemented using the following
filters: Getters (ID, Time, Location), Formatter (FormatParameter), Manipulators

(Store, Retrieve), Adders (AddValue, AddHistory), Interpreters (Presence and In/Out
status), and Outputer (SOAP_Application), see Figure 6.5. In this diagram the Getters

acquire ID, Time and Location information from the environment as the occupant is
detected. The Occupant's name is retrieved from a database server using SOAP

application, where application category is tagging. ID and Time parameters are
formatted, then the In/Out status history is retrieved and added to enrich these

information. These pieces of context information are interpreted to find the In/Out

status. Accordingly, the In/Out board information, or the mail list information are

changed according to the status and occupant name, where application category is

112

automatic. The rule expression for the In/Out status interpreter is given in equation

(6.3). The CADL code for In/Out Board is given in appendix L.

In/Out status = (Presence ^ Presence_ history)............. (6.3)

«Gett«r»
to

«Outputt«r»
SOAPappllcatlon Store

«Form»tter»
J FormatP«ramtl»r

«Gett«r»
Tim*

«Gett«r»
Locator)

«lnterpreter»
Presence

«ManlputikM»
Retrieve

«Add»r»
AddValuo

« Adder >>
AddHlslory •^N I << ' r"erpreler»

~n InOut.Status
P4 " T IPS

Figure 6.5: In/Out Board and Mailing list implementation using the new framework

6.2.2.2 Case Study for The SOCAM System

SOCAM architecture consists of: context providers, context interpreter, context-aware
services, and service locating services. SOCAM developed a number of context
providers to build an application. For example, an indoor location provider is used to
track person's location at room granularity, which depends on RFID tag and
transponders [62]. Then, based on number of persons, their identities, time, and user's
context, they can derive the room activities (such as breakfast, lunch, dinner,
birthdayParty). The representation of 'Locatedlrf and ' has Activity' using the new
framework are given in Figures 6.6, and 6.7 respectively. The rule expression for
'Locatedlrf depends on ID and location (see equation 6.3), while the rule expression
for 'hasActivity 1 depends on time, location, activity and the number of attendee (see
equation 6.4). The CADL code for 'hasActivity' is given in appendix M. It is to
mention that the details of SOCAM architecture implementations are not available.
Appendix N illustrates the XML rule for interpreting 'hasActivity' context.

Locatedln = (ID = an_ID) D (Location = a_room).......... (6.3)

«G*ttM»

ID

«G*tt«r»
Location

«Formatter»
FormatParamtttar

P1

«lnterpr«ter» |

P2

Figure 6.6: Filter diagram representing Locatedln context

hasActivity=(Time=a_Time)n(Activity=an_Activity)n(Location=a_Room)n(AttendeeNo>N). . .(6.4)

113

-Lx-^xN JL«lnl»rprtl»r» J_s~*.
60-0 "Activity DO
JP4 I——————————————IPS

Figure 6.7: Filter diagram representing has Activity

6.3 Summary

In this chapter an evaluation technique is presented using a set of heuristics. Two
methods are employed to validate the findings, these are: quantitative based and case
study. In the first method a literature survey is conducted then analysed and compared
with the new framework. The second method (using case study) includes
implementing different scenarios and case studies of the existing and well known
systems. The implementation of existing systems can justify the applicability of the
proposed design in terms of the main functionality. However, this technique only
validates the applicability of the new framework. It was not possible to conduct a
comparison between the performance of the two approaches as it was not possible to
acquire the original implementation of the toolkit and SOCAM systems. Therefore, it
was found that quantitative method (comparison by literature survey) is the most
helpful for the justification.

114

Chapter 7

Conclusions and Future Work

This thesis has described an extensible and generic framework through adopting an
architecture style that supports designing, and developing context-aware applications.
A comprehensive conclusion to the study along with a discussion of limitations and
future research is presented in the following sections.

7.1 Conclusions

The major conclusions are summarised in this section. We believe that the new
framework is extensible and generic; it simplifies system integration, improves
maintainability, adaptability, reusability, support decoupling of components, and
reduces the development effort. This enables application designers to create a variety
of context-aware systems. In my opinion, the aforementioned features are based on
the following grounds: -

1. The framework uses the Pipe-and-Filter architecture style, which employs a
number of reusable and independent filters. These filters can be used in different
arrangements to build a variety of applications; therefore it is adaptable and
reconfigurable. This style also enables filter reuse in the design, and hence

information reuse.
2. The main filter types of the framework represent the usual functionalities of any

context-aware system as demonstrated in the comparison given in Table 6.1. New
concrete filters can be built by inheriting all the features and properties of their

parents (generic filter types). Therefore, the framework is extensible and generic.

3. The deployment language (CADL) can be used to put the architecture filters in
different arrangements; therefore, the framework is customisable. The schema of
the CADL code shows that it contains generic elements, which means that

different parameters can be used when establishing a new filter type. Therefore,

the CADL code supports the framework extensibility.
4. The use of several software design patterns in the deployment of the filters (such

as the Factory method creational design pattern) enables the creation and reuse of
filter types in the design process. Interpreter design pattern is used to build the
rule engine of the framework. Moreover, the rules used in the reasoning process
can be extended, where new rules can be added to the rule engine. Therefore, the
framework can be extended.

5. The use of some features such as generics and reflection in implementing the
framework enables the addition of new concrete filter types by inheriting all the
properties and features of the abstracted filters. Moreover, these design tools
made the framework extensible.

6. Two modified criteria to evaluate the framework are used. Then two methods are
adopted to justify the findings; these methods proof the completeness and the
applicability of the GECAF framework.

7.2 Framework Limitations

The GECAF Framework has some limitations and drawbacks; these are mainly
concerned with the following: -

1. The framework is not distributed; it does not support distributed environment.
2. As we assume that storing information in a secure repository is provided by

external systems, GECAF framework did not implement any security
functionality. End-users' privacy is an important issue that should be considered,
especially when using their private information such as bank account, assets,
biometric information, health history, company information, etc. This information
should be stored in a secure place to avoid theft. Moreover, there should be an
access control to the information as well as displaying the information should be
well controlled.

7.3 Future Work

Future work in the subject area is outlined below: -

• The proposed framework is implemented as a desktop application. However, the
intention is to build a middleware to solve the scalability issue of the design,

116

where context-aware systems are distributed and scalable. Middleware is a

software layer that mediates the interaction between the operating system and an

application or between different applications in a network. It provides a common

programming abstraction as it hides the low level programming details. It has

many requirements, like heterogeneity, support for mobility, scalability, support

for privacy, tolerance to failure, and ease of deployment and configuration [117].

• Ontology is the current trend for knowledge representation (representing, relating,

and reasoning context information); yet, existing ontology based approaches does

not support generic applications. The future plan of this study is to build a

common ontology inference rules to be used with the XML rule language. A

future extension could also aim to develop the XML rule language and add more

operations for accurate reasoning process.

• The framework uses SOAP as a type of application to exchange information

across the web. To make the web services self-describing, WSDL can be used as

another web services application in the design. WSDL describes network services

and the way to access them regardless of the protocol used.

• To enhance and simplify the deployment process of the proposed framework, a

graphical editor can be used to build the architecture filters. As a result,
application providers can specify the primitive and abstracted context; then put a

pattern to their architecture and the interpretation rules.

• As context-aware systems exploit users' information to adapt their behaviour,

these systems are liable to security threats. Therefore it is important to consider

information security and privacy in their design.

• Current trends are focused on applications concerned with the interactions
between the vehicle and its occupants [118], and on the applications of context-

aware computing to real-life domains, both home based and clinical [119]. In this

respect, GECAF framework can be employed to develop applications in the

healthcare and automotive trends.

117

PUBLICATIONS

Publication outputs during the past Four years are:

1. A. Abdulahad and A. Al-Yasiri. "Integrating Context Information into LDAP" 9th

Annual Postgraduate Symposium on the Convergence of Telecommunicating,

networking and broadcasting, Liverpool, UK, 23-24 June, 2008.

2. A. Abdulahad and A. Al-Yasiri. "A Generic architecture implementing a Formal

Context model for Context-A ware Systems" 10th Annual Postgraduate

Symposium on the Convergence of Telecommunicating, networking and

broadcasting, Liverpool, UK, 22-23 June 2009.

3. A. Sabagh and A. Al-Yasiri. "Smart Classroom" A poster to, Telecommunication

and Networking Research Centre, Salford University, Sept. 2010.

4. A. Sabagh and A. Al-Yasiri. "An Extensible Framework for Context-Aware

Smart Environments" in the 24th International Conference on Architecture of

Computing Systems, Lake Como, Italy, 22-25 Feb. 2011.

118

REFERENCES

[1] H. Henn. "Past, present, future" in J. Burkhardt, et al. (Eds.). Pervasive

Computing: Technology and Architecture of Mobile Internet Applications.

Boston, London: Addison-Wesley, ISBN: 0-201-72215-1, 2002.

[2] M. Weiser. "The Computer for the 21st Century". Scientific American, vol. 26,

no. 3, pp. 94-104, 1991.

[3] T. Strang and C. L-Popien, "A context modelling survey" Workshop on

Advanced Context Modelling, Reasoning and Management, UbiComp 2004,

The 6th International Conference on Ubiquitous Computing. Nottingham,

Sept. 2004, pp. 33-40.

[4] M. Weiser, Ubiquitous computing. (March 2008), Available:

http://sandbox.xerox.com/ubicomp/

[5] D.L. Becta, (May 2011) Emerging Technologies for Learning. Chapter 6, vol.

2, 2007, Available: http://www.terena.org/mail-archives/schoolnet/

pdf6c94NcEJLX.pdf

[6] J. Indulska and P. Sutton. "Location management in Pervasive Systems"

Workshop on Wearable, Invisible, Context-Aware, Ambient, Pervasive and

Ubiquitous Computing, Adelaide, Australia, 2003.

[7] I. Roussaki, et al. "Hybrid context modeling: A location-based scheme using

ontologies" in Proceedings of the 4th annual IEEE international conference

on Pervasive Computing and Communications Workshops, (PERCOMW'06),

Pisa, Italy, 2006.
[8] A. Dey and G. Abowd. "Towards a better understanding of context and

context-awareness" in Proceedings of Workshop on the What, Who, Where,

When and How of Context-Awareness, Hague, Netherlands, April, 2000.

[9] B. Schilit, et al. "Context-aware computing applications" in Proceedings of the

1st International Workshop on Mobile Computing Systems and Applications,

Santa Cruz, CA, Dec. 1994, pp. 85-90.

[10] D. Salber, et al. "Designing for Ubiquitous Computing: A Case Study in

Context Sensing", Georgia Institute of Technology, GVU Technical Report;

GIT-GVU-99-29, 1999.

119

[11] S. Loke. Context-Aware Pervasive Systems: The Architecture of a New Breed

of Applications. Monash University, Australia: Auerbach Publications Taylor
& Francis Group, ISBN-10:0-8493-7255-0, 2006.

[12] C. Jiang, et al. "Classroom in the Era of Ubiquitous Computing - Smart
Classroom" IEEE International Conference on Wireless LANs PANs and

Home Networks (ICWLHN2001), Singapore, 5-7 Dec. 2001, pp. 14-26.
[13] G.M. Youngblood, et al. "Automation intelligence for the smart environment"

in Proceedings of the 19th International Joint Conference on Artificial

Intelligence, Edinburgh, Scotland, 2005, pp. 1513-1514.
[14] Y. Suo, et al. "Open Smart Classroom: Extensible and Scalable Learning

System in Smart Space using Web Service Technology". IEEE Transactions

on Knowledge and Data Engineering, vol. 21, no. 6, pp. 428-439, June, 2009.
[15] S.K. Das and D.J. Cook. "Designing and modeling smart environments" in

Proceeding of International Symposium on Wireless, Mobile and Multimedia

Networks (WOWMOM), Niagara-Falls, Buffalo, NY, 2006, pp. 490-494.
[16] C.A.N. Guerra and C.F.S. Correa Da Silva. "A middleware for smart

environments" in Proceedings of British Society for Studies of Artificial

Intelligence and Simulation of Behaviour, Scotland, 2008.
[17] Z. Salvador, et al. "Smart Environment Application Architecture" in

Proceeding of the 2nd International Conference on Pervasive Computing

Technologies for Healthcare, PervasiveHealth 2008. Tampere, Finland, 2008,
pp. 308-309.

[18] J. Bravo, et al. "Modelling Contexts by RFID-Sensor Fusion" Forth IEEE

Annual Conference on Pervasive Computing and Communications Workshops

- PerCom Workshops, Pisa, Italy, 2006.
[19] RFID Tags: Passive Tags or Active Tags, (January 2011), Available:

http://www.buzzle.com/articles/rfid-tags-passive-tags-or-active-tags.html
[20] M. Aboelaze and F. Aloul. "Current and Future Trends in Sensor Networks: A

Survey" in Proceedings on Wireless and Optical Communications Networks,

Dubai, UAE, 2005, pp. 551-555.
[21] A. Klemetti, (July 2011) PDA Operating Systems. Available:

http://www.tml.tkk.fi/Studies/Tik-l 11.590/200Is/papers/aarne klemetti.pdf
[22] What is GPS?, (July 2011), Available: http://www8.garmin.com/aboutGPS/

120

[23] D. Charoenruk, (Dec. 2009) Communication Research Methodologies:

Qualitative and Quantitative Methodology. Available:

http://utcc2.utcc.ac.th/localuser/amsar/PDF/Documents49/quantitative and qu

alitative methodologies.pdf

[24] A. Schmidt, et al. "There is more to context than location", Computers and

Graphics Journal, vol. 33, no. 6, pp. 893-902, 1999.

[25] A. Schmidt. "Implicit Human Computer Interaction through Context".

Personal Technologies, vol. 4, no. 2&3, pp. 191-199, 2000.

[26] A. Schmidt, et al. "Advanced Interaction in Context" 1th International

Symposium on Handheld and Ubiquitous Computing (HUC99), Karlsruhe,

Germany, 1999 and Lecture notes in computer science; 1707, ISBN 3-540-

66550-1, Springer, 1999.

[27] D. Salber, "Context-Awareness and multimodality" in Proceedings of the first

workshop on multimodal user interfaces, Grenoble, France, 2000.

[28] T. Gross and M. Specht, "Awareness in context-aware information systems" in

Proceedings of the Mensch und Computer - I. Fachubergreifende Konferenz,

BadHonnef, Bonn Germany, 2001, pp. 173-182.

[29] R. Kernchen, et al. "Context-Awareness in MobiLife" 15th 1ST Mobile and

Wireless Communications Summit, Mykonos, Greece, June, 2006.

[30] F. Azouaou and C. Desmoulins, "Using and modelling context with ontology in

e-learning: the case of teacher's personal annotation" in Proceedings of

International Workshop on Applications of Semantic Web Technologies for E-

Learning, Dublin, Ireland, 2006.

[31] N. Ryan, et al. "Enhanced Reality Fieldwork: the Context-Aware

Archaeological Assistant". Computer Applications in Archaeology, 1997.

[32] A.K. Dey. "Understanding and Using Context". Personal and Ubiquitous

Computing, vol. 5, no. 1, pp. 4-7, 2001.

[33] G. Abowd and E. Mynatt. "Charting Past, Present, and Future Research in

Ubiquitous Computing". ACM Transactions on Computer-Human Interaction,

vol. 7, no. 1, pp. 29-58,2000.

[34] C. Becker and D. Niclas. "Where do spatial context-models end and where do

ontologies start? A proposal of a combined approach" in Proceedings of the I st

121

International Workshop on Advanced Context Modelling, Reasoning and

Management UbiComp 2004, Nottingham, Sept. 2004.

[35] Y. Oh, et al. "ubi-UCAM 2.0: A Unified Context-aware Application Model for

Ubiquitous Computing Environments" first Korea/Japan Joint Workshop on

Ubiquitous Computing & Networking Systems 2005 (ubiCNS2005), 2005.
[36] Y. Oh, et al. "User-centric Integration of Contexts for a Unified Context-aware

Application Model", ubiPCMM, pp. 9-16, 2005.

[37] S. Jang and W. Woo. "Unified context representing user-centric context: Who,
where, when, what, how and why" ubiComp Workshop (ubiPCMM), 2005, pp.
26-34.

[38] G. Kunito, et al. "Architecture for Providing Services in the Ubiquitous
Computing Environment" International Conference on Distributed Computing

Systems, Lisboa, Portugal, 2006.
[39] J. Bravo, et al. "Ubiquitous Computing in the Classroom: An approach through

Identification Process". Journal of Universal Computer Science, vol. 11, no. 9,
pp. 1494-1504,2005.

[40] K.E. Kajaer. "A Survey of Context-Aware Middleware" in Proceedings of the

25th conference on IASTED International Multi-Conference: Software

Engineering, 2007, pp. 148-155.
[41] K. Henricksen, et al. "Modelling Context Information in Pervasive Computing

Systems" in Proceedings Pervasive 2002, Zurich, Aug. 2002.
[42] K. Henricksen and J. Indulska. "Modelling and using imperfect context

information" in Proceedings of the second IEEE Annual conference on

pervasive computing and communications workshops (PERCOMW'04), 2004.
[43] J. Gwizdka. "What's in the Context?" Computer Human Interaction 2000

(CHI2000) - Workshop, The What, Who, Where, Why and How of Context-

Awareness, The Hague, Netherlands, 2000.

[44] T. GU, et al. "An ontology-based context model in intelligent environments" in
Proceedings of Communication Networks and Distributed Systems Modelling

and Simulation Conference, San Diego, California, USA, 2004.

[45] P. Korpipaa, et al. "Managing Context Information in Mobile Devices". IEEE

Pervasive Computing, vol. 2, no. 3, pp. 42-51, 2003.

122

[46] M. Beigl, et al. "AwareCon: Situation Aware Context Communication" in

Proceedings ofUbicomp 2003, Seattle, USA, Oct. 12-15, 2003.

[47] T. Mantoro and C.W. Johnson. " Location History in a Low-cost Context

Awareness Environment" Workshop on Wearable, Invisible, Context-Aware,

Ambient, Pervasive and Ubiquitous Computing, ACSW 2003, Adelaide,

Australia, Australian Computer Science Communications, vol. 25, no. 6, pp.

153-158,2003.

[48] A.V. Neelima, et al. "A Multi Agent, Service Reassembling Architecture for

Context-Aware Systems". International Journal of Recent Trends in

Engineering, vol. 1, no. 1, pp. 563-567, 2009.

[49] D. Zhang, et al. "Enabling Context-Aware Smart Home with Semantic Web

Technologies". International Journal of Human-friendly Welfare Robotic

Systems, 2005.

[50] A. Al-Yasiri and N. Linge. "A Lightweight Architecture for Context Aware

Applications Using LDAP" 2nd International Conference on Computer

Science & Information Systems, Athens, Greece, 19-21 June, 2006.

[51] A. Abdulahad and A. Al-Yasiri. "Integrating Context Information into LDAP"

9th annual postgraduate symposium in PGNet 2008, Liverpool, 23-24 June

2008.
[52] P. Fahy and S. Clarke, "CASS: Middleware for Mobile Context-Aware

Applications", Workshop on Context Awareness at MobiSys 2004, Boston,

2004.
[53] M. Baldauf and S. Dustdar, "A Survey on Context-Aware Systems", TUV-

1841-2004-24, Nov. 2004.

[54] M. Baldauf, et al. "A survey on context-aware systems". International Journal

of Ad Hoc and Ubiquitous Computing, vol. 2, no. 4, pp. 263-277, 2007.

[55] B.C. Chien, et al. "CADBA: A Context-aware Architecture based on Context

Database for Mobile Computing" International Workshop on Pervasive

Media, in the Sixth International Conference on Ubiquitous Intelligence and

Computing, Brisbane, Australia, 7-9 July, 2009, pp. 367-372.

[56] J. Hong and J. Landay. "An infrastructure approach to context-aware

computing". Human-Computer Interaction, vol. 16, no. 2 & 3, 2001.

123

[57] R. Schmohl and U. Baumgarten. "Context-aware Computing: A Survey

Preparing a Generalized Approach" in Proceedings of the international Multi-

Conference of Engineers and Computer Scientists, IMECS 2008, Hong Kong,

19-21 March 2008, vol. 1.

[58] C. Bettini, et al. "A survey of context modelling and reasoning techniques".

Pervasive and Mobile Computing, vol. 6, no. 2, pp. 161-180, April 2010.

[59] C. Bolchini, et al. "A Data-oriented Survey of Context Models". ACM

SIGMOD Record, vol. 36, no. 4, pp. 19-26, 2007.

[60] C. Wang and X. Wang. "Multi-agent Based Architecture of Context-aware

Systems", International Conference on Multimedia and Ubiquitous

Engineering (MUE'07), Seoul, Korea, 26-28 April, 2007.

[61] H. Chen, et al. "An Intelligent Broker for Context-Aware Systems" in Adjunct

Proceedings ofUbicomp, 2003 Seattle, Washington, USA, 2003.

[62] T. GU, et al. "Toward an OSGi-Based Infrastructure for Context-Aware
Applications". IEEE Pervasive Computing, pp. 66 -74, Oct-Dec, 2004.

[63] M. Miraoui, et al. "Context Modeling and Context-Aware Service Adaptation
for Pervasive Computing Systems". International Journal of Computer and

Information Science and Engineering (IJCISE), vol. 2, no. 3, pp. 148-157,

2008.
[64] Z. Hwang, et al. "A Context Model by Ontology and Rule for Offering the

User-Centric Services in Ubiquitous Computing" in Proceedings of the 2007

International Conference on Convergence Information Technology, 2007, pp.

77-82.
[65] M. Hong and D. Cho, "Ontology Context Model for Context-Aware Learning

Service in Ubiquitous Learning Environments". International Journal of

Computers, vol. 2, no. 3, pp. 193-200, 2008.
[66] J. Choi, "Software Architecture for Extensible Context-Aware Systems" in

Proceedings of the 2008 International Conference on Convergence and

Hybrid Information Technology, 2008, vol. 0, pp. 811-816.
[67] L. Harvel, et al. "Context Cube: Flexible and Effective Manipulation of sensed

Context Data" in Proceedings of the second International Conference on

Pervasive computing (Pervasive 2004), Vienna, Austria, 21-23 April, 2004,

LNCS of Springer, vol. 3001, pp. 51-68.

124

[68] J. Pascoe, "Adding Generic Contextual Capabilities to Wearable Computers" in

Proceedings of the 2nd IEEE International Symposium on Wearable

Computers, 1998, pp. 92-99.
[69] J. Bisgaard, et al. (December 2004) How is Context and Context-awareness

Defined and Applied? A Survey of Context-awareness. Aalborg University
2004. Available: http:/www.csconsult.dk/rap/inf7 con.pdf

[70] M. Berens, "Sketching a Possible Field for Context-Aware Applications" in
Proceedings of the 2nd Twente Student Conference on Information

Technology, 2005, pp. 198-202.
[71] N. Cheng, et al. "A model for context-aware applications". International

Journal of Pervasive Computing & Communications, vol. 4, no. 4, pp. 428-

439, 2009.

[72] A. Chen, et al. "Smart Rooms" in D.J. Cook, S.K. Das and A.Y. Zomaya (Eds).

Smart Environments: Technologies, Protocols and Applications. Hoboken,

New Jersey: John Wiley and Sons, ISBN: 978-0-471-54448-7, 2005.

[73] G.D. Abowd, "Classroom 2000: An Experiment with the Instrumentation of a

Living Educational Environment", IBM Systems Journal, vol. 38, no. 4, pp.

508-530, 1999.
[74] Y. Shi, et al. "The smart classroom: Merging technologies for seamless

teleeducation". IEEE Pervasive Computing, vol. 2, no. 2, pp. 47-55, 2003.

[75] X. Wang, et al. "Semantic Space: An Infrastructure for Smart Spaces". IEEE

Pervasive Computing, vol. 3, no. 3, pp. 32-39, 2004.

[76] S.S. Yau, et al. "Smart classroom: enhancing collaborative learning using

pervasive computing technology" in Proceedings of the 6th WFEO World

Congress on Engineering Education and the 2nd ASEE International

Colloquium on Engineering Education (ASEE '03), Nashville, Term, USA,

June 2003, pp. 13633-13642.

[77] J. Bravo, et al. "Ubiquitous Computing in the classroom: An Approach through

identification process". Journal of Universal Computer Science, vol. 11, no. 9,

pp. 1494-1504,2005.
[78] M. Back, et al. "Usable Ubiquitous Computing in Next-Generation Conference

Rooms: Design, Evaluation, and Architecture" in Proceeding, UbiComp 2006

Sept, workshop, 2006.

125

[79] P. Osbakk and E. Rydgren. "Ubiquitous Computing for the Public" in
Proceedings of pervasive 2005 workshop of pervasive Mobile Interaction

Devices (PERMID 2005), 2005, pp. 56-89.
[80] A. Lakas, et al. "ACP: An Interactive Classroom Response System for Active

Learning Environment" in Proceeding of the 2006 International Conference

on Communications and Mobile Computing, 2006, pp. 1301-1306.
[81] M. El-Bishouty, et al. "PERKAM: Personalized knowledge awareness map for

computer supported ubiquitous learning". Educational Technology and

Society, vol. 10, no. 3, pp. 122-134, 2007.
[82] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging

Discipline. Upper Saddle River, New Jersey: Prentice Hall, 1996.
[83] Client-Server Architecture, (July 2009), Available: http://en.wikipedia.org/

wiki/Client-server

[84] Model-View-Controller, (May 2009), Available: http://msdn.microsoft.com/
en-us/library/ff649643 .aspx

[85] M. Wooldridge, "Agent-based computing". Interoperable communication

Networks (Baltzer Science Publisher BV), vol. 1, no. 1, pp. 71-97, 1998.
[86] S. Guner. ""Architectural approach and methodologies of Service Oriented

Architecture" Master thesis, Technical University Hamburg, Harburg,
Germany, 2005.

[87] Y. Oh, et al. "Designing, Developing and Evaluating Context-Aware Systems"
International Conference on Multimedia and Ubiquitous Engineering
(MUE'07), 2007, pp. 1158-1163.

[88] A. Singh and M. Conway "Survey of Context aware Framework - Analysis and
Criticism" University of North Carolina at Chapel Hill Information
Technology Service, Technical Report, 2006.

[89] A. Devaraju, et al. "A Context Gathering Framework for Context-Aware
Mobile Solutions" ACM International Conference on Mobile Technology,

Applications and Systems, Singapore, 10-12 Sept, 2007.
[90] M. Miraoui, et al. "Architectural Survey of Context-Aware Systems in

Pervasive Computing Environment". Ubiquitous Computing and

Communication Journal, vol. 3, no. 3, 2008.

126

[91] J. Hong, et al. "Context-aware systems: A literature review and classification".

Expert Systems with Applications, vol. 36, no. 4, pp. 8509-8522, 2009.

[92] A. Saeed and T. Waheed, "An extensive survey of context-aware middleware

architectures" Electro/Information Technology (EIT), 2010 IEEE International

Conference, 2010, pp. 1-6.

[93] P. Bellavista, et al. "A Survey of Context Data Distribution for Mobile

Ubiquitous Systems". Accepted in ACM Computing Surveys (CSUR), ACM

Press, expected to appear in vol. 45, no. 1, pp. 1-49, Mar. 2013.

[94] C. Hong, et al. "The Context-Awareness for the Network-based Intelligent

Robot Services". Advances in Service Robotics, Ho Seok Arm (Ed.), InTech

Publishing, 2008.

[95] M.C. Domingo. "A context-aware service architecture for the integration of

body sensor networks and social networks through the IP multimedia
subsystem". Barcelona Tech University, Barcelona, Spain, IEEE

Communication magazine, vol. 49, no. 1, pp. 102-108, 2011.
[96] H. Chen, et al. "Semantic Web in the Context Broker Architecture" in

Proceedings of the 2nd IEEE International Conference on Pervasive

Computing and Communications (PerCom04), Orlando, FL, March 2004.

[97] C. De Gatti, et al. "An agent-based architecture for knowledge management in

context-aware business processes" in Proceedings of the 2010 14th

International Conference on Computer Supported Cooperative Work in

Design, 2010, pp. 318-323.

[98] D. Salber, et al. "The Context Toolkit: Aiding the Development of Context-

Enabled Applications" in Proceedings of the 1999 ACM Conference on

Human Factors in Computer Systems (CHI'99), Pittsburgh, PA, ACM Press,
15-20 May, 1999, pp. 434-441.

[99] A.K. Dey and G.D. Abowd. "The Context Toolkit: Aiding the Development of
Context-Aware Applications" in Workshop on Software Engineering for

Wearable and Pervasive Computing, Pittsburgh, 2000.

[100] K.A. Dey. Providing Architectural Support for Building Context-A\vare

Applications. Thesis (PhD), College of Computing, Georgia Institute of

Technology, 2000.

127

[101] H.A. Duran-Limon, et al. "Context-Aware Middleware for Pervasive and Ad

Hoc Environments" MPAC '04 Proceedings of the 2nd workshop on

Middleware for pervasive and ad-hoc computing, New York, NY, USA, ACM
Press, 2004, pp. 107-110.

[102] H.A. Duran-Limon, et al. "Context-A ware Middleware for Pervasive and

Mobile Ad Hoc Environments", Department of Computing Science, Tec-

nologico de Monterrey (ITESM), Campus Guadalajara, Mexico and

Computing Department, Lancaster University, Bailrigg, Lancaster LA1 4YR,
UK, 2004.

[103] A. Schmidt and K. Van Laerhoven. "How to build smart appliances?". IEEE

Personal Communications, vol. 8, no. 4, pp. 66-71, 2001.

[104] H.L. Chen. An intelligent broker architecture for pervasive context- aware

systems. Dissertation (PhD), University of Maryland, 2004.

[105] G. Biegel and V. Cahill A "Framework for Developing Mobile, Context-aware

Applications" in Proceedings of the Second IEEE Annual Conference on

Pervasive Computing and Communications (PERCOM'04), USA, 2004.

[106] O.B. Kwon. "Modeling and generating context-aware agent-based applications

with amended colored Petri nets". Expert Systems with Application, vol. 27,

no. 4, pp. 609-621,2004.

[107] S. Lee, et al. "A study on Issues in Context-A ware Systems Based on a Survey

and Service Scenarios" Software Engineering, Artificial Intelligences,

Networking and Parallel/Distributed Computing, SNPD '09, 10th ACIS

International Conference, Daegu, Koria, 2009, pp. 8-13.

[108] G. Carter. LDAP System Administration. USA: O'Reilly and Associates Inc,

2003.
[109] E. Gamma, et al. Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley Professional Computing Series, 1994.

[110] J. Snell, et al. Programming Web Services with SOAP. USA: O'Reilly &

Associates Inc, 2002.
[Ill] S. Seely, and K. Shrkey, SOAP Cross Platform Web Service Development

Using XML. London: Prentice Hall PTR, 2001.

128

[112] F. Siegemund. "A Context-Aware Communication Platform for Smart Objects"
in Proceedings of 2nd International Conference on Pervasive Computing

(PERVASIVE), Springer, 2004, pp. 69-86.
[113] R.E. Johnson and B. Foote "Designing Reusable Classes". Journal of Object-

Oriented Programming, vol. 1, no. 2, pp. 22-35, 1988.
[114] I.R. Forman and N. Forman. Java Reflection in Action. Greenwich, USA:

Manning Publications, 2005.
[115] Y.D. Liang, Introduction to Java programming: core version. 5 th ed. Upper

Saddle River, N. J.: Prentice Hall, 2005.
[116] P. Bratskas, et al. "An evaluation of the state of the art in context-aware

architectures" Sixteenth International Conference on Information Systems

Development (ISD 2007) (Galway, Ireland), Springer, Verlag, 2007, pp. 1-12.
[117] K. Henricksen, et al. "Middleware for distributed context-aware systems" in

Proceedings of On the Move to Meaningful Internet Systems, LNCS 3760,
2005, pp.846-863.

[118] A. Schmidt, et al. "Automotive Pervasive Computing". Pervasive computing,

IEEE, vol. 10, no. 3, pp. 12-13, March 2011.
[119] A.K. Dey and D. Estrin. "Pervasive Healthcare 2010: Two Perspectives".

Pervasive computing, IEEE, vol. 10, no. 3, pp. 8-11, March 2011.

129

BIBLIOGRAPHY

[1] B. McLaughlin. Java & XML. Sebastopol. CA Cambridge: O'Reilly, 2001.
[2] B. Oh, et al. "U-Learning Framework for U-Classroom". IADIS International

Conference, 2006, pp. 367-370.

[3] C. Chatfield and R. Hexel. "User Identity and Ubiquitous Computing: User
Selected Pseudonyms" in Proeedings ofUbiComp. Tokyo, Japan, Sept. 2005.

[4] C. Ciavarella and F. Paterno. "The design of a handheld, location-aware guide
for indoor environments". Personal Ubiquitous Computing, vol. 8, pp. 82-91,
2004.

[5] C. Shin and W. Woo. "Conflict Resolution Method utilizing Context History
for Context-A ware Applications" in Proceedings of ECHISE'05, held in

Conjunction with PERVASIVE'05, Cognitive Science Research Paper -
University of Sussex CSRP 2005, ISSU 577, pp. 105-110.

[6] D. Ayed, et al. "A data model for context-aware deployment of component-
based applications onto distributed systems". Component-oriented approaches

to context-aware systems Workshop ECOOP'04, Oslo, Norway, June 2004.
[7] D. Flanagan. Java in a nutshell. Beijing Franham: O'Reilly, 2005.
[8] D. Kang, et al. "A Context Aware System for Personalized Services using

Wearable Biological Signal Sensors" International Conference on control,

Automation and systems, in COEX Seoul, Korea, 14-17 Oct. 2008.

[9] D. Salber, et al. "Designing For Ubiquitous Computing: A Case Study in
Context Sensing". Georgia Institute of Technology, GVU Technical Report;
GIT-GVU-99-29, 1999.

[10] D.H. Wilson, et al. "Using Context History for Data Collection in the Home"
in Proceedings of ECHISE'05, held in Conjunction with PERVASIVE'05,

Munich, Germany, 11 May, 2005.
[11] E. Castro. HTML 4 for the World Wide Web. Berkeley, Calif, Great Britain:

Peachpit Press, 2000.
[12] G.T. Huang. "China's clever classroom". Technology Review, vol. 107, no. 5,

pp. 26, June 2004.

130

[13] G. Thomson, et al. "Situation determination with distributed context histories"
in Proceedings of ECHISE'05, held in Conjunction with PERVASIVE'05,

Munich, Germany, 11 May, 2005.

[14] H. Gu et al. "SLAP: a Location-aware Software Infrastructure for Smart
Space" in Proceedings of the 3rd IEEE workshop on Software Technologies

for Future Embedded and Ubiquitous Systems'(SEUS'05), IEEE CS Press,
Seattle, USA, 2005, pp. 35-38.

[15] H. Si, et al. "A Stochastic Approach for Creating Context-A ware Services
based on Context Histories in Smart Home" in Proceeding of the 3rd

International Conference on Pervasive Computing (Pervasive2005),

(ECHISE2005), Munich, Germany, May 2005, pp. 37-41.
[16] H. Yuan, et al. "Design of a Novel Indoor Location Sensing Mechanism using

IEEE 802.lie WLANs", The Seventh Annual PostGraduate Symposium in

Telecommunications and Network System (PGNet), Liverpool, UK, 26-27
June, 2006.

[17] I. F. Akyildiz, et al. "A Survey on Sensor Networks". IEEE Communications

Magazine, vol. 40, no. 8, pp. 102-114, 2002.
[18] J. Wu, et al. "Building a Context-Aware Smart Exhibition Environment",

International Conference on Wireless Communications, Networking and

Mobile Computing, WiCom, 2007, pp. 2177-2180.
[19] J. Hightower and G. Bordello. "A survey and taxonomy of location systems

for ubiquitous computing" Computer, vol. 34, no. 8, pp. 57-66, Aug. 2001.
[20] J. Ma, et al. "Towards a smart world and ubiquitous intelligence: A

walkthrough from smart things to smart hyperspaces and UbicKids".
International Journal of Pervasive Computing and Communications, vol.1
no.l,pp.53-68,2005.

[21] K. Khido. "Context-Aware Systems for Mobile and Ubiquitous Networks" in
Proceedings of the International Conference on Networking, International

Conference on Systems and International Conference on Mobile

Communications and Learning Technologies (ICNICONSMCL'06), 23-29
April 2006.

[22] K. Rahman and F. Stajano. "An Architecture for Interactive Context-Aware
Applications". IEEE Computer Society, pp. 73-80, 2007.

131

[23] L.M. Ni, et al. "LANDMARC: Indoor Location Sensing Using Active RFID".

Wireless Networks, vol. 10, pp. 701-710, 2004.

[24] M. Kaenampornpan and E. O'Neill "Integrating History and Activity Theory in

Context Aware System Design" in Proceedings of the W8 ECHISE 2005 - 1st

International Workshop on Exploiting Context Histories in Smart

Environments, Pervasive 2005, Munich, Germany, 8-13 May, 2005.

[25] R.C.A. Da Rocha, et al. "Middleware for ubiquitous context-awareness" in
Proceedings of the 6th international workshop on Middleware for pervasive

and ad-hoc computing, Leuven, Belgium, 2008, pp. 43-48.
[26] R. Englander. Java and SOAP. Sebastopol, Calif, Cambridge: O'Reilly 2002.

[27] R. Lafore. Object-oriented programming in C++. 4th ed. Indianapolis, Ind.:
Sams; Hemel Hempstead: Prentice Hall [distributor], 2001.

[28] R. Lerdorf, et al. Programming PHP. Beijing Franham: O'Reilly, 2006.
[29] S. Voida and E. D. Mynatt. "Context Histories, Activities, and Abstractions:

Ubiquitous Computing Support for Individual and Collaborative Work" in
Proceedings ofECHISE'05, held in Conjunction with ERVASIVE'05, Munich,
Germany, 11 May, 2005.

[30] TJ. Teorey. Database modeling & design. 3 rd ed., San Francisco: Morgan

Kaufmann, 1999.
[31] W. Edwards. "Discovery Systems in Ubiquitous Computing". IEEE Pervasive

Computing, vol. 5, no. 2, pp. 70-77, April 2006.
[32] W. Heinzelman, et al. "Middleware to Support Sensor Network Applications".

IEEE Network Magazine. Special Issue, MiLAN, Jan. 2004.
[33] Y.D. Liang. Introduction to: JAVA Programming Core Version. 5l ed. Person

Prentice Hall, 2005.
[34] Y. Kawahara, et al. "Design and Implementation of a Sensor Network Node for

Ubiquitous Computing Environment" in Proceedings of IEEE Semiannual

Vehicular Technology Conference (VTC-Fall), Orland, FL, USA, Oct. 2003.

132

APPENDICES

A. SOAP (Simple Object Access Protocol)

SOAP is a simple extensible protocol based on XML standards; it is used with HTTP

messages to communicate between application level objects among multiple components

with different languages running on different vendor platforms. SOAP transaction begins

with an application making a call to a remote procedure or RPC (Remote Procedure Call)

style. The SOAP client script encodes the procedure request as an XML payload and sends

it over the transport protocol to a server script. The request is parsed by the server and

passed to a local method which sends a reply to the client encoded in XML. Then the client

parses the response and passes the result to the original function.

SOAP message consists of an envelope containing optional header and mandatory body,

see Figure A. 1. The header contains blocks of information relevant to how the message is

to be processed (including routing and delivery setting, authentication, and transaction

contexts). The body carries the main payload of the message to be delivered and processed,

and it may also contain fault element to indicate error at the server. This information can be
the remote requested method (i.e. method name and parameters name, type and value)

[110].

SOAP Message

Envelope

Figure A. 1: SOAP message

In the proposed architecture SOAP has been used to call a procedure on the remote

server. This type of web service application is specified through the deployment language

(CADL). Example (A.I) below, illustrates a simple RPC-style SOAP message. In RPC-

style message, messages come in pairs; the request (client sends function call information

to the server), and the response (server sends return value(s) back to the client). In this

example, the requested method is "String database (String context)" with context

parameter value as "Review " to be sent to a server. The returned parameter in a response

133

message is "filename" with a value of "lecturel.htm", and function namespace is defined

as: "http://localhost/soap/soap_database_server.php".

The XML syntax for expressing a SOAP message is based on the

"http://www.w3.org/2001/12/soap-envelope" namespace. The XML namespace identifier

points to an XML schema that defines the structure of what SOAP message looks like. An

encoding style, which is a set of rules, is used to define exactly how applications on

different platforms share information, even though they may not have common data types

or representations.

Example (A.I): RPC-style SOAP message

SOAP request contains details of a call to be made, as given in the following XML code: -
<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.orq/2001/12/soap-envelope"

soap:encodinqStvle="http://www.w3.orq/2001/12/soap-encoding f'>
<soap:Body>

<m:database xmlns:m="http://localhost/soap/soap database server.php" >
<m:context xsi:type="xsd:string">Review</m:context>

</m:database>
</soap:Body>

</soap:Envelope>

SOAP response will be very similar in structure to the request; it contains the result of the

call and as given below: -
<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.orq/2001/12/soap-envelope"

soap:encodingStyle= "http://www.w3.orq/2001/12/soap-encodinq">
<soap:Body>

<m:databaseResponse xmlns:m="http://localhost/soap/soap database server.php">
<m:filename xsi:type="xsd:string">lecturel.htm</m:filename>

</m:databaseResponse>
</soap:Body>

</soap: Envelope>

134

B. XML Schema (CADLSchema.xsd) for the CADL Code.

<?xml version="1.0" ?>
<an:schema xmlns:an = "http://www.w3.org/2001/XMLSchema">
<an:element name="Filters">

<an:complexType>
<an:sequence>

<an:element name="events" minOccurs="l" maxOccurs="l">
<an:complexType>

<an:sequence>
<an:element name="event" minOccurs="l" maxOccurs="unbounded">

<an:complexType>
<an:sequence>

<an:element name="description" type="an:string" />
</an:sequence>
<an:attribute name="id" type="an:string" default="" />
<an attribute name="CID" type="an:string" default="" />

</an:complexType>
</an:element>

</an:sequence>
</an:complexType>

</an:element>
<an:element name="process" maxOccurs="unbounded">

<an:complexType>
<an:sequence>

<an:element name="class" minOccurs="l" maxOccurs="6">
<an:complexType>

<an:sequence>
<an:element name="source" minOccurs="0" maxOccurs="6">

<an:complexType>
<an:simpleContent>

<anextension base="an:string">
<an:attribute name="no" type="an:string" default=""/>
<an:attribute name="type" type="an:string" default="xm!7>

</an:extension>
</an:simpleContent>

</an:complexType>
</an:element>
<an:element name="target" minOccurs="0" maxOccurs="l">
<an:complexType>

<an:simpleContent>
<anextension base="an:string">
<anattribute name="type"type="an:string"default="xml"/>

</an:extension>
</an: simpleContent>

</an:complexType>
</an:element>
<an:element name="Element" minOccurs="0" maxOccurs="10">

<an:complexType>
<an:simpleContent>
<an:extension base="an:string">

<an:attribute name="name" type="an:string" use="required7>
<an:attribute name="value" type="an:string" />
<an:attribute name="type" type="an:string" />
<anattribute name="fileType" type="an:string" default="xml7>

</an: extension >
</an:simpleContent>

</an:complexType>
</an:element>

</an:sequence>
<an:attribute name="name" type="an:string" use="required" />
<an:attribute name= "context" type="an:string" />
<an.-attribute name="address" type="an:string" />
<an:attribute name="time" type="an:string" />
<an:attribute name="RID" type="an:string" />

</an:complexType>
</an:element>

</an:sequence>
<an:attribute name="type" type="an:string" />

135

<an:attribute name="CID" type="an:string" />
<an:attribute name= "category" type="an:string" />

</an:complexType>
</an:element>

</an:sequence>
</an:complexType>

</an:element>
</an: schema >

136

C. The Rule Schema 'ruleSchema.xsd' for the XML Rule

Document.

<?xml version="1.0"?>
<an:schema xmlns:an="http://www.w3.org/2001/XMLSchema">

<!--definition of operation' element-->
<an:complexType name="opType">

<an:sequence>
<an:element name="parameter" minOccurs="0" maxOccurs="unbounded">

<an:complexType>
<an:sequence>

<an:element name="operation" minOccurs="0" maxOccurs="unbounded"
</an:sequence>
<an:attribute name="type">

<an:simpleType>
<an:restriction base="an:string">

<an:enumeration value="simple" />
<an:enumeration value="complex" />

</an: restriction >
</an:simpleType>

</an:attribute>
<an:attribute name="source">

<an:simpleType>
<an:restriction base="an:string">

<anenumeration value="internal" />
<an:enumeration vaIue="external" />
<an:enumeration value="fixed" />

</an: restriction >
</an:simpleType>

</an:attribute>
<an:attribute name="value" type="an:string" use="optional" />

</an :complexType>
</an:element>

<an:element name="returnValue" minOccurs="l" maxOccurs="l">
<an:complexType>

<an:sequence>
<an:element name="case" minOccurs="l" maxOccurs="unbounded">

<an:complexType>
<an:simpleContent>

<an:extension base="an:string">
<anattribute name="value" type="an:string" default="" />
<an:attribute name="return" type="an:string" default="" />

</an:extension>
</an:simpleContent>

</an:complexType>
</an:element>

</an:sequence>
</an:complexType>

</an:element>
</an:sequence>
<an:attribute name="name">

<an:simpleType>
<an:restriction base="an:string">

<an:enumeration value="And" />
<an:enumeration value="OR" />
<an:enumeration value="NOT" />
<an:enumeration value="GT" />
<an:enumeration value="GE" />
<an enumeration value="LT" />
<an:enumeration value="LE" />
<an:enumeration value="egual" />
<an:enumeration value="Plus" />
<an:enumeration value="Minus" />
<anenumeration value="Times" />
<an enumeration value="Divide" />
<anenumeration value="subStr" />

</an: restriction >

137

</an:simpleType>
</an:attribute>

</an:complexType>

<!—Start of schema elements—>
<an:element name="rule">

<an:complexType>
<an:sequence>

<an:element name="context" minOccurs="l" maxOccurs="unbounded">
<an:complexType>

<an:sequence>
<an:element name="operation" type="opType" />

</an:sequence>
<an:attribute name="name" type="an:string" use="required" />
<an:attribute name="RID" type="an:string" use="required" />

</an:complexType>
</an:element>

</an:sequence>
</an:complexType>

</an:element>
</an: schema >

138

D. Interpreter Design Pattern

The Interpreter pattern describes how to define a grammar for simple languages,

representing sentences in the language, and interpret these sentences. Figure D. 1 shows the

UML diagram for the Interpreter design pattern. The interpreter pattern uses an Expression

abstract class and a terminal or non-terminal classes. The Client class is accountable for

building the syntax tree of arithmetic, logical, or other expression.

Client

Context

AbstractExpression

Interpret(Context)

$—

TerminalExpression

Interpret(Contaxt)

NonterminalExpression

interpret(Context)

Figure D.I: Interpreter design pattern

139

E. Examples of the Deployment Process of the Architecture

Example E.I: Using reflection to instantiate framework objects of concrete classes

inherited from the super class 'GetContext'. Where 'concreteClassName' is a string

retrieved from the CADL code.

GetContext concreteObject = null;

try{
concreteObject=(GetContext)Class.forName(concreteClassName).newInstance();
concreteObject. getContext(target, Eid);

}catch (Instantiation Exception e) {
e.printStackTrace();

} catch (IllegalAccessException e) {
e.printStackTraceQ;

} catch (ClassNotFoundException e) {
e.printStackTraceQ;

}

Example E.2: Using Generics to create different filters' types of the architecture.

Here 'E' represents a generic filter object such as 'Getter', 'Adder', 'Formatter', etc. while

'filterName' represents the concrete filter type such as 'ID', ' Format? arameter',

'AddHistory', etc.

public abstract class Creator <E> {
String filterName;

public Creator(){}
public Creator(String filterName){

this. filterName = filterName;
}

public abstract E create(String filterName);
>

Example E.3: The concrete class 'GetterCreator' using reflection feature.

public class GetterCreator extends Creator <GetContext> {

public GetterCreator(){}
public GetterCreator(String getterName){

super (getterName);
>

public GetContext create(String getterName){

GetContext a_getter=null;
try {

a_getter=(GetContext)(Class.for/Vame(getterName)).newInstance();
> catch (InstantiationException e) {

e.printStackTraceQ;
> catch (IllegalAccessException e) {

e.printStackTrace();
} catch (ClassNotFoundException e) {

e.printStackTrace();
}
return a_getter;

140

F. CADL code to representing 'Role' context.
<?xml version="1.0" ?>
<Filters xmlns:an = "http://www.w3.org/2001/XMLSchema-instance"

an:noNamespaceSchemaLocation="CADLSchema.xsd">
<events>

<event id="all" CID="al">
<description>Type of lecture</description>

</event>
</events>
<process type="Get" CID="al">

<class name="ID">
<source type="xml">sensorl</source>
<target type="xml">Gl</target>

</class>
<class name="Time">

<source type="xml">sensor2</source>
<target type="xml">G2</target>

</class>
<class name="Location">

<source type="xml">sensor3</source>
<target type="xml">G3</target>

</class>
<class name="Activity">

<source type="xml">sensor4</source>
<target type="xml">G4</target>

</class>
<class name="Environment">

<source type="xml">sensor5</source>
<target type="xml">G5</target>

</class>
<class name="Value">

<source type="xml">sensor6</source>
<target type="xml">G6</target>

</class>
</process>
<process type="Format" CID="al">

<class name="FormatParameter" context="Role">
<source no="l" type="xml">Gl</source>
<source no="2" type="xml">G2</source>
<source no="3" type="xml">G3</source>
<source no="4" type="xml">G4</source>
<source no="5" type="xml">G5</source>
<source no="6" type="xml">G6</source>
<target type="xml">pl</target>

</class>
</process>

<process type= "Interpret" CID="al">
<class name="Role" RID="1">

<source type="xml">pl</source>
<target type="xml">p2</target>

</class>
</process>
<process type="Application" category="automatic" CID="al">

<class name="SOAPapplication'' address=
"http://localhost/smartclassroom/sclassrooml.php">

<Element name="functionName" value="database" />
<Element name="location" value=

"http://127.0.0.1/soap/soap_database_server.php"/>
<Element name="parameter" value="path" type="STRING"

fileType="xml">p2</Element>
</class>

</process>
</Filters>

141

G. Smart Classroom CADL Code.
<?xml version="1.0" ?>
<Filters xmlns:an="http://www.w3.org/2001/XMLSchema-instance"

an:noNamespaceSchemaLocation="CADLSchema.xsd">
<events>

<event id="all" CID="al">
<description>Type of lecture</description>

</event>
<event id="a22" CID="a2">

<description>Lecture font size</description>
</event>

</events>
<process type="Get" CID="al">

<class name="ID">
<source type="xml">sensorl</source>
<target type="xml">Gl</target>

</class>
<class name="Time">

<source type="xml">sensor2</source>
<target type="xml">G2</target>

</class>
<class name="Location">

<source type="xml">sensor3</source>
<target type="xml">G3</target>

</class>
<class name="Environment">

<source type="xml">sensor5</source>
<target type="xml">G4</target>

</class>
</process>

<process type="Format" CID="al">
<class name="FormatParameter" context="Role">

<source no="l" type="xml">Gl</source>
<source no="2" type="xml">G2</source>
<source no="3" type="xml">G3</source>
<target type="xml">pl</target>

</class>
</process>
<process type="Interpret" CID="al">

<class name="Role" RID="1">
<source type="xml">pl</source>
<target type="xml">p2</target>

</class>
</process>

<process type="Manipulate" CID="al">
<class name="Retrieve" time="10">

<source>attendance</source>
<target type="xml">p3</target>

</class>
</process>
<process type="Format" CID="al">

<class name="FormatIndirectContext" context="typeOfLecture">
<source no="l" type="xml">p2</source> ,
<source no="2" type="xml">p3</source>
<source no="3" type="xml">G4</source>
<target type="xml">p4</target>

</class>
</process>
<process type="Interpret" CID="al">

<class name="typeOfLecture" RID="2">
<source type="xml">p4</source>
<target type="xml">p5</target>

</class>
</process>
<process type="Application" category="automatic" CID="al">

<class name="SOAPapplication" address="http://localhost/smartclassroom/
sclassrooml.php">

<Element name="functionName" value="database" />
<Element name="location" value="http://127.0.0.1/soap/soap_database_server.php"

142

<Element name="parameter" value="path" type="STRING" fileType="xml">p5</Element>
</class>

</process>
<process type="Get" CID="a2">

<class name="ID">
<source type="xml">sensorl</source>
<target type="xml">GK/target>

</class>
<class name="Time">

<source type="xml">sensor2</source>
<target type="xml">G2</target>

</class>
<class name="Location">

<source type="xml">sensor3</source>
<target type="xml">G3</target>

</class>
</process>
<process type="Format" CID="a2">

<class name="FormatParameter" context="personFont">
<source no="l" type="xml">Gl</source>
<source no="2" type="xml">G2</source>
<source no="3" type="xml">G3</source>
<target type="xml">p6</target>

</class>
</process>
<process type="Interpret" CID="a2">

<class name="persortFont" RID="3">
<source type="xml">p6</source>
<target type="xml">p7</target>

</class>
</process>
<process type="Application" category="tagging" CID="a2">

<class name="SOAPapplication" address="">
<Element name="functionName" value="font" />
<Element name="location" value="http://127.0.0.1/soap/soap_font_server.php" />
<Element name="parameter" value="font" tYpe="STRING" fileType="xml">p7</Element>

</class>
</process>

</Filters>

143

H. The Smart Classroom XML Rule Code.

<?xml version="1.0" ?>

<rule xmlns:an='http://www.w3.org/2001/XMLSchema-instance'
an:noNamespaceSchemaLocation="ruleSchema.xsd ">

<context name="typeOfLecture" RID="2">
<operation name="And">

<parameter type="complex">
<operation name="And">

<parameter type="complex">
<operation name="LE">

<parameter type="simple" source="external" value="p3.xml" />
<parameter type="simple" source="fixed" value="20" />
<returnValue>

<case value="true" return="true" />
<case value="false" return="false" />

</returnValue>
</operation>

</parameter>
<parameter type="complex">

<operation name="equal">
<parameter type="simple" source="internal" value="contextl" />
<parameter type="simple" source="fixed" value="Lecturer" />
<returnValue>

<case value="true" return="true" />
<case value="false" return="false" />

</returnValue>
</operation>

</parameter>
<returnValue>

<case value="true" return="true" />
<case value="false" return="false" />

</returnValue>
</operation>

</parameter>
<parameter type="complex">

<operation name="equal">
<parameter type="simple" source="external" value="G4.xml" />
<parameter type="simple" source="fixed" value="Occupied" />
<returnValue>

<case value="true" return="true" />
<case value="false" return="false" />

</returnValue>
</operation>

</parameter>
<returnValue>

<case value="true" return="Review" />
<case value="false" return="NOReview" />

</returnValue>
</operation>

</context>

</rule>

144

I. HTML and PHP Codes.

1 . Smart classroom website
<html>

<head>
<title>university smart classroom</title>
<style type= "text/ess" > <!-- internal style sheet -->

div {position :absolute}
th.a {width:140; height=25; text-align :center; valign=top;font-size=12;}
a : link{background : white; color: "#AOAOAO"; text-decoration : none; }
a:visited{background: white; color:"#990099"; text-decoration: none;}
a : hover{background : "#A8A8A8"; color: "606060"; text-decoration : none; }
a:active{background:white; color:"#3366FF"; text-decoration: none;}
<!-- set color, font-size, and font-style -->

p{ colorWhite;
font-size: 18pt;
font-style:normal;

}
</style>

</head>

<body bgcolor="#eOeOel"left:5px; top:60px; width:957px; background-color:C71585; colonwhite;
text-align :center; overflow:auto;">
<div style="left:90px; top:0px; width:830px; height:585px; background-color:white; color:red;

text-align: left; overflow: auto; ">

<?php
//read the information related to context from out.txt
//e.g. lecture note to be displayed 'lecturel.php'
$txtfile = fopen("c:/database.txt", T1);
$fData = fread($txtfile, 50);
fclose($txtfile);

?>

<h> <!— salford university logo —ximg src="ex\logo.bmp"x/h>
<h> <!— smartclasspicl logo — >

<!— Table for the following links: University Page, Students Names, Time Table, Lecturer Notes,
Tutorials, and Mail— >

<div style="left:90px; top:145px; width:135px; height:500px; background-colorwhite;
colorred; overflow:auto;">
<table>

<trxth class=axa HREF="http://www. salford. ac.uk">University Page</axbr>
<hrx/thx/tr>

<trxth class=axa HREF="names.htm">Students Names<brxhrx/thx/tr>
<trxth class=axA HREF="time.htm"> Time Table </axbrxhrx/thx/tr>
<trxth class=a>Lecturer Notes</axbrxhrx/thx/tr>
<trxth class=axA HREF="tutorial.htm"> Tutorials </axbrxhrx/thx/tr>
<trxth class=axA HREF="https://webmail. salford. ac.uk/horde/imp/"> Mail

<brxhrx/thx/tr>
<!-- text area to input data -->
<trxth bgcolor="#808000"xfont size=2 color=FFFFFF>Your Blackboard</thx/tr>
<trxthxform action="action.php" method="post">

<textarea name="name" Rows=10 cols=12x/textareaxbr>
<input color=#909090 type="submit" value="Send"/>

</form > </th > </tr >
</table>

<!— Line saparator between links and lecture notes — >
<!-- Table for lecture note titl and the lecture notes — >
<div style="left:225px; top:145px; width:688px; height:390px; colonwhite; ">

<table>
<!-- lecture note title — >
<trxth bgcolor="#CC0066"xfont size=5 color=FFFFFF>Lecture Note</thx/tr>

145

<tr><thxiframe id='iframel' src="<?php print $fData;?>" width=688
height=400x/iframe></thx/tr>

</table>

</body>
</html>

2. Lecture 1
<html>

<?php
//read context ID from a text file 'ID.txt1 , e.g. ID='@001' to find the font size
$txtfile = fopen("c:/font.txt", 'r');
$font= fread($txtfile, 50);
fclose($txtfile);

?>
<head>

<title>smart classroom</title>
<!--style sheet to set color, font style and size->
< style type= "text/ess" >

p{
color:#000080;
font-style: normal;
font-size: <?php print $font; ?>

}
</style>

<!-- refresh the page every 10 sec. — >
<META http-equiv="REFRESH" content="10">

</head>

<BODY BGCOLOR="#FFFFFO">
<!-- Lecture note title — >
<h2xfontcolor=C71585>Lecture No: K/h2>

<!— set the color font a, b, c, or d — >
<!— these information to be retreived from external style sheet -->
<?php $colorFont='b';?>
<hr>
<pre>
<!— Lecture notes starts with the title, and then followed by the lecture— >
<pxfont color=#000080>

Context and Context-Awareness

What is Context?

'context is any information that can be used to characterise the situation of an entity. An
entity is a person, place, or object that is considered relevant to the interaction between a
user and an application, including the user and application themselves 1

(Dey)

What is Context-Awareness?

'the use of context to provide task-relevant information
and/or services to a user, wherever they may be 1 (Dey)

</P>
</BODY>

</html>

3. PEL? Code - soap_database_server

<?php
// Pull in the NuSOAP code
include("lib/nusoap.php");

// Create the server instance
$srv = new soap_server();

146

// Register the method to expose
$srv->register("database");

// The method connect to database to aquire a data from a table
function database($contextO)

$con = mysql_connect("localhost:3306/contexthistory", "root", "gecaf");
if (!$con) {

die('Could not connect: ' . mysql_error());

//database to connect to is 'contexthistory 1
mysql_select_db("contexthistory", $con);

//table name is 'contextfiles 1 it has the following colomns (CID, context, filename)
$query='SELECT * FROM contextfiles WHERE context^.""1 . $contextO ."'";
$result = mysql_query($query);

//get the content of path colomn
while($row = mysql_fetch_array($result)){

$a=$row['filename'];
>
return $a;
mysql_close($con);

>

// Use the request to (try to) invoke the service
$HTTP_RAW_POST_DATA = isset($HTTP_RAW_POST_DATA) ? $HTTP_RAW_POST_DATA
$srv->service($HTTP_RAW_POST_DATA);

4. PHP Code - SOAP_font_server

<?php
// Pull in the NuSOAP code
include("lib/nusoap.php");

// Create the server instance
$srv = new soap_server();

// Register the method to expose
$srv- > register("font") ;

// The method connect to database to aquire a data from a table
function font($contextO)
{

$con = mysqLconnect("localhost:3306/contexthistory", "root", "gecaf");
if(!$con){
die('Could not connect: ' . mysql_error());

>

// database to connect to is 'contexthistory1
mysql_select_db("contexthistory", $con);

// table name is 'profile' it has the following colomns (ID, font, name, email)
$query='SELECT * FROM profile WHERE ID= 1 . 1"" . $contextO ."'";
$result = mysql_query($query);

// get the content of font colomn
while($row = mysql_fetch_array($result)){
$a=$row['font'];

>
return $a;
mysql_close($con);

}

// Use the request to (try to) invoke the service
$HTTP_RAW_POST_DATA = isset($HTTP_RAW_POST_DATA) ? $HTTP_RAW_POST_DATA
$srv->service($HTTP_RAW_POST_DATA);

147

J. The XML rule for interpreting Presence and Meeting contexts

<?xml version="1.0" ?>
<rule>

<context name="Presence" RID="1">
<operation name="And">

<parameter type="complex">
<operation name="And">

<parameter type="complex">
<operation name="equal">

<parametertype="simple" source="internal" value="Time" />
<parameter type="simple" source="fixed" value="aTime" />
<returnValue>

<case value="true" return="true" />
<case value="false" return="false" />

</returnValue>
</operation>

</parameter>
<parameter type="complex">

<operation name="equal">
<parameter type="simple" source="internal" value="Location" />
<parameter type="simple" source="fixed" value="aLocation" />
<returnValue>

<case value="true" return="true" />
<case value="false" return="false" />

</returnValue>
</operation>

</parameter>
<returnValue>

<case value="true" return="true" />
<case value="false" return="false" />

</returnValue>
</operation>

</parameter>
<parameter>

<operation name="subStr">
<parameter type="simple" source="internal" value="ID" />
<parameter type="simple" source="fixed" value="0" />
<parameter type="simple" source="fixed" value="3" />
<returnValue>

<case value="true" return="true" />
<case value="false" return="false" />

</returnValue>
</operation>

</parameter>
<returnValue>

<case value="true" return="Ypresent" />
<case value="false" return="Npresent" />

</returnValue>
</operation>

</context>

<context name="Meeting" RID="2">
<operation name="And">

< para meter type="com plex">
<operation name="equal">

<parameter type="simple" source="internal" value="contextl" />
<parameter type="simple" source="fixed" value=" Ypresent" />
<returnValue>

<case value="true" return="true" />
<case value="false" return="false" />

</returnValue>
</operation>

</para meter >
<parameter type="complex">

<operation name="GT">
<parameter type="simple" source="internal" value="context2" />
<parameter type="simple" source="fixed" value="l" />
<returnValue>

148

<case value="true" return="true" />
<case value="false" return="false" />

</returnValue>
</operation>

</parameter>
<returnValue>

<case value="true" return="Ymeeting" />
<case value="false" return="Nmeeing" />

</returnValue>
</operation>

</context>
</rule>

149

K. The Context Toolkit Applications

Figure K.I shows the components used by the context toolkit to build two applications

[99]. These applications are In/Out board and Mailing list; where both applications use the

presence widget. In the first application the user explicitly docks an 'iButton' sensor. The

In/out board displays in/out status (green/red dot) of building occupation and also the time

when the occupant enter or left the building. The widget uses the sensors event to detect

user's status while getting in or out. This application can also use the radio frequency-based

indoor location system sensor to automatically detect the presence of a user. Both

technologies return the id information to indicate the detection of a user. Then an

interpreter is used to convert id information into user's name. The given application detects

the widget's status and update the In/Out board display. The second application is the

context-aware mailing list, in which email messages are delivered only to the members of a

research group who are present at a given location (e.g. a given building). In this

application the same widget of the In/Out board is used, where the widget detects the

presence of group members in a building. Then the application adds every user's name to

the mailing list using a standard mail program.

\ /• \Yeb-based \ / Context-Aware

ID to Name
Interpreter

I
iButton \
Dock)

Figure K.I: The context toolkit In/Out Board and Mailing List applications using iButton

docking sensor

150

L. The CADL Code for In/Out Status Application for the
Context Toolkit

<?xml version="1.0" ?>
<Filters xmlns:an = "http://www.w3.org/2001/XMLSchema-instance"

an:noNamespaceSchemaLocation="CADLSchema.xsd">
< events >

<event id="all" CID="al">
<description>In Out Board Application</description>

</event>
</events>
<process type="Get" CID="al">

<class name="ID">
<source type="xml">sensorl</source>
<target type="xml">Gl</target>

</class>
<class name="Time">

<source type="xml">sensor2</source>
<target type="xml">G2</target>

</class>
</process>
<process type="Application" category="automatic" CID="al">

<class name="SOAPapplication" address=" ">
<Element name="functionName" value="database" />
<Element name="location" value="http://127.0.0.1/soap/soap_database_server.php"/>
<Element name="parameter" value="path" type="STRING" fileType="xml">GK/Element>

</class>
</process>
<process type="Format" CID="al">

<class name="FormatParameter" context="presence">
<source no="l" type="xml">Gl</source>
<source no="2" type="xml">G2</source>
<target type="xml">pl</target>

</class>
</process>
<process type="Interpret" CID="al">

<class name="presence" RID="1">
<source type="xml">pl</source>
<target type="xml">p2</target>

</class>
</process>
<process type="Manipulate" CID="al">

<class name="Store">
<source type="xml">p2</source>
<target>presence</target>

</class>
</process>
<process type="Manipulate" CID="al">

<class name="Retrieve" time="10">
<source>presence</source>
<target type="xml">p3</target>

</class>
</process>
<process type="Format" CID="al">

<class name="FormatIndirectContext" context="InOut_Status">
<source no="l" type="xml">p2</source>
<source no="2" type="xml">p3</source>
<target type="xml">p4</target>

</class>
</process>
<process type="Interpret" CID="al">

<class name="InOut_Status" RID="2">
<source type="xml">p4</source>
<target type="xml">p5</target>

</class>
</process>

</Filters>

151

M. The CADL Code for 'hasActivity' Application for SOCAM
System

<?xml version="1.0" ?>
<Filters xmlns:an="http://www.w3.org/2001/XMLSchema-instance"

an:noNamespaceSchemaLocation = "CADLSchema.xsd">

<events>
<event id = "all" CID="al">

description>An Activity Application</description>
</event>

</events>
<process type="Get" CID="al">

<class name="ID">
<source type="xml">sensorl</source>
<target type="xml">Gl</target>

</class>
<class name="Time">

<source type="xml">sensor2</source>
<target type="xml">G2</target>

</class>
<class name="Location">

<source type="xml">sensor3</source>
<target type="xml">G3</target>

</class>
<class name="Activity">

<source type="xml">sensor4</source>
<target type="xml">G4</target>

</class>
</process>

<process type="Format" CID="al">
<class name="FormatParameter" context="LocatedIn">

<source no="l" type="xml">Gl</source>
<source no="2" type="xml">G3</source>
<target type="xml">pl</target>

</class>
</process>

<process type="Interpret" CID="al">
<class name="LocatedIn" RID="1">

<source type="xml">pl</source>
<target type="xml">p2</target>

</class>
</process>

<process type="Add" CID="al">
<class name="aggregate">

<source type="xml">p2</source>
<target type="xml">p3</target>

</class>
</process>

<process type="Interpret" CID="al">
<class name="Attendance" RID="2">

<source type="xml">p3</source>
<target type="xml">p5</target>

</class>
</process>

<process type="Format" CID="al">
<class name="FormatIndirectContext" context="hasActivity">

<source no="l" type="xml">p5</source>
<source no="2" type="xml">G2</source>
<source no="3" type="xml">G3</source>
<source no="4" type="xml">G4</source>
<target type="xml">p4</target>

</class>

152

</process>

<process type="Interpret" CID="al">
<class name="hasActivity" RID="3">

<source type="xml">p4</source>
<target type="xml">p6</target>

</class>
</process>

</Filters>

153

N. The XML rule for interpreting 'hasActivity' context

<?xml version="1.0" ?>
<rule>

<context name="hasActivity" RID="1">
<operation name="And">

<parameter type="complex">
<operation name="And">

<parameter type="complex">
<operation name="And">

<parameter type="complex">
<operation name="equal">

<parameter type="simple" source= "internal" value="Time" />
<parameter type="simple" source="fixed" value="aTime" />
<returnValue>

<case value="true" return="true" />
<case value="false" return="false" />

</returnValue>
</operation>

</parameter>
<parameter type="complex">

<operation name="equal">
<parameter type="simple" source="internal" value="Location" />
<parameter type="simple" source="fixed" value="aRoom" />
<returnValue>

<case value="true" return="true" />
<case value="false" return="false" />

</returnValue>
</operation>

</parameter>
<returnValue>

<case value="true" return="true" />
<case value="false" return="false" />

</returnValue>
</operation>

</parameter>
<parameter type="complex">

<operation name="equal">
<parameter type="simple" source="internal" value="Activity" />
<parameter type="simple" source="fixed" value="anActivity" />
<returnValue>

<case value="true" return="true" />
<case value="false" return="false" />

</returnValue>
</operation>

</parameter>
<returnValue>

<case value="true" return="true" />
<case value="false" return="false" />

</returnValue>
</operation>

</para meter >
<parameter type="complex">

<operation name="GT">
<parameter type="simple" source="external" value="p5.xml" />
<parameter type="simple" source="fixed" value="2" />
<returnValue>

<case value="true" return="true" />
<case value="false" return="false" />

</returnValue>
</operation>

</parameter>
<returnValue>

<case value="true" return="anActivity" />
<case value="false" return="NoActivity" />

</returnValue>
</operation>

</context>
</rule>

154

