72,678 research outputs found

    EZ-AG: Structure-free data aggregation in MANETs using push-assisted self-repelling random walks

    Get PDF
    This paper describes EZ-AG, a structure-free protocol for duplicate insensitive data aggregation in MANETs. The key idea in EZ-AG is to introduce a token that performs a self-repelling random walk in the network and aggregates information from nodes when they are visited for the first time. A self-repelling random walk of a token on a graph is one in which at each step, the token moves to a neighbor that has been visited least often. While self-repelling random walks visit all nodes in the network much faster than plain random walks, they tend to slow down when most of the nodes are already visited. In this paper, we show that a single step push phase at each node can significantly speed up the aggregation and eliminate this slow down. By doing so, EZ-AG achieves aggregation in only O(N) time and messages. In terms of overhead, EZ-AG outperforms existing structure-free data aggregation by a factor of at least log(N) and achieves the lower bound for aggregation message overhead. We demonstrate the scalability and robustness of EZ-AG using ns-3 simulations in networks ranging from 100 to 4000 nodes under different mobility models and node speeds. We also describe a hierarchical extension for EZ-AG that can produce multi-resolution aggregates at each node using only O(NlogN) messages, which is a poly-logarithmic factor improvement over existing techniques

    Correlative Microscopy of Morphology and Luminescence of Cu porphyrin aggregates

    Full text link
    Transfer of energy and information through molecule aggregates requires as one important building block anisotropic, cable-like structures. Knowledge on the spatial correlation of luminescence and morphology represents a prerequisite in the understanding of internal processes and will be important for architecting suitable landscapes. In this context we study the morphology, fluorescence and phosphorescence of molecule aggregate structures on surfaces in a spatially correlative way. We consider as two morphologies, lengthy strands and isotropic islands. It turns out that phosphorescence is quite strong compared to fluorescence and the spatial variation of the observed intensities is largely in line with the amount of dye. However in proportion, the strands exhibit more fluorescence than the isotropic islands suggesting weaker non-radiative channels. The ratio fluorescence to phosphorescence appears to be correlated with the degree of aggregation or internal order. The heights at which luminescence saturates is explained in the context of attenuation and emission multireflection, inside the dye. This is supported by correlative photoemission electron microscopy which is more sensitive to the surface region. The lengthy structures exhibit a pronounced polarization dependence of the luminescence with a relative dichroism up to about 60%, revealing substantial perpendicular orientation preference of the molecules with respect to the substrate and parallel with respect to the strands

    Temporal and Spatial Classification of Active IPv6 Addresses

    Full text link
    There is striking volume of World-Wide Web activity on IPv6 today. In early 2015, one large Content Distribution Network handles 50 billion IPv6 requests per day from hundreds of millions of IPv6 client addresses; billions of unique client addresses are observed per month. Address counts, however, obscure the number of hosts with IPv6 connectivity to the global Internet. There are numerous address assignment and subnetting options in use; privacy addresses and dynamic subnet pools significantly inflate the number of active IPv6 addresses. As the IPv6 address space is vast, it is infeasible to comprehensively probe every possible unicast IPv6 address. Thus, to survey the characteristics of IPv6 addressing, we perform a year-long passive measurement study, analyzing the IPv6 addresses gleaned from activity logs for all clients accessing a global CDN. The goal of our work is to develop flexible classification and measurement methods for IPv6, motivated by the fact that its addresses are not merely more numerous; they are different in kind. We introduce the notion of classifying addresses and prefixes in two ways: (1) temporally, according to their instances of activity to discern which addresses can be considered stable; (2) spatially, according to the density or sparsity of aggregates in which active addresses reside. We present measurement and classification results numerically and visually that: provide details on IPv6 address use and structure in global operation across the past year; establish the efficacy of our classification methods; and demonstrate that such classification can clarify dimensions of the Internet that otherwise appear quite blurred by current IPv6 addressing practices

    Temporal Feature Selection with Symbolic Regression

    Get PDF
    Building and discovering useful features when constructing machine learning models is the central task for the machine learning practitioner. Good features are useful not only in increasing the predictive power of a model but also in illuminating the underlying drivers of a target variable. In this research we propose a novel feature learning technique in which Symbolic regression is endowed with a ``Range Terminal\u27\u27 that allows it to explore functions of the aggregate of variables over time. We test the Range Terminal on a synthetic data set and a real world data in which we predict seasonal greenness using satellite derived temperature and snow data over a portion of the Arctic. On the synthetic data set we find Symbolic regression with the Range Terminal outperforms standard Symbolic regression and Lasso regression. On the Arctic data set we find it outperforms standard Symbolic regression, fails to beat the Lasso regression, but finds useful features describing the interaction between Land Surface Temperature, Snow, and seasonal vegetative growth in the Arctic
    corecore