16,456 research outputs found

    Learning shape correspondence with anisotropic convolutional neural networks

    Get PDF
    Establishing correspondence between shapes is a fundamental problem in geometry processing, arising in a wide variety of applications. The problem is especially difficult in the setting of non-isometric deformations, as well as in the presence of topological noise and missing parts, mainly due to the limited capability to model such deformations axiomatically. Several recent works showed that invariance to complex shape transformations can be learned from examples. In this paper, we introduce an intrinsic convolutional neural network architecture based on anisotropic diffusion kernels, which we term Anisotropic Convolutional Neural Network (ACNN). In our construction, we generalize convolutions to non-Euclidean domains by constructing a set of oriented anisotropic diffusion kernels, creating in this way a local intrinsic polar representation of the data (`patch'), which is then correlated with a filter. Several cascades of such filters, linear, and non-linear operators are stacked to form a deep neural network whose parameters are learned by minimizing a task-specific cost. We use ACNNs to effectively learn intrinsic dense correspondences between deformable shapes in very challenging settings, achieving state-of-the-art results on some of the most difficult recent correspondence benchmarks

    Geometric deep learning: going beyond Euclidean data

    Get PDF
    Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them. Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field

    Theory and computation of directional nematic phase ordering

    Full text link
    A computational study of morphological instabilities of a two-dimensional nematic front under directional growth was performed using a Landau-de Gennes type quadrupolar tensor order parameter model for the first-order isotropic/nematic transition of 5CB (pentyl-cyanobiphenyl). A previously derived energy balance, taking anisotropy into account, was utilized to account for latent heat and an imposed morphological gradient in the time-dependent model. Simulations were performed using an initially homeotropic isotropic/nematic interface. Thermal instabilities in both the linear and non-linear regimes were observed and compared to past experimental and theoretical observations. A sharp-interface model for the study of linear morphological instabilities, taking into account additional complexity resulting from liquid crystalline order, was derived. Results from the sharp-interface model were compared to those from full two-dimensional simulation identifying the specific limitations of simplified sharp-interface models for this liquid crystal system. In the nonlinear regime, secondary instabilities were observed to result in the formation of defects, interfacial heterogeneities, and bulk texture dynamics.Comment: first revisio

    Behavioral analysis of anisotropic diffusion in image processing

    Get PDF
    ©1996 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/83.541424In this paper, we analyze the behavior of the anisotropic diffusion model of Perona and Malik (1990). The main idea is to express the anisotropic diffusion equation as coming from a certain optimization problem, so its behavior can be analyzed based on the shape of the corresponding energy surface. We show that anisotropic diffusion is the steepest descent method for solving an energy minimization problem. It is demonstrated that an anisotropic diffusion is well posed when there exists a unique global minimum for the energy functional and that the ill posedness of a certain anisotropic diffusion is caused by the fact that its energy functional has an infinite number of global minima that are dense in the image space. We give a sufficient condition for an anisotropic diffusion to be well posed and a sufficient and necessary condition for it to be ill posed due to the dense global minima. The mechanism of smoothing and edge enhancement of anisotropic diffusion is illustrated through a particular orthogonal decomposition of the diffusion operator into two parts: one that diffuses tangentially to the edges and therefore acts as an anisotropic smoothing operator, and the other that flows normally to the edges and thus acts as an enhancement operator

    Mini-Workshop: Anisotropic Motion Laws

    Get PDF
    Anisotropic motion laws play a key role in many applications ranging from materials science, biophysics to image processing. All these highly diversified disciplines have made it necessary to develop common mathematical foundations and framworks to deal with anisotropy in geometric motion. The workshop brings together leading experts from various fields to address well-posedness, accuracy, and computational efficiency of the mathematical models and algorithms
    • …
    corecore