452,871 research outputs found

    Optimization of Training and Feedback Overhead for Beamforming over Block Fading Channels

    Full text link
    We examine the capacity of beamforming over a single-user, multi-antenna link taking into account the overhead due to channel estimation and limited feedback of channel state information. Multi-input single-output (MISO) and multi-input multi-output (MIMO) channels are considered subject to block Rayleigh fading. Each coherence block contains LL symbols, and is spanned by TT training symbols, BB feedback bits, and the data symbols. The training symbols are used to obtain a Minimum Mean Squared Error estimate of the channel matrix. Given this estimate, the receiver selects a transmit beamforming vector from a codebook containing 2B2^B {\em i.i.d.} random vectors, and sends the corresponding BB bits back to the transmitter. We derive bounds on the beamforming capacity for MISO and MIMO channels and characterize the optimal (rate-maximizing) training and feedback overhead (TT and BB) as LL and the number of transmit antennas NtN_t both become large. The optimal NtN_t is limited by the coherence time, and increases as L/logLL/\log L. For the MISO channel the optimal T/LT/L and B/LB/L (fractional overhead due to training and feedback) are asymptotically the same, and tend to zero at the rate 1/logNt1/\log N_t. For the MIMO channel the optimal feedback overhead B/LB/L tends to zero faster (as 1/log2Nt1/\log^2 N_t).Comment: accepted for IEEE Trans. Info. Theory, 201

    Best Linear Unbiased Estimation Fusion with Constraints

    Get PDF
    Estimation fusion, or data fusion for estimation, is the problem of how to best utilize useful information contained in multiple data sets for the purpose of estimating an unknown quantity — a parameter or a process. Estimation fusion with constraints gives rise to challenging theoretical problems given the observations from multiple geometrically dispersed sensors: Under dimensionality constraints, how to preprocess data at each local sensor to achieve the best estimation accuracy at the fusion center? Under communication bandwidth constraints, how to quantize local sensor data to minimize the estimation error at the fusion center? Under constraints on storage, how to optimally update state estimates at the fusion center with out-of-sequence measurements? Under constraints on storage, how to apply the out-of-sequence measurements (OOSM) update algorithm to multi-sensor multi-target tracking in clutter? The present work is devoted to the above topics by applying the best linear unbiased estimation (BLUE) fusion. We propose optimal data compression by reducing sensor data from a higher dimension to a lower dimension with minimal or no performance loss at the fusion center. For single-sensor and some particular multiple-sensor systems, we obtain the explicit optimal compression rule. For a multisensor system with a general dimensionality requirement, we propose the Gauss-Seidel iterative algorithm to search for the optimal compression rule. Another way to accomplish sensor data compression is to find an optimal sensor quantizer. Using BLUE fusion rules, we develop optimal sensor data quantization schemes according to the bit rate constraints in communication between each sensor and the fusion center. For a dynamic system, how to perform the state estimation and sensor quantization update simultaneously is also established, along with a closed form of a recursion for a linear system with additive white Gaussian noise. A globally optimal OOSM update algorithm and a constrained optimal update algorithm are derived to solve one-lag as well as multi-lag OOSM update problems. In order to extend the OOSM update algorithms to multisensor multitarget tracking in clutter, we also study the performance of OOSM update associated with the Probabilistic Data Association (PDA) algorithm

    Multi-Objective Optimal Control of the 6-DoF Aeroservoelastic Common Research Model with Aspect Ratio 13.5 Wing

    Get PDF
    A new 6-DoF aeroservoelastic (ASE) Common Research Model (CRM) provided by The Boeing Company with aspect ratio 13.5 and 17 control surfaces per wing is utilized to demonstrate combined tracking and optimal multi-objective control. The multi-objective controller is derived on the closed loop tracking controller, and utilizes state and gust estimates provided by an extended state observer. Various methods of model reduction useful for control and estimation are presented. A computationally efficient MATLAB/Simulink simulation is presented which includes actuator dynamics, rate and deflection saturation limits, and gust disturbance inputs. The platform is used to demonstrate excellent 6-DoF tracking control performance coupled with the multi-objective controller, which is shown to effectively reduce structural mode movement, wing root bending moment, and drag. State and gust estimation is also shown to perform well, even when derived and/or implemented with significantly fewer states than the original full-sized model

    Multi-Rate Observers for Model-Based Process Monitoring

    Get PDF
    Very often, critical quantities related to safety, product quality and economic performance of a chemical process cannot be measured on line. In an attempt to overcome the challenges caused by inadequate on-line measurements, state estimation provides an alternative approach to reconstruct the unmeasured state variables by utilizing available on-line measurements and a process model. Chemical processes usually possess strong nonlinearities, and involve different types of measurements. It remains a challenging task to incorporate multiple measurements with different sampling rates and different measurement delays into a unified estimation algorithmic framework. This dissertation seeks to present developments in the field of state estimation by providing the theoretical advances in multi-rate multi-delay observer design. A delay-free multi-rate observer is first designed in linear systems under asynchronous sampling. Sufficient and explicit conditions in terms of maximum sampling period are derived to guarantee exponential stability of the observer, using Lyapunov’s second method. A dead time compensation approach is developed to compensate for the effect of measurement delay. Based on the multi-rate formulation, optimal multi-rate observer design is studied in two classes of linear systems where optimal gain selection is performed by formulating and solving an optimization problem. Then a multi-rate observer is developed in nonlinear systems with asynchronous sampling. The input-to-output stability is established for the estimation errors with respect to measurement errors using the Karafyllis-Jiang vector small-gain theorem. Measurement delay is also accounted for in the observer design using dead time compensation. Both the multi-rate designs in linear and nonlinear systems provide robustness with respect to perturbations in the sampling schedule. Multi-rate multi-delay observer is shown to be effective for process monitoring in polymerization reactors. A series of three polycondensation reactors and an industrial gas-phase polyethylene reactor are used to evaluate the observer performance. Reliable on-line estimates are obtained from the multi-rate multi-delay observer through simulation
    corecore