156 research outputs found

    Masquerade attack detection through observation planning for multi-robot systems

    Full text link
    The increasing adoption of autonomous mobile robots comes with a rising concern over the security of these systems. In this work, we examine the dangers that an adversary could pose in a multi-agent robot system. We show that conventional multi-agent plans are vulnerable to strong attackers masquerading as a properly functioning agent. We propose a novel technique to incorporate attack detection into the multi-agent path-finding problem through the simultaneous synthesis of observation plans. We show that by specially crafting the multi-agent plan, the induced inter-agent observations can provide introspective monitoring guarantees; we achieve guarantees that any adversarial agent that plans to break the system-wide security specification must necessarily violate the induced observation plan.Accepted manuscrip

    Resilience of multi-robot systems to physical masquerade attacks

    Full text link
    The advent of autonomous mobile multi-robot systems has driven innovation in both the industrial and defense sectors. The integration of such systems in safety-and security-critical applications has raised concern over their resilience to attack. In this work, we investigate the security problem of a stealthy adversary masquerading as a properly functioning agent. We show that conventional multi-agent pathfinding solutions are vulnerable to these physical masquerade attacks. Furthermore, we provide a constraint-based formulation of multi-agent pathfinding that yields multi-agent plans that are provably resilient to physical masquerade attacks. This formalization leverages inter-agent observations to facilitate introspective monitoring to guarantee resilience.Accepted manuscrip

    Semi-Informed Multi-Agent Patrol Strategies

    Get PDF
    The adversarial multi-agent patrol problem is an active research topic with many real-world applications such as physical robots guarding an area and software agents protecting a computer network. In it, agents patrol a graph looking for so-called critical vertices that are subject to attack by adversaries. The agents are unaware of which vertices are subject to attack by adversaries and when they encounter such a vertex they attempt to protect it from being compromised (an adversary must occupy the vertex it targets a certain amount of time for the attack to succeed). Even though the terms adversary and attack are used, the problem domain extends to patrolling a graph for other interesting noncompetitive contexts such as search and rescue. The problem statement adopted in this work is formulated such that agents obtain knowledge of local graph topology and critical vertices over the course of their travels via an API ; there is no global knowledge of the graph or communication between agents. The challenge is to balance exploration, necessary to discover critical vertices, with exploitation, necessary to protect critical vertices from attack. Four types of adversaries were used for experiments, three from previous research – waiting, random, and statistical - and the fourth, a hybrid of those three. Agent strategies for countering each of these adversaries are designed and evaluated. Benchmark graphs and parameter settings from related research will be employed. The proposed research culminates in the design and evaluation of agents to counter these various types of adversaries under a range of conditions. The results of this work are agent strategies in which each agent becomes solely responsible for protecting those critical vertices it discovers. The agents use emergent behavior to minimize successful attacks and maximize the discovery of new critical vertices. A set of seven edge choosing primitives (ECPs) are defined that are combined in different ways to yield a range of agent strategies using the chain of responsibility OOP design pattern. Every permutation of them were tested and measured in order to identify those strategies that perform well. One strategy performed particularly well against all adversaries, graph topology, and other experimental variables. This particular strategy combines ECPs of: A hard-deadline return to covered vertices to counter the random adversary, efficiently checking vertices to see if they are being attacked by the waiting adversary, and random movement to impede the statistical adversary

    Multi-robot adversarial patrolling: Facing a fullknowledge opponent

    Get PDF
    Abstract The problem of adversarial multi-robot patrol has gained interest in recent years, mainly due to its immediate relevance to various security applications. In this problem, robots are required to repeatedly visit a target area in a way that maximizes their chances of detecting an adversary trying to penetrate through the patrol path. When facing a strong adversary that knows the patrol strategy of the robots, if the robots use a deterministic patrol algorithm, then in many cases it is easy for the adversary to penetrate undetected (in fact, in some of those cases the adversary can guarantee penetration). Therefore this paper presents a non-deterministic patrol framework for the robots. Assuming that the strong adversary will take advantage of its knowledge and try to penetrate through the patrol's weakest spot, hence an optimal algorithm is one that maximizes the chances of detection in that point. We therefore present a polynomial-time algorithm for determining an optimal patrol under the Markovian strategy assumption for the robots, such that the probability of detecting the adversary in the patrol's weakest spot is maximized. We build upon this framework and describe an optimal patrol strategy for several robotic models based on their movement abilities (directed or undirected) and sensing abilities (perfect or imperfect), and in different environment models -either patrol around a perimeter (closed polygon) or an open fence (open polyline)

    Optimal Patrol of a Perimeter

    Get PDF
    A defender dispatches patrollers to circumambulate a perimeter to guard against potential attacks. The defender decides on the time points to dispatch patrollers and each patroller's direction and speed, as long as the long-run rate patrollers are dispatched is capped at some constant. An attack at any point on the perimeter requires the same amount of time, during which it will be detected by each passing patroller independently with the same probability. The defender wants to maximize the probability of detecting an attack before it completes, while the attacker wants to minimize it. We study two scenarios, depending on whether the patrollers are undercover or wear a uniform. Conventional wisdom would suggest that the attacker gains advantage if he can see the patrollers going by so as to time his attack, but we show that the defender can achieve the same optimal detection probability by carefully spreading out the patrollers probabilistically against a learning attacker.Comment: 17 pages, 1 figur
    • …
    corecore