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Abstract

Pavlos LOGDANIDIS

Heterogeneous data for machine learning: The case of load forecasting

Heterogeneous data are any data with high variability of data types and formats.
They are possibly ambiguous and low quality due to missing values and high data
redundancy. In order to integrate and make use of all the available information that
exists in multiple data sources, traditional machine learning techniques are usually
not enough. Data fusion is the process of integrating multiple data sources to pro-
duce more consistent, accurate, and useful information than that provided by any
individual data source. In this thesis, we first go through some of the necessary
definitions associated with heterogeneous data in machine learning as well as data
pre-processing methods that are often required when dealing with such data. Next,
we go through the most frequently used methods and algorithms with specific ex-
amples from other studies, in the depth that we thought was necessary. Specifically,
we investigate kernel methods, deep learning, ensembles and other methods that
are used less frequently. The real world application that interests us in this thesis is
short-term load forecasting. After briefly introducing the problem, we look at how
heterogeneous data can be used for enriching the feature sets that are traditionally
used in short term load forecasts.
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Περίληψη

Παύλος Λογδανίδης

Ετερογενή δεδομένα για μηχανική μάθηση: Η περίπτωση της πρόβλεψης φορτίου

Τα ετερογενή δεδομένα είναι δεδομένα που παρουσιάζουν πολλές διαφορετικές μορφές.

Πιθανόν θα είναι ασαφή και χαμηλής ποιότητας λόγω τιμών που θα λείπουν και υψηλής

παρουσίας πλεοναζόντων τιμών. Οι παραδοσιακές τεχνικές μηχανικής μάθησης δεν αρ-

κούν για να αξιοποιήσουμε και να χρησιμοποιησουμε όλη την πληροφορία που υπάρχει σε

πολλές πήγες δεδομένων. Data fusion ονομάζεται η διαδικασία ενοποίησης πολλών δια-
φορετικών πηγών δεδομένων για να παραγάγουμε πληροφορία που θα είναι πιο χρήσιμη,

με μεγαλύτερη συνεπεία και ακρίβεια από οποιαδήποτε μοναδική πηγή. Σε αυτήν την ερ-

γασία, πρώτα θα δούμε κάποιους αναγκαίους ορισμούς που σχετίζονται με τα ετερογενή

δεδομένα στην μηχανική μάθηση και τις μεθόδους που χρησιμοποιούνται για να τα προ-

επεξεργαστούμε. Στην συνεχεία παρουσιάζονται οι συχνότερες μέθοδοι και αλγόριθμοι

αντιμετώπισης ετερογενών δεδομένων, από σχετικές έρευνες, στο βάθος που θεωρήσαμε

καλύτερο. Ποιο συγκεκριμένα, ερευνήσαμε μεθόδους kernel, βαθιάς μάθησης, ensem-
ble άλλα και άλλες που χρησιμοποιούνται λιγότερο. Η εφαρμογή που επικεντρωθήκαμε
είναι η πρόβλεψη ζήτησης φορτίου για μικρο χρονικό διάστημα. Αφού παρουσιάσουμε

το πρόβλημα, ερευνούμε τρόπους με τους οποίους θα ήταν εφικτό να εμπλουτιστεί το

σύνολο χαρακτηριστικών που παραδοσιακά χρησιμοποιείται για αυτήν την πρόβλεψη.
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Chapter 1

Introduction

The most commonly used data in machine learning tasks is structured data. This
refers to data which is in tabular form in either spreadsheets or relational databases
(Ramesh, 2019). An important thing to note however, is that structured data is only a
small fraction of the total existing data, with some experts estimating that only 5% of
the data generated is homogeneous. The other 95% constitutes heterogeneous data,
which is data that has a high variability of formats, data types and other forms of
heterogeneity. Very often, heterogeneous data has some negative properties like data
redundancy, missing values and more, therefore posing a big challenge to machine
learning. In order to integrate and make use of all the available information that
exists in multiple data sources, traditional machine learning techniques are usually
not enough (He, 2017).

FIGURE 1.1: Multi-modal heterogeneous data.

It is important to develop ways to effectively mine, fuse and learn from hetero-
geneous data because it contains more information than single-source data since it
provides us with different aspects of our target object. It can therefore compen-
sate for missing values and general low data quality of a single data source. “By
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eliminating the gap between heterogeneous data and fusion of various data sources
for correlation analysis, the data could emerge more valuable new information, to
achieve the 1 + 1 > 2 effect” (Zhang et al., 2018). While there are many types of het-
erogeneity like the difference of spatio-temporal scales and measurement units, we
are mainly interested in multi-modality. The term modality refers to data acquisition
devices, techniques and frameworks (Lahat, Adali, and Jutten, 2015). Some exam-
ples of modalities are image, text, video and audio. Since natural phenomena have
very rich characteristics, it is not likely that a single data acquisition framework can
provide us with complete knowledge about the phenomenon that we are interested
in. By using multiple modalities that are complementary to each other (meaning that
each modality brings added value to the whole system), we can expect increases in
performance, robustness and other beneficial properties as long as they are handled
in a proper way. The multiple forms of multi-modal heterogeneous data are shown
in (Fig. 1.1).

The rest of this thesis is organized as follows.

In Chapter 2, we introduce the idea of data fusion from heterogeneous sources
and separate fusion methods in two broad categories.

In Chapter 3, we provide some pre-processing steps that are often necessary
when working with heterogeneous data.

In Chapters 4 - 7, we review different methods that have been used by researchers
to fuse heterogeneous data. Specifically, we look at kernel methods, deep learning
methods, ensembles as well as other, less frequently used methods.

In Chapter 8, we introduce the problem of short term load forecasting and inves-
tigate the potential benefits of incorporating heterogeneous data for our forecasting
models.

In Chapter 9, we provide a synopsis of the previous chapters as well as future
research and development prospects.
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Chapter 2

Heterogeneous Data Fusion

Data fusion is the process where we combine many heterogeneous sources of data
for the purpose of producing more useful, precise and robust information in compar-
ison to only using a single source of data. It so happens that we as humans perform
data fusion subconsciously in our day to day lives to perform most of our actions.
In order to make sure that our food is edible, we fuse information from our senses
like smell, taste and touch. In a similar manner, we rely on fusion of vision and hear-
ing to drive safely and avoid accidents. In these cases as well as many others, our
brain performs data fusion using inputs from all our senses and using the combined
information it helps us perform complex tasks (Wikipedia, 2019). Technically, multi-
modal data fusion is the process of combining information from many modalities in
order to predict an outcome, whether it’s a class through classification or a continu-
ous value with regression (Baltrusaitis, Ahuja, and Morency, 2019). Data fusion can
be performed in different stages of the machine learning procedure, as explained
below (Haghighat, Abdel-Mottaleb, and Alhalabi, 2016).

2.1 Early fusion

Early fusion is the process of creating new features by integrating multiple features
from different data sources (Fig. 2.1). Whether this new feature matrix is going to be
effective to our problem or not depends on the quality of the features we choose to
merge as well as the fusion method. The most simple feature layer fusion method
is to concatenate the features from each data source to form a new feature matrix
and use that as input to the preferred algorithm. This method is often unreliable,
since the redundancy of information among multi-source data is ignored and may
have negative effects in performance (Yann LeCun, Yoshua Bengio, 2015). Early
fusion potentially finds correlations between data but often suffers from the curse-
of-dimensionality since the combined features are usually large in number.

FIGURE 2.1: Early fusion.
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2.2 Late fusion

Late or decision layer fusion is when we jointly inference the final result from mul-
tiple decisions made by individual models. Each model can handle a single data
source so there is no need for feature fusion. Instead, actions like pre-processing,
feature extraction and target prediction are made for each data source separately
and the final decision is made by taking into account the decisions made by all the
models (Fig. 2.2). Therefore, the fusion of information happens at the final level of
the ML procedure which is the decision level. Late fusion provides a lot of flexibility
since we can use different models for each modality and exploit the advantage of
certain models to model certain modalities (e.g. CNN for image data). This method
also mitigates the curse-of-dimensionality since the number of features doesn’t grow
with more data sources but it loses the correlations among the different data sources
since they are analyzed independently.

FIGURE 2.2: Late fusion.

We can also combine both approaches, meaning that individual models can be
built with early fusion and their decisions are combined with late fusion. This is
called hybrid fusion and it potentially exploits the advantages of both early and
late fusion that we mentioned above. The most frequent machine learning tech-
niques that we came across in our study are 1) Kernel methods 2) Artificial Neural
Networks 3) Ensemble methods and 4) less frequent methods like Bayesian meth-
ods, Genetic Programming etc. Some of these techniques can be applied at different
stages of the Machine Learning procedure. For example, they can be applied for
feature extraction which is the transformation of raw data into features suitable for
modeling. They can also be applied for fusion of features and of course their most
obvious use, as prediction models.
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Chapter 3

Heterogeneous Data Pre-processing

Heterogeneous data usually requires several pre-processing stages in order for it to
be useful for machine learning tasks. This is due to some negative effects that are
often associated with them such as high data redundancy, missing values and others
which impact the quality of the data.

3.1 Data Cleaning

Data cleaning refers to the process of identifying incomplete, unreasonable or inac-
curate data and delete or modify such data in order to improve the data quality. We
refer to missing values of variables as entries that are empty even though a value
actually exists. An easy technique that is often used is simple imputation where we
replace the missing value with either the mean, mode or median of the variable.
However, when data aren’t missing completely at random (MCAR), this method
produces biased results. We have MCAR data when there’s no relationship between
whether a data point is missing and any values in the data set, missing or observed.
The missing data are just a random subset of the data. If a large portion of the data is
missing, simple imputation might distort correlations between variables, underesti-
mate standard errors or produce misleading p-values during statistical tests. When
dealing with most missing value problems, a few good techniques are: 1) Remove
the examples with missing variables 2) Fill in missing values by taking into account
the similarity between examples for the variables that are available and not missing
3) Fill in missing values by taking into account the correlations between features and
4) Use techniques and tools that are capable of handling missing values.

3.2 Data Integration

Data Integration is a data pre-processing technique that involves combining data
from multiple sources, which are stored in various different formats, and providing
the users with a unified view of them. Data warehouses are a very common im-
plementation of data integration, which is often called the foundation of effective
Business Intelligence and decision making (Arputhamary and Arockiam, 2015). Ad-
vanced techniques allow the mixing of structured and unstructured data but they
require “clean” data. Technologies like Data Virtualization (DV) and Data lakes are
emerging and powerful techniques to deal with data integration on a large scale
while at the same time reducing costs and implementation times.
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3.3 Dimensionality Reduction

As its name implies, dimensionality reduction is the process of reducing the number
of random variables under consideration and can be further divided into subset se-
lection and feature ranking. Subset selection involves finding the optimal subset of
the original features by searching over the space of possible subsets. It can be split in
3 different types. 1) Filter approaches where people select the subset of features ac-
cording to some criteria 2) Embedded approaches where feature selection happens
as a separate part of the classification method we are using 3) Wrapper approaches
where we use an algorithm e.g. Artificial Neural Network (ANN) to identify the top
features. Feature ranking is much simpler since it involves defining a threshold for
certain criteria and selecting the features that are above or below it. There are many
reasons we might want to perform dimensionality reduction. First, computational
challenges often arise with high dimensional data. Second, our algorithm is prone
to poor generalization in some cases when the dimensionality is very high. Finally,
we can use dimensionality reduction to find meaningful structure in our data, help
interpret it and for illustration purposes. A couple of very useful tools for finding
underlying reasons for correlations between variables and reducing their number
are Factor Analysis and Principal Components Analysis (PCA). PCA can help in
several ways when we have many variables and there is some redundancy in them.
We can use PCA as a pre-processing tool, a compression tool and in some cases it
can be used as a model itself.

3.4 Resampling

It is very common for heterogeneous data to be present in different sampling rates.
Even when they are parts of the same system, different measurement devices and
sensors often record data at a frequency that is not consistent with the others. This
effect is further magnified when we consider the use of external data that is not mea-
sured by devices that belong to the system of interest. For example, for the task of
load forecasting, we might want to use satellite imagery combined with historical
load measurements. It is very likely that their sampling rates are mismatched and
this poses a problem for most machine learning algorithms. It is also possible for
some data to be irregularly sampled which means it doesn’t have a constant fre-
quency. We need our data to be aligned in time before using them as inputs to our
algorithms. Depending on the task at hand, we can either upsample or downsample
our time series data. With upsampling, we increase the frequency of the data and in-
terpolate the new observations. There are many interpolation techniques like Spline
interpolation, Kriging interpolation and others. Downsampling results in data that
is in a smaller frequency than the original. We can simply pick the new observations
and ignore the adjacent ones or use summary statistics to include information from
nearby observations. It all depends on the available data and our specific goals.
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Chapter 4

Kernel Methods for Heterogeneous
Data

Kernel methods give us a special way to represent different types of data and draw
inferences from them. Given a set of arbitrarily complex objects, a kernel method
can represent them by using a kernel function K(a, b) which defines how similar any
two objects a and b are (Lewis, Jebara, and Noble, 2006). The function takes as input
two data objects and returns a similarity value. A small output indicates that the
two given objects are not similar and in contrast, a high value indicates that the two
objects are similar. The function is also required to be symmetric (since the similarity
between a and b is the same as the similarity between b and a) and it should also be
positive semi-definite.

This also means that however complex the data object is, we can sufficiently rep-
resent a collection of n such data objects, using an nxn kernel matrix. This means that
if we are able to define a kernel function for a data type, we can represent a whole
dataset of that data type using a kernel matrix. For example, a dataset that consists
of 10 numeric vectors where each vector has length 200, can be represented by a
10x10 kernel matrix which can then be the input of a kernel method like the Support
Vector Machine (SVM). The SVM is the most well-known kernel method since it has
shown great performance in many complex machine learning tasks and especially
classification. Some extensions of the algorithm, allow it to use multiple kernels as
a weighted combination, where each kernel is built from a separate dataset. This is
very suitable for the study of heterogeneous data in machine learning, since it allows
us to use multiple sources and types of data at the same time, as long as we can build
appropriate kernel matrices for each data modality.

4.1 Multiple Kernel Learning

Combining kernel matrices is a very intuitive way to fuse heterogeneous data. “When
all kernel matrices are formulated as linear kernel matrices, finding coefficients to
combine the data sources is directly equivalent to selecting coefficients to combine
the kernel matrices built on heterogeneous data sources” (Xu, King, and Lyu, 2007).
We start by focusing on each source of data j individually (Society, 2010), and cre-
ating the kernel matrix Kj that contains the similarity information between all the
samples in that data source. Then, we can design an algorithm that learns the opti-
mal K by “mixing” any number of kernel matrices Kj, for a given learning problem.

This method has plenty of perks. Firstly, we get a homogeneous, standardized
input. Secondly, it’s very flexible because of the construction of the individual kernel
matrices and the various ways they can be combined. And finally, by finding the



8 Chapter 4. Kernel Methods for Heterogeneous Data

optimal mix of kernels, we can ignore information which is irrelevant for a particular
learning task. Some examples of Kernel design for non-numerical data are:

• Strings (sequence data) where similarity can be the amount of shared sub-
sequences between two sequences.

• Graphs where the diffusion kernel establishes similarities between vertices of
a graph, based on the connectivity information.

For the problem of learning the final kernel matrix, we make use of the property
that any symmetric positive semi-definite matrix specifies a kernel matrix and ev-
ery kernel matrix is symmetric positive semi-definite. Knowing that positive semi-
definite matrices form a convex cone which is a good set to optimize over (Lanckriet,
2007), and by defining a cost function to assess the quality of a kernel matrix, we can
use Semi-definite Programming (SDP) to learn the optimal parameters. SDP deals
with optimizing convex cost functions over the convex cone of positive semi-definite
matrices (or a convex subset of it). We therefore gain the advantages of optimizing
convex functions, the most important one being that we have a unique optimal so-
lution. This approach is called Multiple Kernel Learning (MKL) and a schematic
diagram is shown in (Fig. 4.1).

FIGURE 4.1: Multiple Kernel Learning.

Most of the studies we came across, used kernel combination techniques to fuse
the different data sources. However, some of them were different and will be men-
tioned later. Let’s take a look at some examples of kernel combination that we found
in literature. For the task of web page classification, (Xu, King, and Lyu, 2007) fused
multiple data sources from websites that include the text, meta data, title, anchor
text etc. using a multiple kernel learning approach. These diverse types of data
have different dimensions and properties so simply concatenating them doesn’t do
much in terms of improving the classification performance. By using kernels how-
ever, each data source is represented in a common form which is the kernel matrix.
By combining the kernels of each data source as a linear combination, we essentially
fuse the information from each source and by using Quadratic Programming, we



4.2. Simple Concatenation of features 9

arrive at a convex optimization problem, which means there is a single best solu-
tion that gives us the best classification performance by finding the optimal weights
for each kernel. The final kernel matrix can then be used by a kernel method like
the SVM. Reference (Lewis, Jebara, and Noble, 2006) investigated whether finding
optimal weights for each kernel matrix is efficient, or if we should simply use an un-
weighted sum of them to form the final kernel matrix. For the weighted kernel case,
SDP was used to determine the best coefficients. Their primary conclusion was that
a weighted approach is only beneficial when noise is present in the system where the
unweighted approach seems to crumble. When there is noise that pollutes some of
our data sources, MKL can learn to give smaller weights to those noisy kernels and
therefore mitigate their negative impact to the classification performance. Hetero-
geneous data is used extensively in computational biology. (Lanckriet, 2007) used
the MKL approach to predict gene / protein function using the following data: 1)
mRNA expression data which is numerical. 2) Sequence data (gene, protein) as a
sequence of letters. 3) Protein-protein interaction data in graph format. 4) Others
like hydrophobicity data. He derived the appropriate kernel matrices for each data
type. In order to do that, he used different similarity measures, depending on the
format that the data has. For example, for protein sequence data he used common
sub strings between two strings that represent protein sequences. For graph data he
used a diffusion kernel, which derives similarity from connectivity information.

In the examples above, a kernel matrix was built from other kernel matrices and
was then used by a kernel method like the SVM. We find this to be a very intuitive
approach to merge heterogeneous information and it seems applicable in many sce-
narios, as long as we are able to properly define similarity measures to construct
kernel matrices. Next, we will see some other ways that kernels can be used to deal
with heterogeneous data.

4.2 Simple Concatenation of features

Some studies use a single kernel so the fusion does not rely on the combination of
multiple kernels. Instead, the data is fused before the kernel matrix is derived. The
simplest way to achieve that is by concatenating the different features of each data
source into a common feature vector and using that to construct the kernel matrix
that is going to be used by our classification algorithm. (Long et al., 2018) justify this
seamless linking of data from multiple sources with the idea of data interoperabil-
ity. Their case study involves predicting highway travel time in China for Freeway
G5513. Their data consists of weather data, toll data, disposal logs of traffic accidents
as well as other time series data. We believe that this approach, while simple can be
used in certain cases. However, the type of heterogeneity plays an important role
here. While the data they used was heterogeneous in the sense that it came from
independent data sources, it was still very easy to encode it in a common form of
numeric values. This type of merging would not be applicable in the presence of
different data modalities and we would probably be better off by using MKL as we
saw above.

4.3 Other methods

In Transfer Learning we make use of secondary data that was not collected to tackle
the specific problem at hand, in order to improve our results. We are essentially
transferring knowledge that we learned from a task to a related task to improve the
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learning procedure. It is common for the secondary data to be in different formats
than our primary data, so this is naturally a way to deal with heterogeneous data.
(Breckels et al., 2016) utilizes a transfer learning framework for classification of pro-
teins. His method makes use of either a k-nearest neighbor or a SVM system to fuse
the data sources. For the latter, a separate kernel is used for each of the two data
sources and the parameters a are to be determined. The decision function is:

f (x, v, ap, aA, b) =
m

∑
l=1

yl [aP
l KP(xl , x) + aA

l KA(vl , v)] + b

where KP is the kernel derived from primary data and KA is the kernel derived
from auxiliary data. This is obviously different from the MKL method that we saw
in (Fig. 4.1), where the final kernel matrix is a linear weighted sum of the kernels for
each data source. For the experiments of this study, a Gaussian kernel was used.

Reference (Sokolov et al., 2013) utilize a multi-view learning framework to pre-
dict the function of proteins. They use both cross-species data and species-specific
data as a combination to improve their results. In essence, a separate classifier f is
built from each feature set and the label is predicted using inference jointly. If f (c)

is the classifier built from the cross-species data and f (s) is the one built with the
species-specific data then the final decision is made using the formula:

ŷ = h(x) = argmax
y∈Y

f (c)(x, y) + f (s)(x, y)

In our understanding, this approach can be thought of an ensemble of classifiers
even though the authors don’t use this terminology. The schematic of the multi-view
classifier is shown in figure (Fig. 4.2). In addition to the multi-view method outlined
above, they investigate an approach they call the chain classifier. In this approach,
the predictions of the cross-species view are used to create features for the species-
specific classifier. Their experimental results indicate the superiority of using the
two proposed classifiers over the classic approach of using a single piece of data.

In reference (Gönen, 2014) in order to deal with the modelling of heterogeneous
data, they map heterogeneous objects from two different domains into a unified
embedding space and form an optimization problem where the loss function con-
tains three different scoring functions that give cross-domain interaction and within-
domain similarity information between the two domains. Their novel embedding
method is called Multiple Kernel Preserving Embedding (MKPE), and its function-
ality involves projecting heterogeneous data to a latent unified embedding space
while preserving within-domain similarities and cross-domain interactions. Gaus-
sian kernels are used for the projection to the new space.
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FIGURE 4.2: Multi-view classifier.
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Chapter 5

Deep Learning Methods for
Heterogeneous Data

Similarly to kernel methods, deep learning has made great advances in dealing with
heterogeneous data in machine learning. With Artificial Neural Networks (ANNs),
information propagates from layer to layer through multiple non-linear transforma-
tions, providing significant results in feature fusion as well as feature extraction. We
can use deep architectures in the same spirit that we used Multiple Kernel Learn-
ing where every modality is allocated to a unique kernel. Similarly, with ANNs we
can assign heterogeneous sub-networks to different modalities, making multi-modal
data fusion intuitive and easy. ANNs are very flexible in their architecture and there
are many different types like the Deep Belief Network (DBN), the Convolutional
Neural Network (CNN) and many more, each of which offers unique advantages in
feature fusion and learning.

5.1 Sub-networks for each modality

Due to the layered architecture of deep ANNs, each layer is supposed to provide
a more abstract representation of the data, hence we often use the last layer as a
way to represent the original data. As we stated above, the most common way of
dealing with multi-modal data with deep learning, is to pass each data modality
through its own deep sub-network, which is specifically designed for that modal-
ity. We then add a hidden layer which is used to project the individual modalities
to a common embedding space. This joint multi-modal representation can then be
passed though several other hidden layers or we can use it directly for prediction
(Baltrusaitis, Ahuja, and Morency, 2019). A disadvantage of using deep learning
that is worth mentioning, is the lack of interpretability. Using multiple modalities,
it is difficult to know whether one is important or not for the final prediction. Fur-
thermore, we know that deep learning requires huge amount of training data to be
successful.

(Zhao, Hu, and Wang, 2015) proposed a framework for feature selection using
deep sub-networks combined with sparse group lasso analysis (Fig. 5.1).

They aim to transform the multi-modal data into a unified representation with
the use of modality specific sub-networks. Each sub-network is based on Stacked
Denoising Autoencoders (SDA) (Fig. 5.2) and have the same objective function, de-
spite of their different structure.

This optimization problem is solved using sparse group lasso, which performs
variable selection in a group of variables, and the optimal weights for each feature
group are identified. Finally, after ignoring those feature groups with insignificant
weights, all the outputs of the sub-networks are joined into a feature vector and
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FIGURE 5.1: Architecture overview (Zhao, Hu, and Wang, 2015).

FIGURE 5.2: Illustration of a Denoising Autoencoder (Zhao, Hu, and
Wang, 2015).

a part of their architecture called Feature Selection Component uses this vector to
output the final weight vector.

In another study (Srivastava and Salakhutdinov, 2012), the authors try to tackle
the problem in a similar way, in other words to learn a representation of the data.
They employ a Deep Belief Network (DBN) architecture to learn a joint represen-
tation of multi-modal data. The main idea of this architecture is to use separate
models for each modality to learn low-level representations and then concatenate
them to create the multi-modal input. Furthermore they way they use the DBN
allows them to easily handle missing modality data. In the case we want to cre-
ate a bi-modal image-text DBN, we will encode text as sparse word count vectors
and images as real-values dense pixel intensities or extracted features. We will have
the image-specific DBN to model the distribution over those extracted features us-
ing Gaussian Restricted Boltzmann Machines (RBM) and the text-specific DBN will
model the distribution of the word count vectors using Replicated Softmaxes. We
form a multi-modal DBN by learning a joint RBM on top of them (Fig. 5.3). The rea-
son to use modality specific models is because each modality has different statistical
properties and it is difficult and restrictive to find correlations across them. The use
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FIGURE 5.3: Left: Image-specific and Text-specific two-layer DBN.
Right: A Multi-modal DBN that models the joint distribution over

image and text inputs. (Srivastava and Salakhutdinov, 2012)

of modality specific models allow the data to be represented in a higher level, re-
moving any modality specific correlations which allows to RBM to identify relations
easier.

Similarly to the previous studies, (Miech, Laptev, and Sivic, 2018) presents a
method for video retrieval from text using a joint text-video embedding. They pro-
pose a Mixture-of-Embedding-Experts (MEE) model that can calculate the similar-
ities between different video modalities and text by generating expert weights for
the contribution of each modality (Fig. 5.4). This also enables the model to handle
missing video modalities. Furthermore the model can also extract information from

FIGURE 5.4: The Mixture of embedding experts (MEE) model (Miech,
Laptev, and Sivic, 2018).

images because it can treat images as motionless and soundless videos (Fig. 5.5). The
MME model is easily extensible and can be made to handle other data sources that
convey important information for a specific task such as faces in videos from which
we can extract emotions, age or gender. Their goal is to learn a common embedding
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FIGURE 5.5: Obtaining information from both Image-Caption and
Video-Caption pairs (Miech, Laptev, and Sivic, 2018).

space for text and video in which a textual and a visual sample will be close only if
they are semantically similar. The model requires for each input video some streams
of descriptors to exist that represent motion, appearance, audio, or facial characteris-
tics of people but not all of them in all data sources are required. Using a NetVLAD
aggregation module (Arandjelovic et al., 2018), we aggregate the text input which is
a sequence of word embeddings. Similarly each input stream of the video descrip-
tor is aggregated into a single vector and finally we combine the similarity scores of
each text-descriptor pair.

The above studies try to transform the heterogeneous input to a common rep-
resentation and extract valuable information from this representation, but it is not
the only way to fuse heterogeneous data with deep learning. (Audebert, Le Saux,
and Lefèvrey, 2017) presents a innovative module for semantic labeling from het-
erogeneous data using fully convolutional networks (FCN). An unsophisticated ap-
proach to fussing heterogeneous data with deep networks is to concatenate all inputs
sources and use the outcome as the new input. However this has shown to reduce
the performance of the network, reducing the accuracy due to the fact that each
source requires different processing. They propose a fusion network that is based
on residual correction and use this to combine predictions coming from modality-
specific sub-networks that use two types of data (Fig. 5.6). Furthermore they im-
prove this model by introducing a specialized fusion neural network and managed
to achieve state-of-the-art results (Fig. 5.7).

FIGURE 5.6: Fusion network to correct predictions with informa-
tion from complementary sub-networks (Audebert, Le Saux, and

Lefèvrey, 2017) .
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FIGURE 5.7: Fusion network strategy (Audebert, Le Saux, and
Lefèvrey, 2017) .

5.2 Concatenation and feature extraction

We can also use heterogeneous data sources to extract features and use these inter-
mediate features for our models. (Zhou et al., 2017) presented a innovative method
for feature extraction named Deep Learning Feature Selection (DLFS) that aims to
deal with the problems of using heterogeneous data and the constrains of super-
vised learning. Their goal is to predict if a patient will stay in a hospital more that
seven days using only data from the first 24 hours of his admittance to the hospital
(Fig. 5.8). One of the biggest challenge they faced is the type of heterogeneity that
their data have. There isn’t a standard interval where data from the patients were
collected and this means that many patients have their data sampled irregularly and
the frequency of sampling is not the same. The solution they propose is to inter-
polate the heterogeneous records by using either Spline Interpolation or Gaussian
Process Regression. The next step is to present the data to the DLSF to get a compact

FIGURE 5.8: Overview of the predictive diagnosis framework (Zhou
et al., 2017).

representation of each patient. The architecture of the DLSF is implemented using a
deep neural network of a stack of denoising autoencoders (SDA) where each layer
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is a denoising autoencoder (DA) (Fig. 5.9). Finally, at the last step we use a classifi-

FIGURE 5.9: DLFS feature learning using stacked denoising autoen-
coders (Zhou et al., 2017).

cation algorithm such as Support Vector Machines or Artificial Neural Networks to
get the final prediction.

Along the same lines (Ma et al., 2016), for crowd-sensing, gathered data from
various sensors on a smartphone and in combinations with temporal information
created an integral feature named context fingerprint. The proposed architecture is
a four-layer Deep Belief Network (DBN) with the first layer being visible and the
other three hidden (Fig. 5.10). The first layer acts as input and all the data collected
at each time point is concatenated in this layer. The other three layers are Restricted
Boltzmann Machines responsible to learn the representations of these data. With
this model they managed to identify and categorize people on whether they where
walking/cycling or using a car/bus.

5.3 Other

The last deep learning studies we are going to look at, are quite different from the
ones we have seen so far regarding the way they deal with the heterogeneity of the
data.

Reference (Chen et al., 2016), attempted to model traffic accident risk by using
big and heterogeneous data (GPS records and traffic accident data). They first trans-
form the traffic accident data as well as the GPS mobility data to a common grid
format which is actually enough to make inferences for risk level at a certain re-
gion. However, this method doesn’t consider areas that are nearby the region of
interest, making the model too simple. The inclusion of nearby areas increases the
complexity of the problem which is the reason that they use Stacked Denoising Au-
toencoders to learn latent human mobility features of much reduced dimensionality.
Even though it is an interesting study, they deal with the heterogeneity of the data
at the pre-processing stage which is something we are not currently interested in.

Finally, (Guo et al., 2019) propose a framework for handling both real-time and
heterogeneous data. The main idea is to treat data coming from different sources
as a separate batch and use it to train a separate model each time. This model is
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FIGURE 5.10: The architecture of the deep belief network for mobile
crowd-sensing (Ma et al., 2016).

then saved in a pool of models, each of which was trained on its own batch of data.
This avoids dealing with fusing heterogeneous data at the feature level. The same
process takes place for real-time data. At the testing phase, all models are called
for discrimination and the final decision is made using a statistical criterion. Testing
was made on image data of two different medical types, so the heterogeneity in
this case doesn’t refer to multimodality, which is what we are mainly interested in.
We are skeptical as to how this framework would work on multi-modal data, since
the number of inputs changes for models of different modality. Therefore, calling
models of different input size for discrimination is impossible, unless all data types
are first brought into the same dimensions through pre-processing. In conclusion,
we believe that this is an interesting idea but it doesn’t seem to work for the type of
heterogeneity we are interested in.





21

Chapter 6

Ensemble methods for
Heterogeneous Data

As we mentioned in previous sections, kernel methods and deep learning have been
very effective in the fusion of heterogeneous information. In those cases, the integra-
tion of multi-source data happens at an early stage of the machine learning process.
There is however another route that we did not explore, which is late integration.
In this approach, individual data sources are used to derive separate classifiers and
those classifiers are then combined to build an optimal final model. This method
overcomes difficulties that are present when fusing data at the feature level and
when done correctly, it can generate accurate and reliable classifiers. While we only
found a few studies on heterogeneous data with late integration, it still is a promis-
ing route when working with heterogeneous data in machine learning problems.

The process begins with the construction of the individual models. Each data
source/modality is used to construct a separate classifier which provides a lot of
flexibility. Some models may work better with certain data types (e.g. CNN for im-
ages) and we are able to exploit this property when using ensembles. The decisions
made by the individual models are taken into account for the final decision. The
intuition is that if each classifier makes different errors, then their strategic combi-
nation can reduce the total error. There are many ways to combine predictions and
some experimentation may be needed to find the optimal one for a given task. Some
popular methods are Bootstrap aggregating or Bagging, Boosting, Bayesian param-
eter averaging, Stacking and more. The described work flow is shown in figure 6.1.

FIGURE 6.1: Ensemble architecture.



22 Chapter 6. Ensemble methods for Heterogeneous Data

Text and image data have been successfully used together using an ensemble
scheme in (Peng et al., 2016) for word sense disambiguation and information re-
trieval. Similarly, for human activity recognition (Chung et al., 2019) uses LSTM
neural networks as base learners for different body sensors and uses their predic-
tions as meta-features. These meta-features are taken as input by a meta-learner
which is essentially a module that performs different ensemble techniques to arrive
at the final decision. Another important note is that we are not limited to a sin-
gle data source for each classifier. Features from different data sources can also be
combined for training the different classifiers of the ensemble as done in (Chatter-
jee et al., 2015). This provides even more flexibility to the whole process of fusing
heterogeneous data.

Ensembles are particularly useful when some of the data sources have missing
information which is likely to occur when working with heterogeneous data. In-
stead of dealing with the missing data at the pre-processing stage as covered in 3,
it can also be handled at the decision level. For example, (Aziz and Reddy, 2010)
developed a method to improve the decisions made by individual models, using
heterogeneous data sources which often contain incomplete information. The algo-
rithm they developed is a modified version of the AdaBoost algorithm called Heter-
oBoost. The algorithm works with multiple data sources and prioritizes data objects
with partial information instead of the common ones. The main idea is that it will
give a much higher weight to a data object the less it appears in the data sources.

Ensemble selection is an important step in late fusion and involves selecting the
best set of classifiers out of the total generated ones. It can be done statically with
Static Ensemble Selection (SES) or dynamically with Dynamic Ensemble Selection
(DES). In the fist case, we aim to select the set of classifiers that gives us the best
performance on all of the training instances and use these classifiers in a combina-
tion at the testing phase. DES one the other hand, focuses on each training instance
separately and selects the optimal subset of classifiers to obtain a better result. (Bal-
lard and Wang, 2016) propose a framework of DES with optimization (DESO). The
basic ideal of DESO is that different sets of classifiers will have better results in some
local regions of our feature space, created from heterogeneous data sources. After
generating N classifiers, during training the algorithm will use k-means to cluster
the validation set and after running Simulated Annealing for each cluster we chose
the classifier with the highest diversity measures. When classifying an instance it is
added to the closest cluster and the corresponding sub-ensemble performs the classi-
fication. This study uses two non-pairwise diversity definitions: Coincident Failure
Diversity and Minority-Failure Diversity.
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Chapter 7

Less frequent methods

7.1 Clustering

(Nikolopoulos, 2012) presents a software made to characterize a cluster based on
three quality vector elements to characterize customers for an energy company based
on their behaviour. One of the biggest problem in smart grid system and smart en-
ergy systems is the fact that we have to deal with the problem of finding correlation
and extracting information from many variables and most of our data are real time
data. Most of our data are heterogeneous and constantly changing, collected from
many different sources. Their software follows some steps as setting specific key
performance indicators, performs clustering on the data and presents the data to the
user. After the clustering results, all clusters are analysed and categorized based on
a three element vector containing: 1) Centroid placement, which is the coordinates
(x, y) of the final centroid of a cluster. 2) Entropy calculation, which they define as
the average statistical dispersion of all Euclidean distances of the cluster, around a
centroid. 3) Population variance, which represents the ratio of the measured entropy
e of a cluster no. N and the number of n customers that are members of the specific
cluster N. Furthermore, they define the similarity between different clusters and
cluster sets and by doing this the user is able to make important assumptions about
some customers and identify similar trends and patterns among them.

A completely different take on how to unify multiple clusters is presented by
(Filkov and Skiena, 2010). They proposed a method to combine microarray datasets,
into a unified representation, based on consensus clustering. Consensus clustering is
the process where the same clustering algorithm is applied to many datasets and we
want to find a single cluster for all datasets. This process is based on the distances
of set-partitions which are collections of disjoint sets that cover a set completely. In
other words, we can say that consensus clustering has the role of a median between
some given clusters and by having this final cluster we can extract information for
the dataset used for creating this cluster.

7.2 Bayesian Joint Analysis & Gaussian Processes

In many data science problems when we are working with many disparate datasets,
we assume that these datasets are essentially the same and can be represented in a
lower-dimension space which is more convenient. However (Ray et al., 2014) claims
that this is quite restrictive and a better, more flexible way to solve such problems is
to factorize the feature-space into shared components among all the datasets. This
paper proposes a Bayesian factor analysis to handle heterogeneous datasets by di-
viding the feature space into two categories of components, one category is data
specific components and the other is the shared components. The model is extended
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to handle many heterogeneous data sources with spatio-temporal dependencies by
employing a kernel stick breaking process (KSBP) that can find shared statistical fea-
ture among many data types, managing to take advantage of the data better.

Another problem with heterogeneous data sources is the fact that many data will
be irregularly sampled and many models will not work with them unless we make
some assumptions about our data. (Ghassemi et al., 2015) proposed a technique
to handle irregularly sample clinical data, by using multi-task GP (MTGP) Models
to transform them into a new latent space. This model in an extension to multi-
task GP models that makes use of the covariance to reduce the uncertainty of the
data. The model is tested on a dataset consisting of patient data in combination with
clinical notes. The clinical notes are then processed using topic inferenced and are
transformed into a 50-sized vector. Finally the only keep 9 topics, the ones having
posterior likelihood above or below 5% of the population baseline likelihood across
topics. Before applying different machine learning algorithms three matrices are
created 1) The admitting SAPS-I score for every patient 2) The average topic mem-
bership for the nine identified topics 3) The inferred MTGP hyperparameters across
the nine topic vectors The machine learning algorithms are applied to an aggregated
matrix created from the three above.

7.3 Other methods

In addition to the above techniques, (Wang et al., 2019) proposes additive partially
linear models for handling massive heterogeneous data. These models provide a
way to do analysis of massive heterogeneous data using the divide-and-conquer
strategy. The proposed framework for modelling massive heterogeneous data can be
applied to extract several common features across all sub-populations while explor-
ing heterogeneity of each sub-population. In this paper, the partially linear model
(PLM) is generalized and an additive partially linear model (APLM) for modeling
massive heterogeneous data is proposed. In essence, a huge dataset is split in sub-
datasets where machine learning techniques are applied to them and the results are
combined to get the finals result about the whole dataset.

(Korkmaz et al., 2015) created a model to predict civil unrest using different types
of indicators in Latin America over the course of 2 years, with data collected from
social media, news sources, political databases, Tor statistics and exchange rates.
The model used is a Lasso model due to the fact that it also gives us information
about the nature of such an event while a simple model with similar performance
can’t give us this information. The goal is to predict the day that a nationwide large
protest will occur in multiple locations using the following features 1) daily counts
of events, 2) average intensity of the events in ICEWS, 3) average tone of the daily
events in GDELT (aimed to measure the general sentiment of the entities involved
in the event) 4) Goldstein scale score of daily events in GDELT (a collaboration score
assigned to each event; the higher the score between the two actors, the greater their
collaboration).
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Chapter 8

Heterogeneous data for short term
load forecasting

Load forecasting is a very important task for the electric power industry (Gupta,
2017). Its purpose is to estimate future load demand by using various data like
historical consumption data and other external data from different factors that con-
tribute to the consumption of electrical energy. Electric companies require accu-
rate future load predictions in the short term (few minutes to 7 days) as well as the
medium (1 week to 1 year) and the long term (more than 1 year). They can leverage
this knowledge to appropriately purchase and generate electricity and for other im-
portant decisions like load switching, infrastructure development and contract eval-
uation. Different types of load forecasting are needed for different types of decisions
of a power utility. For example, short term load forecasting is needed for the ef-
fective and profitable management of everyday operations in electrical utilities and
unit commitment. Many operating decisions rely on short term forecasts. Accurate
forecasts lead to a more reliable system as well as economical savings. Medium term
load forecasting is used for fuel supply scheduling and unit maintenance. Finally,
long term load forecasting is used to predict the need for expansion, staff hiring and
purchases of new equipment.

Different determining factors are usually considered for short-term load fore-
casting than medium and long term load forecasting. Our focus is on Short-Term
Load Forecasting (STLF) which is mainly affected by the following variables 1) Time
is very important because consumer load changes a lot depending on the time of
day, day of week, week of month and month of season. 2) Economic factors like
the price of electricity also play a vital role on the average load of the power sys-
tem. 3) Weather affects electricity use dramatically. It includes measurements like
temperature, humidity, cloud cover, wind speed and others. 4) Behavioral patterns
of consumers which are highly variable throughout the day and are affected by a
multitude of different factors including occasional social events like concerts.

Some very influential factors of medium and long term load term load forecast-
ing are 1) Customer appliances’ description 2) House sizes 3) Equipment age 4) Tech-
nology changes 5) Employment levels 6) Customer behavior 7) Population dynamics
8) Economic factors 9) Electricity prices

Short term load forecasting is performed using different methods, depending on
the data that is being used. Statistical methods focus only on the time series of past
load demand measurements and extrapolate predictions in the future. Expert sys-
tems use rules and procedures that are defined by human experts in load forecasting.
These rules are used by software that can make forecasts without using assistance
from humans. Another class are the regression/causal methods. Instead of extrap-
olating the time series of past load values, we make the assumption that there is a
cause-effect relationship between various parameters (such as weather parameters)
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and the load. We then try to develop a representation of these causal relationships
using machine learning models. We can also combine both approaches, meaning
that we model the time series characteristics of load in combination with causal fac-
tors. In order to make use of heterogeneous data, we obviously have to focus on the
last two classes of the methods we mentioned.

8.1 Peer review of STLF with heterogeneous data

Since load demand is affected by multiple factors, it is important to consider as many
of them as possible to achieve better forecasting accuracy. Data from these factors
very often reside in different databases and in different formats. Since we want
to use this data as input to our machine learning algorithms, we must encode all
different data types into a common representation that can be handled by our mod-
els. Most of the studies we came across, refer to calendar and weather data with
the combination of historical data as heterogeneous data. While this data does in
fact have characteristics of heterogeneity, we find it very interesting when differ-
ent data sources have different modalities like text, video, numeric etc. Data fusion
of these different data representations can provide us with more contextual informa-
tion about the current state of the demand side and improve predicting performance.

8.1.1 Weather, calendar and historical data

In (Cheng et al., 2019), they use 3 categories of data i.e. historical load demand data,
calendar information and weather information to predict future load demand. There
are n + 18 total features where n are from the historical data, 13 weather features and
5 calendar features. To get a small number of n, not all time points are considered but
only the ones that are highly correlated with the target which is load demand. Auto
Correlation Function is used for this purpose. To encode the historical load data,
an LSTM recurrent neural network is used and this encoding is later merged with
another branch that fuses weather and calendar information with a feed forward
neural network. They call their architecture Powernet. The schematic is shown in
(Fig. 8.1).

FIGURE 8.1: Powernet architecture.

Similarly (Tong et al., 2018) aims to use heterogeneous data which consists of
historical load measurements, weather parameters and date parameters in order to
train deep NNs for load forecasting purposes. The base architecture of the neural
network is the SDA or Stacked Denoising Autoencoder. The system which is de-
picted in (Fig. 8.2), consists of two modules: a feature extraction module and a load
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forecasting module. For the feature extraction module, they use 3 different branches
of neural networks. The first branch takes as input the previous days (k-1) load
measurements every hour so a total of 24 features. The next one is a concatenation
of load measurements for days k-7, k-14, k-21 which are the measurements of load
of the same day for the past 4 weeks. That would be 72 more features. The last
branch contains the weather factors. Along with the extracted latent features of the
3 branches, the season parameter is also concatenated to form the final feature vec-
tor which will be passed to the load forecasting module. Forecasting is implemented
using support vector regression (SVR).

FIGURE 8.2: Neural network architecture in (Tong et al., 2018).

In the last study with this combination of input data (Wang et al., 2018), they
first separate customers into 3 categories using k-means clustering because their
load time series consumption is quite distinct (residents, industry and institutions).
The load forecasting is done for individual customers, which is a difficult problem
because of high volatility issues. The neural network architecture consists of two
parts, one for the temporal feature extraction of the load historical data and one for
the external factors like weather, temperature and date. GRU recurrent neural net-
works are used for the temporal load features. There is a merge layer that fuses the
multi-source extracted features. External features are also numerically encoded and
normalized. The schematic diagram of the network is shown in (Fig. 8.3). To help
with the vanishing gradient problem, a batch normalization layer is added after the
merging layer, which is followed by two dense layers and the output layer.

8.1.2 Incorporation of social media data

Social media data like Twitter posts can be used to extract useful information about
peoples’ activities and behaviors. Load demand is highly affected by these factors
so if we mine this knowledge from social media data, we can combine it with other
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FIGURE 8.3: GRU neural network architecture in (Wang et al., 2018).

data sources to perhaps predict future power needs more accurately. For example,
announcements of conventions and concerts that can be found in blogs, local web-
sites and social media can affect electrical power usage in the grid.

Human activity can be captured with social media data in different ways. Some
studies use only the volume of posts for a given time period to estimate electricity
demand. (Luna et al., 2017) use tweet counts every half hour to predict future load in
Peru for the short-term. They verify that there is a correlation between the volume of
posts and electricity needs. In a similar study, (Deng et al., 2018) show the potential
of using social media data from Twitter as a way to represent human activities in
order to model consumption of electricity at building-level.

Traditional ML methods mainly use historical data to forecast future load de-
mand because the time series of load consumption shows characteristics like trend
and seasonality which can be adequately modeled using historical data for large-
scale power forecasting. However, these methods don’t work very well at the build-
ing level because there are less temporal patterns that can be detected in the data of a
smaller area. To address this, this study uses geo-tagged tweets as the data source to
forecast future electricity consumption. The study was done in buildings of a cam-
pus in New York. The idea is that the number of tweets indicates that there might be
more people and/or more activity like heating, lighting, air conditioning and other
human activities that require electrical power.

These two studies used the volume of tweets as their data source and ignored
what the posts actually contained. (Stavast, 2014) in his thesis, attempts to mine
social media data and use them for the prediction of energy. Techniques that use
social media have been successful in other problems like prediction of box office
revenues, event detection and stock markets. One problem with social media data is
that often many people choose to not share their posts with everyone but only with
their friends which means data can sometimes underestimate the current activity
level. For his experiment, he uses word count vectors and correlates them with load
demand. “For the actual prediction, all occurring words in an hour are counted,
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then the algorithm searches the table containing the average load for a word and
adds that load and current word count to a new table. We use the counts and words
table to compute a new weighted average, which is the prediction for the number of
hours ahead.” We find this approach extremely simple and not very reliable.

Finally, (Kantardzic et al., 2015) advocate the use of social media data for im-
proving models that were already trained on traditional data such as historical and
weather data. While an implementation was not provided, they presented a "proof-
of-concept that Web-based resources may give enough spatio-temporal information
about human crowd in specific locations."

8.2 Candidate heterogeneous data sources

As previously mentioned, the factors that affect short-term load forecasting are 1)
Date and time information e.g. hour of day, weekday or weekend, holidays etc.
2) Weather variables like temperature, humidity, wind speed and others 3) Human
activity and behaviour patterns and 4) Economic factors like electricity price.

Traditional load forecasts rely mostly on historical data and in some cases in-
clude weather variables as well as calendar information. The data format of all these
features is numeric. The same holds for economic factors. Considering the benefits
of heterogeneous data that we covered in previous sections, it is interesting to inves-
tigate whether we can incorporate them for load forecasting. Some of the factors that
affect load demand are captured with multiple modalities and this motivates us to
pursue whether it is beneficial to include them. For example, weather information
can be acquired not only from numerical measurements like temperature, humidity
and so on, but also from Satellite and Whole Sky Images that depict cloud location
and movement. Human activity can also be modelled using various text-based data
sources like social media as well as mobile phone location data and GPS.

8.3 Weather factors

The weather variables that we usually consider for load demand forecasting are tem-
perature, humidity, precipitation, wind speed and cloud cover. For all variables ex-
cept cloud cover, there are no available data sources that describe them in a form
other than numeric. However, cloud cover is an exception since it can be derived
from images as well.

8.3.1 Cloud cover from Satellite and Whole Sky Images

Satellite images from space as well as Whole Sky Images that are taken from the
ground contain a lot of information for the location and movement of clouds. The
use cases of both these sources are plenty and also include Photovoltaic (PV) power
forecasting which is a topic closely related to load forecasting since both play an im-
portant role in the function of the Smart Grid.

Satellite images

Satellite images of earth are an extremely valuable data source for the prediction
of cloud location and movement. There are over 4500 satellites currently orbiting
the planet with over 600 of them being imagery satellites (Rodziewicz, 2018). The
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best resolution currently available for public use, allows for each pixel of the image
to cover an area of 25cm squared. Governments have access to higher resolution
images but these are unavailable unless security clearance can be granted. There
are both free and commercial sources for the acquisition of satellite images with the
latter usually providing better resolution and frequency. We mentioned two of the
three main properties of satellite images namely spatial resolution and temporal res-
olution which is how often we get an image of an area. The third one is spectral
resolution which is a measure of their ability to resolve features in the electromag-
netic spectrum. As humans, our eyes allow us to detect only certain wavelengths
and when we think about an image, we usually think of the red, green and blue lay-
ers that compose it. However, the sensors in satellites can detect a lot more that we
can, with some images having more than 12 layers with each layer providing more
information about what is going on.

Whole Sky Images

Whole Sky Imagers (WSIs) are special cameras that are used for taking photographs
of the sky from the ground up. They use a fish-eye lens in order to capture very wide
areas and are useful for the prediction of cloud movement just like satellite images.
WSIs can be used for short term forecast of cloud movement from real time to 5-30
minutes ahead by extracting cloud motion information from sky images. The pro-
cess consists of four steps: 1) acquisition of sky images using devices like Whole Sky
Imagers 2) identification of clouds by analysis of the images 3) cloud motion vector
estimation from successive images and 4) use of cloud motion and location data for
irradiance, cloud cover and solar power forecasting. Satellite image approaches are
conceptually similar to WSI methods but offer certain advantages like larger spatial
scales of cloud patterns and higher availability of satellite images.

Use of Satellite images and WSIs in PV forecasting

Photovoltaic (PV) farms are multiplying rapidly and the power generated by them
is a significant fraction of the total power in the smart power grid. The generated
power output of PV farms fluctuates according to meteorological conditions and ac-
curate prediction of these fluctuations is important so that solar power trading on the
energy market is made efficiently. (Pelland et al., 2013) compare different methods
of PV forecasting and state that satellite images are commonly considered the best
approach for forecasting up to 5 hours ahead. Persistence forecasts rely on histori-
cal power output of solar panels to predict future generation and ignore exogenous
inputs. Statistical learning techniques are used to identify patterns in the time se-
ries data and estimate future power output. However, performance decreases when
cloudiness is highly variable which justifies the use of satellite and whole sky im-
ages. Reference (Jang et al., 2016) utilizes a Support Vector Machine learning scheme
to predict future irradiance and cloud amount for multiple areas in South Korea in
a 15-300 minute range (intra-day), which can be utilized by an energy management
system (EMS) for better grid operation. They extract Atmospheric Motion Vectors
(AVM) from meteorological satellite images and combine them with cloud analysis
information as well as irradiance images. AVMs capture wind direction and atmo-
spheric motion information for upper, middle and lower wind fields. Cloud analy-
sis images contain information about cloud thickness, shape and amount which are
influential factors for the prediction of future cloud conditions. Finally, irradiance
images show the amount of light that is reflected by the ground.
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8.3.2 Potential value of satellite images for load forecasts

For the acquisition of cloud cover information, satellite and whole sky images pro-
vide a lot more spatial resolution than the cloud cover that is reported by weather
stations. The latter is usually provided in the form of the fraction of the sky that
is covered with clouds and therefore has a lot lower spatial resolution than satellite
imagery. However, for the purpose of load forecasting in an urban environment, this
extra resolution isn’t necessary because the small differences in cloudiness in certain
areas of the city and their effects in load demand are negligible when we consider
the effects on the city as a whole. Moreover, the effect of cloud cover in electrical
load demand is marginal when compared to other weather variables like tempera-
ture, humidity and wind speed (Janicki, 2017). Considering the reasons mentioned
above, we believe there isn’t enough potential benefit in incorporating satellite and
whole sky images for the purpose of city-scale load forecasting.

8.4 Human activity factor

Inclusion of the human factor for load forecasting at an urban scale is a challenging
task. Obtaining a completely accurate understanding of human dynamics is border-
line impossible due to the complex factors that dictate every individual’s decisions
and actions. Our best bet is to approximate it with different indicators that reflect
the mass behaviour of the area’s population as a whole. Most load demand forecasts
ignore the human activity factor and the few that do not, seem to model it in very
simple ways. Studies that use the number of twitter posts indicate a correlation be-
tween the volume of posts and electricity needs (Luna et al., 2017) (Deng et al., 2018).
Analysis of the textual content of posts to derive the human activity factor is still at
an early stage. Correlation of words in social media posts to load is a way too simple
approach and experimentation from (Stavast, 2014) supports this claim. Inclusion of
the factor of big events was done by (Ding et al., 2013) using special calendars but
there was no distinguishment of how big an event is relative to others. There is a lot
of potential benefit in getting better insights of human activity through social media
and other types of data since it is a very influential factor in load demand.

8.4.1 Detecting human activity in real time

The use of smartphones has become an extremely common thing in our era, making
each and every one of us a sensor that collects and transmits data. Data that is gener-
ated from smartphones often includes location information from the user at the time
the data was transmitted. Since people consistently use these devices on a daily ba-
sis, there is an enormous amount of data being generated every day. The abundance
of available information makes it possible to detect events at the time of their hap-
pening and even obtain a population model of urban environments. Mobile devices
can be used to contribute anonymously in order to obtain a real-time population
view for a given location. A street-level granularity of human density is possible
with analysis of data sources like mobile phone data, social media, GPS and other
sensors. If we exploit all the available information that is present, we can acquire
insights into the dynamic nature of mass human behaviour in urban environments.

Knowing the mobility patterns of people and how they change through time can
provide existing load forecasting models with information about one of the most
contributing factors to energy demand, which is human behaviour.
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FIGURE 8.4: Proposed location data based event detection module.

Event detection and dynamic population estimation

Detection of social events in real time has been studied extensively (Zaharieva, Del
Fabro, and Zeppelzauer, 2015) (Hu, Wang, and Li, 2018) (Liu and Jansson, 2018) us-
ing mainly social media data. A simple approach is given by (Garcia-Gasulla et al.,
2014) where they only used social network activity and ignored the posts’ contents
to detect ongoing events. They first obtain a threshold of social network activity
that corresponds to normal conditions and recognise any higher activity than that
as an event. Even though it is a rare occurrence, natural disasters can alter load
demand significantly and real time detection of them is possible with social media
as (Athanasis et al., 2018) argues. Another useful data source is mobile phone call
records which have been used as a proxy of human density in different areas of a
city in (Selvarajoo, Schlapfer, and Tan, 2019) to obtain a dynamic population model
within the city limits. (Cloquet and Blondel, 2014) use anonymous mobile phone
call data to infer the flux of people heading towards an event which could be used
as a way to predict attendance. Monitoring the traffic of the area is also insightful
into load demand because the times at which people arrive at their homes where
electricity is consumed, may be delayed due to heavy traffic (Aparicio et al., 2014).
This can be done with various sensing devices and also with the analysis of social
media and mobile data. (Goh, Koh, and Zhang, 2019) uses Vehicle Loop Detectors,
mobile phone data as well as tweets to estimate crowd flows within the city. Simi-
larly, (Zhang, Zheng, and Qi, 2017) predicts crowd flows for all areas in a city using
trajectories from GPS and bike rent data. Another indicator of urban human activity
is the amount of social network usage within the city’s borders. (Luna et al., 2017)
uses the volume of twitter posts as a predictor of load demand and a correlation be-
tween the two was observed. Even though the predictions were not very accurate,
the volume of posts was the only variable they used and its inclusion in an already
good feature set is potentially going to increase accuracy. Social media can also be
used as a proxy of real-time human activity. (Liu et al., 2015) argues that estimation
of the distribution of population in a country as well as its mobility is possible with
geo-tagged tweets.

Research shows the potential of modeling the changes in population, in various
temporal and spatial scales by analysing data that is generated from smartphones.
There are various ways to acquire high-resolution time and location information
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of people in their daily lives such as mobile call records, geo-tagged social media
posts and even WiFi access points as shown in (Sapiezynski et al., 2015). Each of
these acquisition mediums has its advantages and drawbacks but they have shown
great results in modeling human location and mobility, as shown in different studies.
Mobile communication companies keep records of their customers’ activity through
Call Data Records (CDR). These records keep track of the time, location and other
information every time a subscriber makes or receives a phone call or text message
and for other technical reasons (Peters-Anders et al., 2017). An enormous amount
of these data are generated on a daily basis which motivates researchers to explore
their potential. As argued by multiple studies (De Meersman et al., 2016) (Selvara-
joo, Schlapfer, and Tan, 2019), mobile data are effective for modeling population
dynamics in various temporal and spatial scales ranging from country level (Dev-
ille et al., 2014) all the way down to urban scale (Khodabandelou et al., 2015) (Hu
et al., 2009) (Li, Zhang, and Chen, 2019) (Dan and He, 2010), which is what we are
interested in.

Another valuable data source for deriving dynamic population information is
geo-tagged posts from social media like Twitter. Multiple studies use tweets as a
proxy of human mobility with promising results (Patel et al., 2017). Analysis of pop-
ulation density maps derived from Twitter were shown to reflect human activities
throughout the day (Tsou et al., 2018). We observe that there are currently many
ways to derive a representation of human dynamics at an urban scale and judging
by the increasing use of smartphones, the accuracy of these models will get better
and better.

Dynamic population encoding

Our goal is to somehow include the dynamic human behaviour and mobility pat-
terns in our forecasting models as an additional input feature. Our proposed ap-
proach includes dynamic population maps in numerical matrix form that represent
human density in different regions of the area we are interested in. We begin by par-
titioning the area in a HxW grid, with each cell having the same size. For each cell,
and consequently for each entry in the matrix, we calculate population density us-
ing data from mobile devices. The dimensions of the grid can be adjusted to match
our desired granularity. This process is repeated for different points in time and the
result is a time series of matrices that describe the dynamic population of the urban
environment. An example of the grid partitioning is shown in (Fig. 8.5) and the re-
spective matrix is depicted in (Fig. 8.6). Red marks represent detected people. Areas
with a high concentration of red marks correspond to high values in the dynamic
population matrix and areas with small crowds correspond to low values.

This matrix is essentially an image because it has spatial characteristics. This
means that we can apply data fusion techniques in order to include it in the feature
set of our machine learning models. We can complement the dynamic population
features with information from event schedules. Events are known to attract hu-
man crowds and even though we are often unable to estimate the exact amount of
attendance, we can potentially distinguish between large and small events through
analysis of social media data.

8.4.2 Predicting human activity in advance

For forecasting events, the focus of most research is on civil unrest events and dis-
ease outbreaks, with the main focus of the prediction being the time of the event
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FIGURE 8.5: Dynamic population estimation through smartphone
data. Background picture taken from Google maps.

(Zhao et al., 2015), while others include the spatial factor as well (Zhao et al., 2017a).
That is not however the type of event we are interested in. Big social events like con-
certs and sport events are a factor for increases in electricity demand due to the large
crowds they attract. Posts about social gatherings can provide valuable information
about the use of electrical energy since such events attract large crowds from places
outside the location where these events take place. Therefore, with more people
in the area, there is a higher electrical energy demand. We require relatively good
spatial accuracy for these events and current research on event forecasting from un-
structured data doesn’t seem to provide this, mainly because of insufficient location
information in social media data (Zhao et al., 2017b). For automated identification of
events with the spatial accuracy we need, our best option, in our opinion, is to extract
them from sources that contain event schedules. It is also beneficial to distinguish
between how big an event is, meaning how many people will attend it, in order to
infer its impact on electricity demand. Event attendance was studied in (Xu et al.,
2019) but only for events taken from an event-focused social network where people
are invited to events and the prediction focused on an individual’s decision to attend
or not. Current research that incorporates big events for load forecasting only uses
schedule information from special calendars and local websites (Ding et al., 2013) ,
(Kantardzic et al., 2015) to include them. It would be beneficial to approximate the
public’s interest in a certain event by mining social media data where people often
post about events that they are excited about. Event popularity has not been studied
for social gatherings, which is our interest in this thesis, but rather news events like
stock market crashes, retirements of popular athletes, political events and similar
topics (Chen, Kong, and Mao, 2017) , (Zhang et al., 2019). The prediction algorithms
vary in complexity, from simple ones that are focused on the identification of “hot
words” in posts and counting their frequency, to very complex approaches where
the influence of related events is taken into account (Chen et al., 2018). It is possible
in our opinion, to shift the focus of different event popularity techniques from their
current events, which are not social-gathering-related, to the ones we are interested
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FIGURE 8.6: Corresponding dynamic population matrix from grid
partitioning in (Fig. 8.5).

in such as concerts, sports events and others which attract large human crowds.
Facebook event data is another valuable data source for predicting human activity.
(Mezei, Pinter, and Felde, 2016) used Facebook event data to compute the popular-
ity of an event as a weighted combination of users who selected attending, might
attend and will not attend. This popularity is used for determining the congestion
in different parts of the city in order to complement smart navigation systems for
optimal route selection.

Event detection module

While we lack exact implementation details, we propose the development of an
event detection module that predicts human activity intensity for a given future
point in time using Web-based resources (Fig. 8.7). For example, if there is going
to be a concert of a famous artist happening in the short future which is going to
cause a lot of people to migrate to the location of the event, there are probably going
to be posts about it in local web sites, blogs and in social media. The system should
be able to detect this event and estimate the amount of people that are going to turn
up. The output can be a measure of predicted human activity intensity for different
points in time and should clearly be higher on special events. This information can
be used by our machine learning models as an additional feature and fused with
other sources of data, using the techniques that we analysed in previous chapters.

Despite our initial hopes of applying data fusion techniques with text data for
load forecasting, there doesn’t seem to be a reason to justify this action. In stud-
ies where text was fused with other types of data (Srivastava and Salakhutdinov,
2012) (Miech, Laptev, and Sivic, 2018), this was justified because all the multiple
modalities that were used, comprised different descriptions of the same object. In
our case, we want to use text data as a proxy of human crowd density so we focus
on aggregated amounts of texts and in a sense, metadata of the original data. In our
opinion, the context in which we use text data for load forecasting doesn’t justify its
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FIGURE 8.7: Proposed social media based event detection module.

fusion with other data types. Therefore, our machine learning models will accept a
pre-processed version of the original text data which will be in numeric form.

Scheduled events encoding

We want to somehow encode spatial location information about the event as well.
Inspired from other studies, we intend the output of the event detection module
to be a matrix that describes the grid-partitioning of the area we are interested in
predicting the load demand for. Our version uses Facebook data and specifically
event information from the "Events" section.

The event module is responsible for building the event matrix which is going to
be an additional input feature to our neural network architecture. We choose this
data structure as an intuitive way to encode the spatio-temporal locations of social
events as well as their expected attendance. This matrix is generated for each time-
step with a frequency that matches the common sampling frequency of all other data
sources, which is decided at the pre-processing stage. It has a similar structure to the
dynamic population matrix and reflects the grid-partitioning of the city in blocks of
identical size. During periods when no event is scheduled, the matrix has zeros in all
of its entries. Each non-zero entry of the matrix at time step i signifies the existence
of a social event during time i, at the area that corresponds to that position in the
matrix. The value of that entry is a measure of the expected attendance/popularity
of the event (Fig. 8.8).

Popularity measure

There are potentially many different ways to quantify popularity of events from so-
cial media. As a first step, we will use data from Facebook Events. Our main goal is
to distinguish the size of different events in terms of how many people are likely to
attend, since it is an indicator of the impact of that event in load demand. A concert
of a local, relatively less known band isn’t going to have the same effect as a concert
of a worldwide known artist. Large-scale social events that have the potential to
alter load demand significantly, are detectable very easily through social networks
like Facebook. The "Events" section of Facebook is the most common way that we
have personally been informed about local events and we believe the same holds for
most people worldwide. This makes the problem of automatically detecting social
events very easy to solve and computationally cheap. Users have the option to say
whether they are interested in the event and if they are going to show up through
the buttons "Interested" and "Going" respectively. The number of individual clicks
is publicly available and even though there is usually some error compared to the
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FIGURE 8.8: Two scheduled events with different expected atten-
dances at a given time.

actual counts, they are still good measures to distinguish the popularity of certain
events compared to others. The final measure is going to be a weighted combination
of the number of interested users and the number of users that confirmed that they
are going, with the latter having a larger weight compared to the former e.g. 0.8 for
“Going” and 0.2 for “Interested”. The time of extraction of this data is also impor-
tant. If we extract them very early, for example near the time of the announcement of
the event, the numbers will probably underestimate the attendance since many users
wouldn’t have been informed about the event yet or haven’t made up their minds.
The extraction time should be close to the beginning of the event when counts of ex-
pected attendees are more stable, which gives us more confidence that the numbers
represent the actual popularity of the event and are less prone to changes.

We observe that we can either predict human activity a long time in advance
through social media analysis or detect it in real time through various heterogeneous
data sources like mobile data, GPS, sensors and social media. Proper combination
of both methods is very promising in terms of predicting human activity more accu-
rately. The dynamic population information that is encoded in the dynamic popula-
tion matrix can be complemented with the special event information that we encode
in the event matrix. Through proper combination of both these matrices, we pro-
vide the system with more knowledge about the state of urban population at each
time step. This information can be used by load forecasting models as an additional
feature and in terms, provide more accurate forecasts since we incorporate more
contextual information about the determining factors of load demand to them.

8.5 Load forecasting with dynamic population and event sched-
ule information

Our proposed approach incorporates information from the majority of factors that
affect electricity load demand. This includes time and calendar information, weather
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FIGURE 8.9: Corresponding event matrix from grid partitioning of
(Fig. 8.8).

factors, real-time electricity prices and human activity information. Previous load
demand measurements will also be included in the feature set, in the form of lagged
values. Despite not conducting an experiment ourselves, we will theoretically go
through the process of STLF if we had access to the necessary data. Our scenario
will be for hourly load forecasting, even though the time frame can be adjusted for
shorter on longer forecasts.

FIGURE 8.10: Proposed load forecasting framework.



8.5. Load forecasting with dynamic population and event schedule information 39

8.5.1 Data Collection

For historical load measurements, data acquisition is rather easy. If the dataset con-
sists of non-aggregated data of individual meter measurements for individual con-
sumers, we need to sum the measurements of unique users and arrive at the desired
aggregated load consumption measurements. Weather data is available through
weather stations which will provide temperature, wind speed, precipitation, humid-
ity and cloud cover data. Calendar data is trivial to collect although it is important to
include special days e.g. local holidays so that proper encoding of them can be made
in the pre-processing stage. While many economic factors like income, type of cus-
tomers, GDP growth etc are influential to load demand, their effects are negligible
for short-term forecasting. Electricity price however, is influential for the short-term
as well because it varies during the day and datasets for price are publicly avail-
able. For the inclusion of the human activity factor, we require calculation of the
dynamic population and event schedule matrices. We don’t claim expertise for this
task, therefore we suppose that they are already provided through analysis of social
media and location data as mentioned in previous sections.

8.5.2 Data Pre-processing

The most tedious step is pre-processing and it is hard to know beforehand all the
data preparation stages we must apply. However, some of the most important ones
are:

Data cleaning

To deal with missing values and outliers, we need to first inspect their nature. If we
have data Missing Completely At Random (MCAR), we can perform simple impu-
tation with the mean, mode or median of the variable but if this is not the case, we
have to use other techniques like the ones mentioned in 3.1.

Re-sampling

Another common issue with using multiple data sources is that measurement fre-
quency can vary from one to the other. Before building our forecasting models, we
require all the different data measurements to be in time-series format with the same
sampling rate. We need to choose the desired common sampling rate while taking
into consideration potential negative effects of re-sampling certain variables. After
we arrive at the final sampling rate, we match all variables to this rate with either
up-sampling or down-sampling. The properties of each variable dictate the optimal
interpolation or aggregating strategy we should apply. For example, when down-
sampling load measurements from two hour to one hour intervals, we have to sum
nearby values but when doing the same for weather variables, averaging or interpo-
lation techniques are required.

Time encoding

Calendar information has to be properly encoded and new features need to be cre-
ated for effective modeling of the temporal changes of electricity demand. Categor-
ical variables like "day of the week", "weekend or weekday", "month", "season" and
"special day" need to be generated from the calendar. We will use binary one-hot
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encoding with dummy variables for categorical variables with more than two cat-
egories like "month" which has 12 distinct values. This will obviously increase the
number of features.

Normalization

Because different variables have different scales, this can cause issues to machine
learning models like favoring certain variables with large values and ignoring vari-
ables with relatively small values. Decreases in learning times and other negative
impacts are also to be expected. To combat this, all variables need to be brought to
the same scale of 0 to 1.

Correlation analysis and feature selection

Even though we believe our variables are influential to load demand, it is a good
practice to first perform correlation analysis in order to distinguish features that are
more important than others and perhaps discard the ones under a certain threshold.
Selecting an optimal sub-set of the original features can increase performance and
prevent the model of being "confused" by uncorrelated features. If we want our
model to include past values of load demand as predictors, we must decide which
past values are most correlated with the present load demand. The auto-correlation
function can be used for this purpose. We are particularly fond of the approach of
(Tong et al., 2018) where for load forecasting of day k, measurements of the previous
day (k − 1) were used in combination with measurements from the past 3 weeks
(k− 7, k− 14, k− 21). For our case which is hourly forecasting, the time lags differ
but the main intuition remains the same.

8.5.3 Model Training

Since the human activity factor is included in the form of matrices with spatial char-
acteristics, we treat them as images. They have to be fused with multi modal data
fusion techniques like multiple kernel learning, deep learning with sub-networks
for each modality or ensembles. All these techniques and possibly many more are
applicable in our case. Experimentation with different algorithms and model archi-
tectures is necessary in order to find what approach is optimal in terms of perfor-
mance and computational complexity. For our demonstration, we choose the deep
learning route and assign different sub-networks for the image data, which con-
sists of the two human activity matrices, and numeric data which is the type of all
other factors we take into account. There are two different ways that we can com-
bine the dynamic population and event schedule matrices (Fig. 8.11). The first is
to assign separate Convolutional Neural Networks (CNN) to each matrix and con-
catenate their extracted features with the rest of our inputs which include weather
variables, calendar information, electricity price and lagged values of electricity de-
mand. The second way is to use each matrix as a separate channel in the CNN
branch, in the same manner as images are traditionally fed into CNNs with 3 chan-
nels namely R, G and B. The rest of the architecture remains the same. Experiments
with both approaches as well as completely different methods and combinations of
features should be conducted to conclude which approach is best.
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FIGURE 8.11: Described architectures.

8.5.4 Model Testing

Different error measures will be used to validate our models and decide which is the
best in terms of performance. Some of the most frequently used for load forecasting
are the Mean Absolute Percentage Error (MAPE) and Mean Square Error (MSE). We
have had issues in the past with MAPE in the presence of zero values but this is not
likely here because load demand is always greater than zero.

8.6 Conclusion

In our opinion, short term load forecasting can be improved with the inclusion of
features that describe human behaviours and mobility. The enrichment of the fea-
ture set with more contextual information about the factors that contribute to energy
demand can lead to more accurate forecasts. Our proposed approach relies on using
dynamic population and event schedule maps in the form of matrices as additional
features to our forecasting models. These matrices have spatial characteristics be-
cause they represent a geographical area and we therefore treat them as images.
This means that we have to use multimodal data fusion techniques in order to com-
bine them with the rest of our features, which are all in numeric form. The fusion
can be performed with different methods, including the ones we reviewed in early
chapters, such as kernel methods, deep learning and ensembles.
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Chapter 9

Discussion

9.1 Synopsis

Heterogeneity is one of the most common aspects of big data since the majority of
the total generated data is heterogeneous. There are many different types of het-
erogeneity but in general, we usually refer to data as being heterogeneous when it
originates from different sources, modalities or scales. Multi-modality is our main
interest and it refers to the acquisition of information about a target object through
different modalities such as images, text and normal numerical data. We are inter-
ested in fusing data that comes from multiple data sources, mainly because it con-
tains more information than single-source data since it provides us with different
aspects of our target object. Due to several negative characteristics that are associ-
ated with them, heterogeneous data pose a challenge to traditional machine learning
techniques and often require several pre-processing stages before their fusion, which
we briefly looked at after our introduction. We distinguished data fusion techniques
based on the stage of the machine learning process that the combination takes place.
Early fusion combines the information at the feature level while late fusion does it at
the decision level. Both approaches have their advantages and drawbacks. During
our review, we came across different algorithms and methods that work with het-
erogeneous data, with the most common ones being kernel methods, deep learning
and ensembles. From the kernel methods we encountered, Multiple Kernel Learning
stood out as an intuitive way to perform data fusion by finding an optimal mix of
kernels, where each is created using a different data source. Deep learning proved
to be just as effective in data fusion, due to its feature extraction capabilities and the
flexibility it provides us when designing architectures. Similarly to MKL for kernel
methods, the technique that stood out to us in deep learning, is to assign different
multi-layer sub-networks to different modalities and merge their output layers in
a common feature vector. Ensembles allow us to use different models for each of
our multiple data sources and combine their predictions. The obvious advantage,
besides the large flexibility they provide, is the ability to exploit the superiority of
certain models when working with certain data types. After mentioning some of the
methods that we encountered less often during our study, we investigate the poten-
tial of using heterogeneous data for short-term load forecasting. Our peer review
on STLF showed little attention by researchers on this topic. Considering the most
influential factors of electricity demand in the short term, we found weather and
human activity to be the only candidates for heterogeneous data fusion, since we
can acquire information for them using multi-modal data sources. For weather data,
the idea was to complement the forecasted numerical weather variables with satel-
lite and whole sky images that provide high spatial accuracy of cloud locations. In
our opinion, this wouldn’t be very helpful for forecasting load demand more accu-
rately, although they are very useful to photovoltaic solar power forecasting which
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plays an important role in the proper operation of the smart grid. Therefore, we
focused on ways to include the human activity factor, which is highly variable and
complex. Our proposition is to use social media and mobile data for the extraction
of event schedule information as well as dynamic human population estimation for
the urban location of interest. We encode both pieces of information in matrices that
represent the geography of the area, partitioned in a grid. Due to their spatial char-
acteristics, we treat those matrices as images and therefore apply multi-modal data
fusion techniques to include them as features to our models.

9.2 Research and development prospects

In our research we mainly focus on using human activity data in conjunction to
traditional variables that are used in short term load forecasting. However there
are some problems related to collecting all the necessary data. The main problem
is that the required mobile data may not be easily accessible. Call details records
are not available to the public and are only used by law enforcement agencies. If
somehow electric companies are provided access to such data, the privacy aspect
needs to be handled. To address privacy concerns, data anonymization techniques
need to be applied to CDR datasets in order to encrypt information that can be used
for personal identification of users. Moreover the collecting of GPS data may be
problematic. The general public may not want to sacrifice their privacy and allow
GPS data to be collected. For this reason, an incentives program may help acquire
this data and reward citizens for allowing their data to be collected.

Furthermore, an actual implementation of the proposed technique is necessary
to verify the validity of the model and discover the benefits of integrating human ac-
tivity data for the purpose of STLF. Since population density is constantly changing,
the incorporation of this information is probably only beneficial for forecasting load
in the very-short term. We cannot be certain about the exact optimal forecast hori-
zon, although we expect that population information will be helpful for forecasting
from minutes to a few hours ahead. Different forecast horizons need to be evaluated
in order to find what is optimal and practical.

Evaluation of which type of location data (CDR, geo-tagged posts, GPS) is ap-
plicable for a given area is also important. For example, even though geo-tagged
social media posts have shown potential in modelling human mobility, this ability
depends on the geographical area that the experiments take place. Areas where a
small fraction of the population uses social media will not provide enough spatio-
temporal information to our model. If we intend to use social media data, large and
densely populated cities with high social media activity should be the areas where
the experiments need to take place first.

As far as the event schedule information is concerned, we need to evaluate whether
including it in our models is beneficial or not. Data acquisition for events is not a
challenging task, at least for the simple method that we proposed which uses Face-
book Event data. This can be done with a simple API that collects event information
for a particular area.

Future technological advancements like the adaptation of 5G networks is promis-
ing in terms of improving the population mapping abilities. Location data from
CDRs is derived from the nearest cell tower that the user is connected. With 5G net-
works, base stations will be more densely placed in geographical space, providing
higher spatial accuracy of the users.
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Considering that the proposed technique works, it can be used to provide new
insights on how human mobility patterns affect energy demand. Through the anal-
ysis of dynamic population maps and the electricity demand that they correspond
to, we can discover relationships between the two that we didn’t know about. This
can potentially help in more efficient planning of the electricity grid.

Finally, an important factor for load demand to look out for in the future, is the
electrification of vehicles and their increasing popularity worldwide. There is a con-
tinuous growth in the electric vehicle (EV) market. This growth will lead in a future
where the electric vehicles outnumber the internal combustion engine vehicles. This
future is not far and the integration of EVs in energy prediction may play an impor-
tant role in load forecasting.
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