10 research outputs found

    Multi-scale Population and Mobility Estimation with Geo-tagged Tweets

    Full text link
    Recent outbreaks of Ebola and Dengue viruses have again elevated the significance of the capability to quickly predict disease spread in an emergent situation. However, existing approaches usually rely heavily on the time-consuming census processes, or the privacy-sensitive call logs, leading to their unresponsive nature when facing the abruptly changing dynamics in the event of an outbreak. In this paper we study the feasibility of using large-scale Twitter data as a proxy of human mobility to model and predict disease spread. We report that for Australia, Twitter users' distribution correlates well the census-based population distribution, and that the Twitter users' travel patterns appear to loosely follow the gravity law at multiple scales of geographic distances, i.e. national level, state level and metropolitan level. The radiation model is also evaluated on this dataset though it has shown inferior fitness as a result of Australia's sparse population and large landmass. The outcomes of the study form the cornerstones for future work towards a model-based, responsive prediction method from Twitter data for disease spread.Comment: 1st International Workshop on Big Data Analytics for Biosecurity (BioBAD2015), 4 page

    Creating Full Individual-level Location Timelines from Sparse Social Media Data

    Full text link
    In many domain applications, a continuous timeline of human locations is critical; for example for understanding possible locations where a disease may spread, or the flow of traffic. While data sources such as GPS trackers or Call Data Records are temporally-rich, they are expensive, often not publicly available or garnered only in select locations, restricting their wide use. Conversely, geo-located social media data are publicly and freely available, but present challenges especially for full timeline inference due to their sparse nature. We propose a stochastic framework, Intermediate Location Computing (ILC) which uses prior knowledge about human mobility patterns to predict every missing location from an individual's social media timeline. We compare ILC with a state-of-the-art RNN baseline as well as methods that are optimized for next-location prediction only. For three major cities, ILC predicts the top 1 location for all missing locations in a timeline, at 1 and 2-hour resolution, with up to 77.2% accuracy (up to 6% better accuracy than all compared methods). Specifically, ILC also outperforms the RNN in settings of low data; both cases of very small number of users (under 50), as well as settings with more users, but with sparser timelines. In general, the RNN model needs a higher number of users to achieve the same performance as ILC. Overall, this work illustrates the tradeoff between prior knowledge of heuristics and more data, for an important societal problem of filling in entire timelines using freely available, but sparse social media data.Comment: 10 pages, 8 figures, 2 table

    Autonomous surveillance for biosecurity

    Full text link
    The global movement of people and goods has increased the risk of biosecurity threats and their potential to incur large economic, social, and environmental costs. Conventional manual biosecurity surveillance methods are limited by their scalability in space and time. This article focuses on autonomous surveillance systems, comprising sensor networks, robots, and intelligent algorithms, and their applicability to biosecurity threats. We discuss the spatial and temporal attributes of autonomous surveillance technologies and map them to three broad categories of biosecurity threat: (i) vector-borne diseases; (ii) plant pests; and (iii) aquatic pests. Our discussion reveals a broad range of opportunities to serve biosecurity needs through autonomous surveillance.Comment: 26 pages, Trends in Biotechnology, 3 March 2015, ISSN 0167-7799, http://dx.doi.org/10.1016/j.tibtech.2015.01.003. (http://www.sciencedirect.com/science/article/pii/S0167779915000190

    Human dynamics in the age of big data: a theory-data-driven approach

    Get PDF
    The revolution of information and communication technology (ICT) in the past two decades have transformed the world and people’s lives with the ways that knowledge is produced. With the advancements in location-aware technologies, a large volume of data so-called “big data” is now available through various sources to explore the world. This dissertation examines the potential use of such data in understanding human dynamics by focusing on both theory- and data-driven approaches. Specifically, human dynamics represented by communication and activities is linked to geographic concepts of space and place through social media data to set a research platform for effective use of social media as an information system. Three case studies covering these conceptual linkages are presented to (1) identify communication patterns on social media; (2) identify spatial patterns of activities in urban areas and detect events; and (3) explore urban mobility patterns. The first case study examines the use of and communication dynamics on Twitter during Hurricane Sandy utilizing survey and data analytics techniques. Twitter was identified as a valuable source of disaster-related information. Additionally, the results shed lights on the most significant information that can be derived from Twitter during disasters and the need for establishing bi-directional communications during such events to achieve an effective communication. The second case study examines the potential of Twitter in identifying activities and events and exploring movements during Hurricane Sandy utilizing both time-geographic information and qualitative social media text data. The study provides insights for enhancing situational awareness during natural disasters. The third case study examines the potential of Twitter in modeling commuting trip distribution in New York City. By integrating both traditional and social media data and utilizing machine learning techniques, the study identified Twitter as a valuable source for transportation modeling. Despite the limitations of social media such as the accuracy issue, there is tremendous opportunity for geographers to enrich their understanding of human dynamics in the world. However, we will need new research frameworks, which integrate geographic concepts with information systems theories to theorize the process. Furthermore, integrating various data sources is the key to future research and will need new computational approaches. Addressing these computational challenges, therefore, will be a crucial step to extend the frontier of big data knowledge from a geographic perspective. KEYWORDS: Big data, social media, Twitter, human dynamics, VGI, natural disasters, Hurricane Sandy, transportation modeling, machine learning, situational awareness, NYC, GI
    corecore