219,878 research outputs found
Distributed control of multi-robot systems using bifurcating potential fields
The distributed control of multi-robot systems has been shown to have advantages over conventional single robot systems. These include scalability, flexibility and robustness to failures. This paper considers pattern formation and reconfigurability in a multi-robot system using bifurcating potential fields. It is shown how various patterns can be achieved through a simple free parameter change. In addition the stability of the system of robots is proven to ensure that desired behaviours always occur
Experiments in cooperative human multi-robot navigation
In this paper, we consider the problem of a
group of autonomous mobile robots and a human moving
coordinately in a real-world implementation. The group
moves throughout a dynamic and unstructured environment.
The key problem to be solved is the inclusion of a human in a
real multi-robot system and consequently the multiple robot
motion coordination. We present a set of performance metrics
(system efficiency and percentage of time in formation) and a
novel flexible formation definition whereby a formation
control strategy both in simulation and in real-world
experiments of a human multi-robot system is presented. The
formation control proposed is stable and effective by means of
its uniform dispersion, cohesion and flexibility
A Multi-Robot Cooperation Framework for Sewing Personalized Stent Grafts
This paper presents a multi-robot system for manufacturing personalized
medical stent grafts. The proposed system adopts a modular design, which
includes: a (personalized) mandrel module, a bimanual sewing module, and a
vision module. The mandrel module incorporates the personalized geometry of
patients, while the bimanual sewing module adopts a learning-by-demonstration
approach to transfer human hand-sewing skills to the robots. The human
demonstrations were firstly observed by the vision module and then encoded
using a statistical model to generate the reference motion trajectories. During
autonomous robot sewing, the vision module plays the role of coordinating
multi-robot collaboration. Experiment results show that the robots can adapt to
generalized stent designs. The proposed system can also be used for other
manipulation tasks, especially for flexible production of customized products
and where bimanual or multi-robot cooperation is required.Comment: 10 pages, 12 figures, accepted by IEEE Transactions on Industrial
Informatics, Key words: modularity, medical device customization, multi-robot
system, robot learning, visual servoing, robot sewin
A Multi-Robot Cooperation Framework for Sewing Personalized Stent Grafts
This paper presents a multi-robot system for manufacturing personalized
medical stent grafts. The proposed system adopts a modular design, which
includes: a (personalized) mandrel module, a bimanual sewing module, and a
vision module. The mandrel module incorporates the personalized geometry of
patients, while the bimanual sewing module adopts a learning-by-demonstration
approach to transfer human hand-sewing skills to the robots. The human
demonstrations were firstly observed by the vision module and then encoded
using a statistical model to generate the reference motion trajectories. During
autonomous robot sewing, the vision module plays the role of coordinating
multi-robot collaboration. Experiment results show that the robots can adapt to
generalized stent designs. The proposed system can also be used for other
manipulation tasks, especially for flexible production of customized products
and where bimanual or multi-robot cooperation is required.Comment: 10 pages, 12 figures, accepted by IEEE Transactions on Industrial
Informatics, Key words: modularity, medical device customization, multi-robot
system, robot learning, visual servoing, robot sewin
Quantum Robot: Structure, Algorithms and Applications
A kind of brand-new robot, quantum robot, is proposed through fusing quantum
theory with robot technology. Quantum robot is essentially a complex quantum
system and it is generally composed of three fundamental parts: MQCU (multi
quantum computing units), quantum controller/actuator, and information
acquisition units. Corresponding to the system structure, several learning
control algorithms including quantum searching algorithm and quantum
reinforcement learning are presented for quantum robot. The theoretic results
show that quantum robot can reduce the complexity of O(N^2) in traditional
robot to O(N^(3/2)) using quantum searching algorithm, and the simulation
results demonstrate that quantum robot is also superior to traditional robot in
efficient learning by novel quantum reinforcement learning algorithm.
Considering the advantages of quantum robot, its some potential important
applications are also analyzed and prospected.Comment: 19 pages, 4 figures, 2 table
Mobile robot based electrostatic spray system for controlling pests on cotton plants in Iraq
A mobile robot based electrostatic spray system was developed to combat pest infestation on cotton plants in Iraq. The system consists of a charged spray nozzle, a CCD camera, a mobile robot (vehicle and arm) and Arduino microcontroller. Arduino microcontroller is used to control the spray nozzle and the robot. Matlab is used to process the image from the CCD camera and to generate the appropriate control signals to the robot and the spray nozzle. COMSOL multi-physics FEM software was used to design the induction electrodes to achieve maximum charge transfer onto the fan spray liquid film resulting in achieving the desired charge/mass ratio of the spray. The charged spray nozzle was operated on short duration pulsed spray mode. Image analysis was employed to investigate the spray deposition on improvised insect targets on an artificial plant.The ministry of higher education and scientific research of Iraqi governmen
A robust extended H-infinity filtering approach to multi-robot cooperative localization in dynamic indoor environments
Multi-robot cooperative localization serves as an essential task for a team of mobile robots to work within an unknown environment. Based on the real-time laser scanning data interaction, a robust approach is proposed to obtain optimal multi-robot relative observations using the Metric-based Iterative Closest Point (MbICP) algorithm, which makes it possible to utilize the surrounding environment information directly instead of placing a localization-mark on the robots. To meet the demand of dealing with the inherent non-linearities existing in the multi-robot kinematic models and the relative observations, a robust extended H∞ filtering (REHF) approach is developed for the multi-robot cooperative localization system, which could handle non-Gaussian process and measurement noises with respect to robot navigation in unknown dynamic scenes. Compared with the conventional multi-robot localization system using extended Kalman filtering (EKF) approach, the proposed filtering algorithm is capable of providing superior performance in a dynamic indoor environment with outlier disturbances. Both numerical experiments and experiments conducted for the Pioneer3-DX robots show that the proposed localization scheme is effective in improving both the accuracy and reliability of the performance within a complex environment.This work was supported inpart by the National Natural Science Foundation of China under grants 61075094, 61035005 and 61134009
- …
