4 research outputs found

    Supervised autonomous control, shared control, and teleoperation for space servicing

    Get PDF
    A local-remote telerobot system for single- and dual-arm supervised autonomy, shared control, and teleoperation has been demonstrated. The system is composed of two distinct parts: the local site, where the operator resides; and the remote site, where the robots reside. The system could be further separated into dual local sites communicating with a common remote site. This is valuable for potential space missions where a space based robotic system may be controlled either by a space based operator or by a ground based operator. Also, multiple modes of control integrated into a common system are valuable for satisfying different servicing scenarios. The remote site single arm control system is described, and its parameterization for different supervised autonomous control, shared control, and teleoperation tasks are given. Experimental results are also given for selected tasks. The tasks include compliant grasping, orbital replacement unit changeout, bolt seating and turning, electronics card removal and insertion, and door opening

    NASA Tech Briefs, November 1993

    Get PDF
    Topics covered: Advanced Manufacturing; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    Strategies for control of neuroprostheses through Brain-Machine Interfaces

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.Includes bibliographical references (p. 145-153).The concept of brain controlled machines sparks our imagination with many exciting possibilities. One potential application is in neuroprostheses for paralyzed patients or amputees. The quality of life of those who have extremely limited motor abilities can potentially be improved if we have a means of inferring their motor intent from neural signals and commanding a robotic device that can be controlled to perform as a smart prosthesis. In our recent demonstration of such Brain Machine Interfaces (BMIs) monkeys were able to control a robot arm in 3-D motion directly, due to advances in accessing, recording, and decoding electrical activity of populations of single neurons in the brain, together with algorithms for driving robotic devices with the decoded neural signals in real time. However, such demonstrations of BMI thus far have been limited to simple position control of graphical cursors or robots in free space with non-human primates. There still remain many challenges in reducing this technology to practice in a neuroprosthesis for humans. The research in this thesis introduces strategies for optimizing the information extracted from the recorded neural signals, so that a practically viable and ultimately useful neuroprosthesis can be achieved. A framework for incorporating robot sensors and reflex like behavior has been introduced in the form of Continuous Shared Control. The strategy provides means for more steady and natural movement by compensating for the natural reflexes that are absent in direct brain control. The Muscle Activation Method, an alternative decoding algorithm for extracting motor parameters from the neural activity, has been presented.(cont.) The method allows the prosthesis to be controlled under impedance control, which is similar to how our natural limbs are controlled. Using this method, the prosthesis can perform a much wider range in of tasks in partially known and unknown environments. Finally preparations have been made for clinical trials with humans, which would signify a major step in reaching the ultimate goal of human brain operated machines.by Hyun K. Kim.Ph.D

    Sixth Annual Workshop on Space Operations Applications and Research (SOAR 1992), volume 2

    Get PDF
    This document contains papers presented at the Space Operations, Applications, and Research Symposium (SOAR) hosted by the U.S. Air Force (USAF) on 4-6 Aug. 1992. The symposium was cosponsored by the Air Force Material Command and by NASA/JSC. Key technical areas covered during the symposium were robotics and telepresence, automation and intelligent systems, human factors, life sciences, and space maintenance and servicing. The SOAR differed from most other conferences in that it was concerned with Government-sponsored research and development relevant to aerospace operations. Symposium proceedings include papers covering various disciplines presented by experts from NASA, the USAF, universities, and industry
    corecore