25 research outputs found

    Wavelet–Based Face Recognition Schemes

    Get PDF

    Face recognition in low resolution video sequences using super resolution

    Get PDF
    Human activity is a major concern in a wide variety of applications, such as video surveillance, human computer interface and face image database management. Detecting and recognizing faces is a crucial step in these applications. Furthermore, major advancements and initiatives in security applications in the past years have propelled face recognition technology into the spotlight. The performance of existing face recognition systems declines significantly if the resolution of the face image falls below a certain level. This is especially critical in surveillance imagery where often, due to many reasons, only low-resolution video of faces is available. If these low-resolution images are passed to a face recognition system, the performance is usually unacceptable. Hence, resolution plays a key role in face recognition systems. In this thesis, we address this issue by using super-resolution techniques as a middle step, where multiple low resolution face image frames are used to obtain a high-resolution face image for improved recognition rates. Two different techniques based on frequency and spatial domains were utilized in super resolution image enhancement. In this thesis, we apply super resolution to both images and video utilizing these techniques and we employ principal component analysis for face matching, which is both computationally efficient and accurate. The result is a system hat can accurately recognize faces using multiple low resolution images/frames

    Reconnaissance de visage robuste aux occultations

    Get PDF
    Face recognition is an important technology in computer vision, which often acts as an essential component in biometrics systems, HCI systems, access control systems, multimedia indexing applications, etc. Partial occlusion, which significantly changes the appearance of part of a face, cannot only cause large performance deterioration of face recognition, but also can cause severe security issues. In this thesis, we focus on the occlusion problem in automatic face recognition in non-controlled environments. Toward this goal, we propose a framework that consists of applying explicit occlusion analysis and processing to improve face recognition under different occlusion conditions. We demonstrate in this thesis that the proposed framework is more efficient than the methods based on non-explicit occlusion treatments from the literature. We identify two new types of facial occlusions, namely the sparse occlusion and dynamic occlusion. Solutions are presented to handle the identified occlusion problems in more advanced surveillance context. Recently, the emerging Kinect sensor has been successfully applied in many computer vision fields. We introduce this new sensor in the context of face recognition, particularly in presence of occlusions, and demonstrate its efficiency compared with traditional 2D cameras. Finally, we propose two approaches based on 2D and 3D to improve the baseline face recognition techniques. Improving the baseline methods can also have the positive impact on the recognition results when partial occlusion occurs.La reconnaissance faciale est une technologie importante en vision par ordinateur, avec un rôle central en biométrie, interface homme-machine, contrôle d’accès, indexation multimédia, etc. L’occultation partielle, qui change complétement l’apparence d’une partie du visage, ne provoque pas uniquement une dégradation des performances en reconnaissance faciale, mai peut aussi avoir des conséquences en termes de sécurité. Dans cette thèse, nous concentrons sur le problème des occultations en reconnaissance faciale en environnements non contrôlés. Nous proposons une séquence qui consiste à analyser de manière explicite les occultations et à fiabiliser la reconnaissance faciale soumises à diverses occultations. Nous montrons dans cette thèse que l’approche proposée est plus efficace que les méthodes de l’état de l’art opérant sans traitement explicite dédié aux occultations. Nous identifions deux nouveaux types d’occultations, à savoir éparses et dynamiques. Des solutions sont introduites pour gérer ces problèmes d’occultation nouvellement identifiés dans un contexte de vidéo surveillance avancé. Récemment, le nouveau capteur Kinect a été utilisé avec succès dans de nombreuses applications en vision par ordinateur. Nous introduisons ce nouveau capteur dans le contexte de la reconnaissance faciale, en particulier en présence d’occultations, et démontrons son efficacité par rapport aux caméras traditionnelles. Finalement, nous proposons deux approches basées 2D et 3D permettant d’améliorer les techniques de base en reconnaissance de visages. L’amélioration des méthodes de base peut alors générer un impact positif sur les résultats de reconnaissance en présence d’occultations

    Machine learning techniques in pain recognition.

    Get PDF
    No abstract available.The original print copy of this thesis may be available here: http://wizard.unbc.ca/record=b131711

    Automatic face recognition using stereo images

    Get PDF
    Face recognition is an important pattern recognition problem, in the study of both natural and artificial learning problems. Compaxed to other biometrics, it is non-intrusive, non- invasive and requires no paxticipation from the subjects. As a result, it has many applications varying from human-computer-interaction to access control and law-enforcement to crowd surveillance. In typical optical image based face recognition systems, the systematic vaxiability arising from representing the three-dimensional (3D) shape of a face by a two-dimensional (21)) illumination intensity matrix is treated as random vaxiability. Multiple examples of the face displaying vaxying pose and expressions axe captured in different imaging conditions. The imaging environment, pose and expressions are strictly controlled and the images undergo rigorous normalisation and pre-processing. This may be implemented in a paxtially or a fully automated system. Although these systems report high classification accuracies (>90%), they lack versatility and tend to fail when deployed outside laboratory conditions. Recently, more sophisticated 3D face recognition systems haxnessing the depth information have emerged. These systems usually employ specialist equipment such as laser scanners and structured light projectors. Although more accurate than 2D optical image based recognition, these systems are equally difficult to implement in a non-co-operative environment. Existing face recognition systems, both 2D and 3D, detract from the main advantages of face recognition and fail to fully exploit its non-intrusive capacity. This is either because they rely too much on subject co-operation, which is not always available, or because they cannot cope with noisy data. The main objective of this work was to investigate the role of depth information in face recognition in a noisy environment. A stereo-based system, inspired by the human binocular vision, was devised using a pair of manually calibrated digital off-the-shelf cameras in a stereo setup to compute depth information. Depth values extracted from 2D intensity images using stereoscopy are extremely noisy, and as a result this approach for face recognition is rare. This was cofirmed by the results of our experimental work. Noise in the set of correspondences, camera calibration and triangulation led to inaccurate depth reconstruction, which in turn led to poor classifier accuracy for both 3D surface matching and 211) 2 depth maps. Recognition experiments axe performed on the Sheffield Dataset, consisting 692 images of 22 individuals with varying pose, illumination and expressions

    IDENTITY CRISIS: WHEN FACE RECOGNITION MEETS TWINS AND PRIVACY

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Using the 3D shape of the nose for biometric authentication

    Get PDF

    Face Recognition from Face Signatures

    No full text
    This thesis presents techniques for detecting and recognizing faces under various imaging conditions. In particular, it presents a system that combines several methods for face detection and recognition. Initially, the faces in the images are located using the Viola-Jones method and each detected face is represented by a subimage. Then, an eye and mouth detection method is used to identify the coordinates of the eyes and mouth, which are then used to update the subimages so that the subimages contain only the face area. After that, a method based on Bayesian estimation and a fuzzy membership function is used to identify the actual faces on both subimages (obtained from the first and second steps). Then, a face similarity measure is used to locate the oval shape of a face in both subimages. The similarity measures between the two faces are compared and the one with the highest value is selected. In the recognition task, the Trace transform method is used to extract the face signatures from the oval shape face. These signatures are evaluated using the BANCA and FERET databases in authentication tasks. Here, the signatures with discriminating ability are selected and were used to construct a classifier. However, the classifier was shown to be a weak classifier. This problem is tackled by constructing a boosted assembly of classifiers developed by a Gentle Adaboost algorithm. The proposed methodologies are evaluated using a family album database

    FACE CLASSIFICATION FOR AUTHENTICATION APPROACH BY USING WAVELET TRANSFORM AND STATISTICAL FEATURES SELECTION

    Get PDF
    This thesis consists of three parts: face localization, features selection and classification process. Three methods were proposed to locate the face region in the input image. Two of them based on pattern (template) Matching Approach, and the other based on clustering approach. Five datasets of faces namely: YALE database, MIT-CBCL database, Indian database, BioID database and Caltech database were used to evaluate the proposed methods. For the first method, the template image is prepared previously by using a set of faces. Later, the input image is enhanced by applying n-means kernel to decrease the image noise. Then Normalized Correlation (NC) is used to measure the correlation coefficients between the template image and the input image regions. For the second method, instead of using n-means kernel, an optimized metrics are used to measure the difference between the template image and the input image regions. In the last method, the Modified K-Means Algorithm was used to remove the non-face regions in the input image. The above-mentioned three methods showed accuracy of localization between 98% and 100% comparing with the existed methods. In the second part of the thesis, Discrete Wavelet Transform (DWT) utilized to transform the input image into number of wavelet coefficients. Then, the coefficients of weak statistical energy less than certain threshold were removed, and resulted in decreasing the primary wavelet coefficients number up to 98% out of the total coefficients. Later, only 40% statistical features were extracted from the hight energy features by using the variance modified metric. During the experimental (ORL) Dataset was used to test the proposed statistical method. Finally, Cluster-K-Nearest Neighbor (C-K-NN) was proposed to classify the input face based on the training faces images. The results showed a significant improvement of 99.39% in the ORL dataset and 100% in the Face94 dataset classification accuracy. Moreover, a new metrics were introduced to quantify the exactness of classification and some errors of the classification can be corrected. All the above experiments were implemented in MATLAB environment
    corecore