23,185 research outputs found

    PERFORMANCE EVALUATION OF SINGLE-PATH AND MULTIPATH MANETS ROUTING PROTOCOLS FOR DENSE AND SPARSE TOPOLOGY

    Get PDF
    Mobile Ad Hoc Network (MANET) is a multi-hop wireless network in which fixed infrastructure is not used. A single-path routing protocol is mainly proposed as a single route from source node to destination node, while a multipath routing protocol uses multiple routes from the source to the destination node. This paper evaluates the performance of single-path routing protocols which are Cluster Based Routing Protocol (CBRP) and Ad hoc On-demand Distance Vector (AODV) along with a multipath routing protocol which is Ad hoc On-demand Multipath Distance Vector routing (AOMDV) in MANET environments with varying node densities (Dense and Sparse). Network Simulator (NS2) was used to evaluate the performance of these routing protocols. Our experimental simulation results show that: AOMDV protocol is better than AODV and CBRP in terms of Delay for both Dense and Sparse topologies with variant traffic sources, whereas AODV is better than CBRP and AOMDV in terms of Packet Delivery Ratio (PDR) with all traffic sources in Sparse topology

    Design of an energy-efficient geographic routing protocol for mobile ad-hoc networks

    Get PDF
    Mobile Ad-hoc networks extend communications beyond the limit of infrastructure based networks. Future wireless applications will take advantage of rapidly deployable, self-configuring multi-hop mobile Ad-hoc networks. In order to provide robust performance in mobile Ad-hoc networks and hence cope with dynamic path loss conditions, it is apparent that research and development of energy efficient geographic routing protocols is of great importance. Therefore various mobile Ad-hoc routing protocols have been studied for their different approaches. Forwarding strategies for geographic routing protocols are discussed and there is a particular focus on the pass loss model used by those routing protocols, the restriction and disadvantage of using such path loss model is then discussed. A novel geographic routing protocol which incorporates both the link quality and relay node location information has been developed to determine an energy efficient route from source to destination. The concepts of a gain region and a relay region to minimize the energy consumption have been proposed to define the area in where the candidate relay nodes will be selected with the minimized hop count. The signalling overhead required by the protocol has been analyzed in various scenarios with different traffic load, node densities and network sizes. Discrete event simulation models are therefore developed to capture the behaviour and characteristics of the operation of the developed routing protocol under different path loss conditions and network scenarios. A non-free space path loss model has been developed with a random loss between the nodes to simulate a realistic path loss scenario in the network. An enhanced signalling process has been designed in order to achieve advanced routing information exchange and assist routing determination. Comparison of simulated characteristics demonstrates the significant improvement of the new routing protocol because of its novel features, the gain region to ensure the deductiono f the energyc onsumptiont,h e relay region to ensuret he forward progress to the destination and hence maintain an optimised hop count. The simulation results showed that the energy consumption under the operation of the developed protocol is 30% of that with a conventionagl eographicarl outing protocol

    A hop-count and node energy based manet routing protocol

    Get PDF
    Mobile ad hoc network is a self-configuring network in which all participating nodes are mobile and consist of limited channel bandwidth and energy. Mobile devices are battery operated, and energy efficiency is a major issue for battery-operated devices in mobile ad hoc networks. Routing data packets from source to destination is the challenging task in mobile ad hoc networks due to node mobility and dynamic topology change in the network. Link failure or node energy depletion causes re-routing and establishing a new route from the source node to destination node which consumes extra node energy, reduces connectivity of the network and early partition of the network. Energy-related parameters consideration in routing is an important solution to enhance network lifetime. Several better performing routing schemes are presented and implemented for MANETs. Ad-hoc On-demand Distance Vector (AODV) routing protocol is one which performs well among similar routing protocols for MANET. AODV route selection base on either lowest hop-count or fresh sequence number. Many enhancements to AODV are proposed, which represents a better performance in comparison with original protocol. However, in a large network different paths to the destination could be found with the same hop-count. When efficiency is deliberated for those paths in quickly data transmission, each path performance varies in terms of throughput, end-to-end delay and packet delivery ratio due to the mobility of the nodes in the network. AODV routing protocol and enhancements suggested by other researchers do not give attention to such cases, and this paper proposes Hop-count and Node Energy based Routing Protocol (HNERP) which uses a multi-function routing strategy that incorporates with hop-count and node energy while making the routing decision. The proposed protocol is simulated by using NS2 and results show that HNERP performs better in term of packet delivery ratio and throughput, moreover it increases network lifetime and reduces end-to-end delay

    A Novel Energy Efficient Routing for Data Intensive MANETs

    Get PDF
    Mobile ad hoc networks (MANETs) consist of a collection of wireless mobile nodes which dynamically exchange data among themselves without the need of fixed infrastructure or a wired backbone network. Routing protocol scheme for wireless networks are support by two essential requirements, minimize energy metrics or maximize network throughput. In this paper we propose a proactive source routing protocol with multipath routing facility. This multipath routing is established reactively. Owing to the inconsistency of the wireless infrastructure and nodes mobility, single path routing protocols causes performance degradation in mobile networks. Multi path routing protocol enhances the end-to-end throughput and offers load balancing in MANETs.Energy consumption in MANET is one of the important issues in this research. Reliable data delivery in MANET consumes lot of energy. Here we use a data aggregation technique along with multipath routing. As data communication involves heavy energy consumption, reducing the number of data transmissions helps in energy conservation. The performance analysis and simulation are carried out using Network Simulator-2. DOI: 10.17762/ijritcc2321-8169.15084

    Architecture and performance of multi-hop wireless ad-hoc routing protocol (MultiWARP)

    Get PDF
    In recent years, a great deal of attention has been given to wireless connectivity solutions that are capable of establishing wireless ad-hoc networks between mobile nodes. Whilst most of these networks are formed using a combination of fixed and mobile infrastructure, completely infrastructure-less networks are thought to become more commonplace in the future. Moreover, this type of network structure seeks to utilise multi-hop connectivity between mobile nodes rather than the traditional single-hop connectivity established between fixed access points.The initial configuration phase and subsequent maintenance phase of a multi-hop wireless ad-hoc network requires the use of appropriate routing functions to exist between the mobile nodes. Therefore, it is essential that a routing protocol capable of determining correct and optimal routing path information in the presence of node mobility and the mobile radio environment be sought. Furthermore, it is beneficial to utilise the limited wireless bandwidth efficiently, such that a routing protocol should be designed specifically in the context of a multi-hop wireless ad-hoc network topology. This can be achieved through employing a non-hierarchical approach and using neighbouring nodes to act as intermediate relay nodes.The proposed routing protocol, called the Multi-hop Wireless Ad-hoc Routing Protocol (MultiWARP), is comprised of both a proactive and reactive routing component, thus forming a hybrid protocol which is able to exploit the benefits of each component. It is shown that manipulating these two components within the context of an awareness region, which divides the network into 2 regions, the routing overhead can be minimised. For the proactive component, the necessary network topology information that must be transmitted between neighbouring nodes is encoded within a routing update (RUPDT) packet. In this study, three alternative RUPDT encoding schemes have been formulated to encode the network topology in an efficient manner to reduce the RUPDT packet size.For the reactive component, a novel covercasting mechanism is designed that minimises the number of route request (RREQ) transmissions required to determine the routing path by utilising existing routing table information. Supplementary techniques are then utilised, such as snooping, route repair, and route optimisation to further optimise performance and minimise the route discovery delay (latency). This same covercasting mechanism is then utilised to efficiently transmit periodic RUPDT packets between neighbouring nodes to maintain routing table validity at each node, without having to resort to flooding which causes the “broadcast storm problem”. In addition, several route selection algorithms are considered which distribute traffic data between the intermediate relay nodes comprising the ad-hoc network.The performance and computational complexity of the proposed hybrid routing protocol is shown by means of computer simulations and theoretical analysis. Various traffic scenarios and topologies are presented to obtain the routing protocol performance metric results, and these are compared with other protocols found in the literature. For a multi-hop wireless ad-hoc network, it is shown that the proposed hybrid routing protocol, MultiWARP, is able to achieve higher average system performance in terms of improved throughput and stability performance when compared to other wireless ad-hoc routing protocols, such as DSR

    Performance Enhancement of Routing in MANETs by using EOMD

    Get PDF
    Usually large scale of network applications requires communication of the single copy of same information packets simultaneously to many destinations. Applying the infrastructure- based multicast routing protocols in Mobile Ad hoc wireless Networks (MANETs) is a big challenge task. The circumstances that make Multicasting in ad hoc networks is extra intricate than in wired networks are node mobility, Interference of Wi-Fi alerts and broadcast nature of the communication. Tree based Protocols aren't suitable for common topology modifications as an excessive amount of overhead for updating the filter information and additionally no longer suitable for partition or isolation. The major impact of routing for multi-hop MANETs comes due to mobility of the node, as performance is prone to modifications in network topology. When any link breaks, the direction should be repaired or changed, similar to direction preservation or route discovery, respectively. The rerouting process charges in radio bandwidth and battery energy, and the extra routing latency can also affect QoS for community packages, degrading communication performance. The ODMRP is more robust to mobility and unreliable wireless links as its core layout relies on periodic floods of path discovery and renovation. ODMRP periodically reconstructs the ?forwarding mesh? on a fixed quick interval. The path refresh is the most essential parameter because it has the important effect at the protocol overhead. We proposed an Extended - On Demand Multicast Routing Protocol with motion detection (EOMD), which reduces communication overhead and performance improvisation in mobile Ad-Hoc Network in Mobility

    Meta-Routing: Synergistic Merging of Message Routing and Link Maintenance

    Get PDF
    The maintenance of network connectivity is essential for effective and efficient mobile team operations. Achieving robust mobile ad hoc networks (MANETs) connectivity requires a capable link maintenance mechanism especially if the network experiences expected intermittent connectivity due to a hostile environment. One applicable example of such network scenarios is multi-robot exploration for urban search and rescue (USAR). With the proliferation of these robotic networks, communication problems such as the link maintenance problem are subject to be raised quickly. Although various routing protocols for wireless ad hoc networks have been proposed, they solve the problems of message routing and link maintenance separately, resulting in additional overhead costs and long latency in network communication. Traditional routing protocols discover existing links, connect these links, find the best path and minimize the path cost. The limitation of previous routing protocols motivates us to develop a new concept of routing mechanism for a robotic network. This routing mechanism is named Meta-Routing. Meta-Routing expands current routing protocols to include not only the normal routing of packets, but also the maintenance of links in mobile agent scenarios. Thus, Meta-Routing minimizes the communication path cost and the overhead cost, the latter of which results from discovering a route, repairing a link or establishing a new communication path between nodes. This dissertation presents a method to achieve Meta-Routing by controlling robot motion based on the radio frequency (RF) environment recognition method and gradient descent method. Mobile robot controlled motion can effectively improve network performance by driving robots to favorable locations with strong links. Moreover, the gradient descent method is used in driving the robots into the direction of favorable positions for maximizing broken or failing links and maintaining network connectivity. The main accomplished goals of this thesis are summarized as follows: firstly, the Meta-Routing protocol, which integrates link maintenance into the normal message routing protocol cost function; secondly, the dissertation examines the unification of the syntax of message routing protocol and the link maintenance process through physical configuration of mobile network nodes by controlling their movement in the field; finally, the dissertation demonstrates that the utilization of the RF environment recognition and classification method improves route repair estimation for achieving link maintenance in the presented Meta-Routing protocol. The numerical experimental results demonstrate promising RF environment recognition and node controlled motion results, as well as confirm their abilities in robot movement control for link maintenance and reduction of the total path cost

    Active Path Updation for Layered Routing (APULAR) in Wireless Mesh Networks

    Get PDF
    One of the major research issues in the Wireless Mesh Network (WMN) is routing. The routing protocols of ad-hoc networks can be applied for WMN, but have limited success because, ad-hoc networks are mainly structure less networks with highly dynamic topology and harmonized nodes, where WMN are relatively static network with two types of nodes, one fixed mesh routers and mobile clients. In layered routing protocol, source node initiates a path establishing process whenever path breaks. It will cause huge control packets and increase packet loss. This is not an ideal method in WMN where every nodes rather than source and destination in the path are motionless. One way of overcoming this is by initiating the local route repair by destination node.. In this paper, we propose an active path updating procedure (APULAR) for quickly updating the broken path to recover from packet loss. Moreover, to improve throughput and to reduce the co-channel interference, we use multiple interface with multi channels. We are considering 4-hop as an interference range and will use fixed channel assignment within the mesh routers to reduce the inter flow interference. Our procedure is simulated in NS2 and compared with AODV and Infrastructure Wireless Mesh Routing Architecture (IWMRA). Simulation results show that our protocol performs better than IWMRA and AODV in key performance metrics like packet delivery ratio, control overhead, average throughput and end-to-end delay. Keywords: Active path repair, channel assignment, multi channel routing, and wireless mesh network routing

    Ad hoc, Modular, Probabilistic, Enhanced Routing

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2004.Includes bibliographical references (p. 89-91).An ad hoc network is a group of mobile nodes that autonomously establish connectivity via multi-hop wireless links, without relying on any pre-configured network infrastructure. Traditional ad hoc routing protocols use a large number of routing packets to adapt to network changes, thereby reducing the amount of bandwidth left to carry data. Moreover, they route data packets along a single path from source to destination, which introduces considerable latency for recovery from a link failure along this path. Finally, they often use the minimum hop count as a basis for routing, which does not always guarantee a high throughput. This thesis presents AMPER (Ad hoc, Modular, Probabilistic, Enhanced Routing), an ad hoc routing protocol that minimizes the routing packet overhead, allows the use of alternate paths in the event of a link outage, and employs - without loss of generality - the expected number of transmissions to make forwarding decisions. Following the design of AMPER, ns-2 is used to simulate it, evaluate it and compare it to other ad hoc routing protocols.by Abdallah W. Jabbour.S.M

    Detection and Prevention of Blackhole Attack in the AOMDV Routing Protocol

    Get PDF
    Mobile ad-hoc network is a collection of dynamically organized nodes where each node acts as a host and router. Mobile ad-hoc networks are characterized by the lack of preexisting infrastructures or centralized administration. So, they are vulnerable to several types of attacks, especially the Blackhole attack. This attack is one of the most serious attacks in this kind of mobile networks. In this type of attack, the malicious node sends a false answer indicating that it has the shortest path to the destination node by increasing the sequence number and decreasing the number of hops. This will have a significant negative impact on source nodes which send their data packets through the malicious node to the destination. This malicious node drop received data packets and absorbs all network traffic. In order overcome this problem, securing routing protocols become a very important requirement in mobile ad-hoc networks. Multipath routing protocols are among the protocols affected by the Blackhole attack. In this paper, we propose an effective and efficient technique that avoids misbehavior of Blackhole nodes and facilitates the discovery for the most reliable paths for the secure transmission of data packets between communicating nodes in the well-known Ad hoc On-demand multi-path routing protocol (AOMDV). We implement and simulate our proposed technique using the ns 2.35 simulator. We also compared on how the three routing protocols AOMDV, AOMDV under Blackhole attack (BHAOMDV), and the proposed solution to counter the Blackhole attack (IDSAOMDV) performs. The results show the degradation on how AOMDV under attack performs, it also presents similarities between normal AOMDV and the proposed solution by isolating misbehaving node which has resulted in increase the performance metrics to the standard values of the AOMDV protocol
    corecore