6 research outputs found

    Innovative Solutions for Agriculture: Sensor-Driven Soil Parameter Monitoring and Deep Learning in Potato Disease Detection

    Get PDF
    The primary obstacle facing modern agriculture is the lack of advanced technologies capable of efficiently and proactively identifying crop diseases, a gap that is most noticeable while the crop is at the key stem stage. Taking note of this difficulty, the suggested solution calls for the deliberate insertion of cutting-edge sensors at the root level straight into the soil. The objective of this integration is to offer a comprehensive and in-depth evaluation of crucial factors that are necessary for plant health, including temperature dynamics, moisture content, and nutrient levels of soil. While the temperature sensors serve a dual purpose by monitoring the external environment and evaluating the condition of mechanical assets vital to agricultural operations, the soil moisture and index sensors are essential for precisely determining irrigation needs and assessing soil nutrient levels. The project incorporates a cutting-edge Convolutional Neural Network (CNN) deep learning algorithm designed especially for the identification of potato leaf diseases, which represents a significant improvement to disease detection capabilities. This sophisticated algorithm improves the accuracy and efficiency of disease identification by using deep learning to analyze and comprehend complex patterns found in the leaf of the plant. This comprehensive initiative's main goal is to create a seamlessly integrated sensor system that can monitor crop health dynamically, provide real-time insights into critical soil characteristics, and use state-of-the-art CNN deep learning technology to detect potato leaf diseases in the agricultural landscape with extreme precision

    Efficient Disease Identification Method for Crop Leaf using Deep Learning Techniques

    Get PDF
    Many prime grain-producing nations have implemented steps to limit export of grains as COVID-19 has expanded over the globe; food security has sparked significant worry from a number of stakeholders. One of the most crucial concerns facing all nations is how to increase grain output. However, the diseases occur in crops remain a challenge for countless farmers, therefore it is critical to understand their severity promptly and precisely to guide the them in taking additional measures to lessen the chances of plants being affected furthermore. This paper describes a deep learning model for the identification of crop diseases that can achieve high accuracy with low processing power. The model, called the inception v3 network, has been tested on a tomato leaf dataset and has obtained a average identification accuracy of 98.00% and further the ensemble of two inception v3 models with slight diversity achieved an accuracy of 98.11%. The results suggest that this model could be useful in improving food security by helping farmers quickly and accurately identify crop diseases and take appropriate measures to prevent further spread

    A Review on Detection of Medical Plant Images

    Get PDF
    Both human and non-human life on Earth depends heavily on plants. The natural cycle is most significantly influenced by plants. Because of the sophistication of recent plant discoveries and the computerization of plants, plant identification is particularly challenging in biology and agriculture. There are a variety of reasons why automatic plant classification systems must be put into place, including instruction, resource evaluation, and environmental protection. It is thought that the leaves of medicinal plants are what distinguishes them. It is an interesting goal to identify the species of plant automatically using the photo identity of their leaves because taxonomists are undertrained and biodiversity is quickly vanishing in the current environment. Due to the need for mass production, these plants must be identified immediately. The physical and emotional health of people must be taken into consideration when developing drugs. To important processing of medical herbs is to identify and classify. Since there aren't many specialists in this field, it might be difficult to correctly identify and categorize medicinal plants. Therefore, a fully automated approach is optimal for identifying medicinal plants. The numerous means for categorizing medicinal plants that take into interpretation based on the silhouette and roughness of a plant's leaf are briefly précised in this article

    A Review on Tomato Leaf Disease Detection using Deep Learning Approaches

    Get PDF
    Agriculture is one of the major sectors that influence the India economy due to the huge population and ever-growing food demand. Identification of diseases that affect the low yield in food crops plays a major role to improve the yield of a crop. India holds the world's second-largest share of tomato production. Unfortunately, tomato plants are vulnerable to various diseases due to factors such as climate change, heavy rainfall, soil conditions, pesticides, and animals. A significant number of studies have examined the potential of deep learning techniques to combat the leaf disease in tomatoes in the last decade. However, despite the range of applications, several gaps within tomato leaf disease detection are yet to be addressed to support the tomato leaf disease diagnosis. Thus, there is a need to create an information base of existing approaches and identify the challenges and opportunities to help advance the development of tools that address the needs of tomato farmers. The review is focussed on providing a detailed assessment and considerations for developing deep learning-based Convolutional Neural Networks (CNNs) architectures like Dense Net, ResNet, VGG Net, Google Net, Alex Net, and LeNet that are applied to detect the disease in tomato leaves to identify 10 classes of diseases affecting tomato plant leaves, with distinct trained disease datasets. The performance of architecture studies using the data from plantvillage dataset, which includes healthy and diseased classes, with the assistance of several different architectural designs. This paper helps to address the existing research gaps by guiding further development and application of tools to support tomato leaves disease diagnosis and provide disease management support to farmers in improving the crop

    A survey on different plant diseases detection using machine learning techniques

    Get PDF
    Early detection and identification of plant diseases from leaf images using machine learning is an important and challenging research area in the field of agriculture. There is a need for such kinds of research studies in India because agriculture is one of the main sources of income which contributes seventeen percent of the total gross domestic product (GDP). Effective and improved crop products can increase the farmer's profit as well as the economy of the country. In this paper, a comprehensive review of the different research works carried out in the field of plant disease detection using both state-of-art, handcrafted-features- and deep-learning-based techniques are presented. We address the challenges faced in the identification of plant diseases using handcrafted-features-based approaches. The application of deep-learning-based approaches overcomes the challenges faced in handcrafted-features-based approaches. This survey provides the research improvement in the identification of plant diseases from handcrafted-features-based to deep-learning-based models. We report that deep-learning-based approaches achieve significant accuracy rates on a particular dataset, but the performance of the model may be decreased significantly when the system is tested on field image condition or on different datasets. Among the deep learning models, deep learning with an inception layer such as GoogleNet and InceptionV3 have better ability to extract the features and produce higher performance results. We also address some of the challenges that are needed to be solved to identify the plant diseases effectively.Web of Science1117art. no. 264
    corecore