3,269 research outputs found

    A Case Study of Natural Frequency of the Tram Rail Due to Vibration Using Wavelets

    Get PDF
    Many vibration signals of tram rails due to tram movement are non-stationary and have highly complex time-frequency characteristics. The vibration signal of a rotating wheel involves condition monitoring and fault diagnosis. Many signal analysis methods are able to extract useful information from vibration data. In this paper, we were able to correlate non-linear independent signal acquired using acceleromets at different spots across the city and extract tram rail vibration noise and model the effect of signal noise to identify the frequency characteristics of the rail by characterizing the spectral content of the noise signal using parametric distribution and then by applying non parametric filters to characterize the signal power spectral density using Wavelet Transform (WT) and Parseval’s theorem. The fault can be detected from a given level of resolution. For this purpose, Parseval’s theorem is used as an evaluation criterion to select the optimal level. Associated to envelope analysis, it allows clear visualization of fault frequencies. on the inner rail of the railway line. The time-frequency contour map can easily show the power distribution of signal in time and frequency domain. Moreover, it is a good way to identify the rail track faults involving a breakdown change. The simulative results show that time-frequency contour map have the capabilities to identify the difference of those faults of vibration monitoring. In conclusion, the faults along the rail track can be classified by time-frequency contour map for frequency decomposition. We hereby decompose the high frequency detail of the signal without decomposition after wavelet transform, so as to improve the frequency resolution

    Wavelet Denoising

    Get PDF

    Hyperspectral colon tissue cell classification

    Get PDF
    A novel algorithm to discriminate between normal and malignant tissue cells of the human colon is presented. The microscopic level images of human colon tissue cells were acquired using hyperspectral imaging technology at contiguous wavelength intervals of visible light. While hyperspectral imagery data provides a wealth of information, its large size normally means high computational processing complexity. Several methods exist to avoid the so-called curse of dimensionality and hence reduce the computational complexity. In this study, we experimented with Principal Component Analysis (PCA) and two modifications of Independent Component Analysis (ICA). In the first stage of the algorithm, the extracted components are used to separate four constituent parts of the colon tissue: nuclei, cytoplasm, lamina propria, and lumen. The segmentation is performed in an unsupervised fashion using the nearest centroid clustering algorithm. The segmented image is further used, in the second stage of the classification algorithm, to exploit the spatial relationship between the labeled constituent parts. Experimental results using supervised Support Vector Machines (SVM) classification based on multiscale morphological features reveal the discrimination between normal and malignant tissue cells with a reasonable degree of accuracy

    Combined Industry, Space and Earth Science Data Compression Workshop

    Get PDF
    The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems

    Wavelets and Face Recognition

    Get PDF

    Directional edge and texture representations for image processing

    Get PDF
    An efficient representation for natural images is of fundamental importance in image processing and analysis. The commonly used separable transforms such as wavelets axe not best suited for images due to their inability to exploit directional regularities such as edges and oriented textural patterns; while most of the recently proposed directional schemes cannot represent these two types of features in a unified transform. This thesis focuses on the development of directional representations for images which can capture both edges and textures in a multiresolution manner. The thesis first considers the problem of extracting linear features with the multiresolution Fourier transform (MFT). Based on a previous MFT-based linear feature model, the work extends the extraction method into the situation when the image is corrupted by noise. The problem is tackled by the combination of a "Signal+Noise" frequency model, a refinement stage and a robust classification scheme. As a result, the MFT is able to perform linear feature analysis on noisy images on which previous methods failed. A new set of transforms called the multiscale polar cosine transforms (MPCT) are also proposed in order to represent textures. The MPCT can be regarded as real-valued MFT with similar basis functions of oriented sinusoids. It is shown that the transform can represent textural patches more efficiently than the conventional Fourier basis. With a directional best cosine basis, the MPCT packet (MPCPT) is shown to be an efficient representation for edges and textures, despite its high computational burden. The problem of representing edges and textures in a fixed transform with less complexity is then considered. This is achieved by applying a Gaussian frequency filter, which matches the disperson of the magnitude spectrum, on the local MFT coefficients. This is particularly effective in denoising natural images, due to its ability to preserve both types of feature. Further improvements can be made by employing the information given by the linear feature extraction process in the filter's configuration. The denoising results compare favourably against other state-of-the-art directional representations

    Objective grading of fabric pilling with wavelet texture analysis

    Full text link
    A new objective fabric pilling grading method based on wavelet texture analysis was developed. The new method created a complex texture feature vector based on the wavelet detail coefficients from all decomposition levels and horizontal, vertical and diagonal orientations, permitting a much richer and more complete representation of pilling texture in the image to be used as a basis for classification. Standard multi-factor classification techniques of principal components analysis and discriminant analysis were then used to classify the pilling samples into five pilling degrees. The preliminary investigation of the method was performed using standard pilling image sets of knitted, woven and non-woven fabrics. The results showed that this method could successfully evaluate the pilling intensity of knitted, woven and non-woven fabrics by selecting the suitable wavelet and associated analysis scale
    corecore