
 

WWW.BROOKES.AC.UK/GO/RADAR 

RADAR 
Research Archive and Digital Asset Repository 
 

 

 

 

Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can 
be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis 
cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright 
holder(s). The content must not be changed in any way or sold commercially in any format or medium without the 
formal permission of the copyright holders. 

 

 

Note if anything has been removed from thesis. 

Figure 2.1 p8, Figure 2.2 p9, Figure 2.3 p11, and pages 132-135 

 

 

When referring to this work, the full bibliographic details must be given as follows: 

Cao, H. (2010). Design of an energy-efficient geographic routing protocol for mobile ad-hoc networks. PhD Thesis. 
Oxford Brookes University. 



Design of an Energy Efficient Geographic Routing Protocol 
for Mobile Ad-hoc Networks 

by 

Hui Cao 

School of Technology 
Oxford Brookes University 

A thesis submitted in partial fulfilment of the requirements of 
Oxford Brookes University for the degree of 

Doctor of Philosophy 

December 2010 



Acknowledgements 

I would like to express my sincerest gratitude to my principal supervisor Dr. Geoff 

Childs for his guidance, advice and encouragement throughout the period of the 

research. 

Special thanks are due to my second supervisor Dr. Peter Ball for fruitful discussions 

and advice. I also wish to express my appreciation to Dr. Khaled Hayatleh. Thanks must 
be given to the School of Technology for providing an excellent research environment. 

I wish to express my gratitude to my friends and colleagues, especially to An Jiang and 
Yong Sheng, for their friendship and encouragement. 

Finally, my very special thanks go to my family for their love, support and 

understanding. In particular, I would like to thank my parents who encourage and 

support me in all my pursuits. 

ii 



Table of Contents 
Acknowledgements .......................................................................................................... 

ii 

List of Symbols and Abbreviations ................................................................................ x 

Abstract ...................... 
... 

Chapter 1 Introduction ................................................................................................... 
1 

1.1 Overview ................................................................................................................ 
1 

1.2 Aim and Objectives ............................................................................................... 2 

1.3 Outline of the Thesis ............................................................................................. 5 

Chapter 2 Mobile Wireless Networks .......................................................................... .7 

2.2 The IEEE 802.11 standard .................................................................................. .7 
2.2.1 IEEE 802.11b .................................................................................................. .8 
2.2.2 IEEE 802.11 g ................................................................................................. 

10 

2.3 Routing Protocols in Mobile Ad-hoc Networks ................................................ 11 

2.3.1 Proactive Routing Protocols ........................................................................... 12 

2.3.1.1 Optimized Link State Routing (OLSR) ....................................................... 13 

2.3.2 Reactive Routing Protocols ............................................................................ 15 

2.3.3 Hierarchical Routing Protocols ...................................................................... 18 

2.3.4 Geographic Position-Assisted Routing Protocols .......................................... 19 

2.4 Summary .............................................................................................................. 23 

Chapter 3 Development of the Wireless Model on OPNET ...................................... 
24 

3.1 OPNET Modeler ................................................................................................. 24 

3.2 Modelling of the MANET on OPNET 
............................................................... 25 

3.2.1 Network Model .............................................................................................. 25 

3.2.2 Node Model .................................................................................................... 27 

3.2.3 Process Model ................................................................................................ 32 
3.2.4 Medium Access Control Model in OPNET ................................................... 35 

3.3 Model development on OPNET ......................................................................... 35 

iii 



3.3.1 Modelling wireless effects on OPNET .......................................................... 
35 

3.4 Summary .............................................................................................................. 37 

CHAPTER 4 Development of an Energy Efficient Geographic Routing Protocol 

(EE-GRP) ....................................................................................................................... 38 

4.1 Introduction ......................................................................................................... 38 

4.2 Energy Efficient Forwarding for Geographic Routing ................................... 41 

4.3 The Concept of a Gain Region ........................................................................... 43 

4.3.1 Geometrically Based Analysis for Transmission Power Reduction .............. 43 

4.3.2 Relay Region .................................................................................................. 49 

4.4 Energy Efficient Relay Node Selection .............................................................. 51 

4.4.1 Power Aware Based Routing ......................................................................... 53 

4.4.2 Battery Life Based Routing ............................................................................ 54 

4.5 Simulation and Results for Three-hop Scenario .............................................. 55 

4.6 Summary .............................................................................................................. 60 

Chapter 5 Development of Enhanced Energy Efficient Geographic Routing 

Protocol .......................................................................................................................... 61 

5.1 Routing Protocol Improvement through Relay Region Modification............ 61 

5.2 Optimisation for Relay Region Size .................................................................. 65 

5.3 Simulation Results ............................................................................................... 70 

5.4 Summary .............................................................................................................. 73 

Chapter 6 Signalling Processes for Geographic Routing Protocol ........................... 74 

6.1 Introduction ......................................................................................................... 74 

6.2 Description of the Signalling Process ................................................................ 74 

6.2.1 Initial flooding for co-ordinate distribution ................................................... 75 

6.2.2 Geographic Table ........................................................................................... 77 

6.2.3 Hello messages Broadcast 
.............................................................................. 78 

6.2.4 Neighbour Table Establishment 
..................................................................... 79 

6.2.5 Position Request ............................................................................................. 79 

6.2.6 Flooding for Position updates ........................................................................ 79 

iv 



6.2.7 Forwarding ..................................................................................................... 80 

6.2.8 Face Routing .................................................................................................. 80 

6.3 Enhanced Signalling Messages .......................................................................... 81 

6.4 Simulation & Results Analysis ........................................................................... 88 

6.4.1 Simulation Scenario ....................................................................................... 88 

6.4.2 Signalling Processes for other Routing Protocols .......................................... 89 

6.4.3 Simulation for the routing protocols .............................................................. 93 

6.4.4 Simulation Results Analysis .......................................................................... 99 

6.5 Conclusion .......................................................................................................... 117 

Chapter 7 Conclusions and Future Work ................................................................. 118 

7.1 Conclusions ........................................................................................................ 118 

7.2 Original Contributions ..................................................................................... 121 

7.3 Future Work ...................................................................................................... 122 

Reference ...................................................................................................................... 123 

Published work ............................................................................................................ 131 

Certificate of IET Short Paper Competition ............................................................ 136 

Presentation Award .................................................................................................... 137 

Appendix A: Creating a Wireless Network on OPNET .......................................... 142 

Appendix B: Radio Transceiver Pipeline Stages ...................................................... 151 

V 



List of Figures 

Figure 1.1 General structure of the wireless networks ...................................................... 
I 

Figure 2.1 Wi-Fi channels in 2.4 GHz band [21] ............................................................. .8 
Figure 2.2. The Coverage of IEEE 802.11 b [22] ............................................................. .9 
Figure 2.3. Classification of Ad-hoc Routing Protocols [35] ......................................... 

11 

Figure 2.4. Comparison of LSR and OLSR .................................................................... 
14 

Figure 2.5 DSR Routing Request and Reply Mechanism ............................................... 
18 

Figure 2.8. Dead End Scenario in Geographic Greedy Forwarding ............................... 21 

Figure 2.9. Dead End Scenario by using perimeter mode ............................................... 
22 

Figure 3.1 Network Example for MANET ..................................................................... 
26 

Figure 3.2 MANET Object Palette .................................................................................. 
27 

Figure 3.3 MANET Routing Configuration on Interface ................................................ 
28 

Figure 3.4 Packet Generation Parameters ....................................................................... 
29 

Figure 3.5. MANET Traffic Generation Parameters ...................................................... 
29 

Figure 3.6. The probability density function of Uniform Distribution .......................... . 
30 

Figure 3.7 Transmit Power Attribute ............................................................................. . 30 

Figure 3.8 MANET Node Model Architecture .............................................................. . 31 

Figure 3.9 Signalling Packet from Routing Protocols ................................................... . 32 

Figure 3.10 grp_rte Process Model ................................................................................. 32 

Figure 3.11 Flow Chart for pkt_arrival State .................................................................. 
33 

Figure 4.1. Forwarding Progress for Geographic Routing ............................................ .. 38 

Figure 4.2. Examples of Node Choice for Different Geographic Routing Protocols ... .. 41 

Figure 4.3. Forwarding Schemes Comparison with Four Hops .................................... .. 42 

Figure 4.4. Two-Hop Example ..................................................................................... .. 44 

Figure 4.5. Concept of a Gain region ............................................................................ .. 46 

Figure 4.6. Total Transmission Power in the Gain region 3D ...................................... .. 
47 

Figure 4.7.2D Representation of Total Transmission Power in the Gain region........... 48 

Figure 4.8. Gain Regions with various path loss exponents r1 ........................................ 
49 

Figure 4.9. Relay Region ............................................................................................. ... 49 

Figure 4.10. Relay region for Multi-hop Network ....................................................... ... 50 

Figure 4.11. Multi-hop Network Example 
................................................................... ... 

51 

Figure 4.12. Three-hop network ...................................................................................... 55 

Figure 4.13 Comparison of total transmission power (140m range) .............................. 56 

vi 



Figure 4.14 Comparison of route life time (140m range) ............................................... 57 

Figure 4.15 Increased Relay Region Size by Increased Tx Range ................................. 58 

Figure 4.16 Comparison of total transmission power with different transmission range 59 

Figure 4.17 Comparison of route life time with different transmission range ................ 60 

Figure 5.1 Gain region for multi-hop network ................................................................ 61 

Figure 5.2 Limits of rd which define the relay region ..................................................... 62 

Figure 5.3 Limited Relay Region Size under Minimum Hop Count .............................. 64 

Figure 5.4 Solution to Limited Relay Region Size Problem - Step I .............................. 64 

Figure 5.5 Optimised Size of Relay Region with n hops ................................................ 65 

Figure 5.6 Distance from destination for each hop ......................................................... 65 

Figure 5.7 Size Control Mechanism for Relay Region ................................................... 66 

Figure 5.8 Flow Chart of Routing Process ...................................................................... 69 

Figure 6.1 Flow Chart of Signal Messages ..................................................................... 74 

Figure 6.2 Structure of MAC Address ............................................................................ 76 

Figure 6.3 Example of Face Routing ............................................................................. . 81 

Figure 6.4 Final hop problem ......................................................................................... . 82 
Figure 6.5 Network Scenario with 11 Nodes ................................................................. . 85 

Figure 6.6 Simulation Scenario ...................................................................................... . 93 

Figure 6.7 MANET RX Group Config .......................................................................... . 94 

Figure 6.8 Comparison of Signalling Traffic (bits/sec) for Different Routing Protocol s 

............................................................................................................................... 100 

Figure 6.9 Packet Format for IP dgram_V4 ................................................................. 100 
Figure 6.10 Comparison for Average Signalling Overhead Sent (bits/sec) .................. 102 
Figure 6.11 Comparison of Signalling Overhead Sent (bits/sec) .................................. 103 
Figure 6.12 Comparison for Average Signalling overhead Sent (bits/sec) II ............... 104 
Figure 6.13 Comparison for Signalling overhead Sent (bits/sec) 

................................. 105 

Figure 6.14 Comparison for Average Signalling Overhead Sent (bits/sec) 
.................. 

106 
Figure 6.15 Average Number of Neighbour per Node for EEE-GRP .......................... 107 

Figure 6.16 Comparison of Average Signalling Overhead Sent by EEE-GRP ............ 108 
Figure 6.17 Comparison of Average Signalling Overhead Sent with Different Packet 

Size ........................................................................................................................ 109 
Figure 6.18 Comparison of Average Signalling Overhead Sent with Different Packet 

Inter-arrival Time 
.................................... 110 .............................................................. 

Figure 6.19 Simulation Scenario with 25 Nodes 
.......................................................... III 

vii 



Figure 6.20 Signalling Rate Comparison for 25 Nodes with FSPL Model .................. 112 

Figure 6.21 Signalling Rate Comparison for 25 Nodes with NonFSPL Model ........... 112 

Figure 6.22 Simulation Scenario with 50 Nodes .......................................................... 113 

Figure 6.23 Signalling Rate Comparison for 50 Nodes with FSPL Model .................. 114 

Figure 6.24 Signalling Rate Comparison for 50 Nodes with NonFSPL Model ........... 114 

Figure 6.25 Simulation Scenario with 100 Nodes ........................................................ 115 

Figure 6.26 Signalling Rate Comparison for 100 Nodes with FSPL Model ................ 116 

Figure 6.27 Results Comparison with Various Node Density & Tx Range for EEE-GRP 

.......................................................................................................................... 116 

viii 



List of Tables 

Table 2.1. Typical Receiver Sensitivity VS Data-Rate of IEEE802.1 Ib [21] .................. 9 

Table 2.2. Transmission Range of IEEE 802.11 b [22] ................................................... 
10 

Table 5.1. Size of Relay Region under Different Tx Range and Hop Count .................. 67 

Table 5.2. Simulation Results for Power Consumption with Low Hop-Count .............. 70 

Table 5.3. Simulation Results for Power Consumption with High Hop-Count .............. 71 

Table 5.4 Simulation Results for Route Lifetime with Low Hop-Count ........................ 72 

Table 5.5 Simulation Results for Route Lifetime with High Hop-Count ....................... 73 

Table 6.1 Flooding Message ........................................................................................... 
76 

Table 6.2 Geographic Table ............................................................................................ 
77 

Table 6.3 Hello message ................................................................................................. 78 

Table 6.4 Hello message with Battery Information ........................................................ 78 

Table 6.5 Neighbour Table ............................................................................................ . 
79 

Table 6.6 Neighbour Table for Node S .......................................................................... . 82 

Table 6.7 Improved Routing Table for Node S .............................................................. . 82 

Table 6.8 Improved Hello message ................................................................................ . 83 

Table 6.9 Improved Neighbour Table I .......................................................................... . 83 

Table 6.10 Improved Neighbour Table II ...................................................................... . 83 

Table 6.11 Hello message for Node A ............................................................................ 84 

Table 6.12 Hello message for Node B ............................................................................ 84 

Table 6.13 Neighbour Table of Node S .......................................................................... 85 

Table 6.14 Hello message of Node A ........................................................................... .. 86 

Table 6.15 Hello message of Node D ........................................................................... .. 86 

Table 6.16 Hello message of Node H ........................................................................... .. 86 

Table 6.17 Neighbour Table of Node A ........................................................................ .. 87 

Table 6.18 Neighbour Table of Node H ........................................................................ .. 87 

Table 6.19 Neighbour Table of Node D ........................................................................ .. 88 
Table 6.20 Improved Hello message ............................................................................... 89 

Table 6.21 Comparison of Mobile Ad-hoc Routing Protocols ....................................... 99 
Table 6.22 Number of Neighbour Node for Hello messages ....................................... . 101 

ix 



List of Symbols and Abbreviations 

ABR Associativity-Based Routing 

AODV Ad-hoc On-Demand Distance Vector routing protocol 

AP Access Point 

BER Bit Error Rate 

BPSK Binary Phase-Shift Keying 

CCK Complementary Code Keying 

CGSR Clusterhead-Gateway Switch Routing 

CSMA/CA Carrier Sense Multiple Access/Collision Avoidance 

CTS Clear To Send 

DBPSK Differential Binary Phase-Shift Keying 

DCF Distributed Coordination Function 

DQPSK Differential Quadrature Phase-Shift Keying 

DREAM Distance Routing Effect Algorithm for Mobility 

DSR Dynamic Source Routing protocol 

DSSS Direct-Sequence Spread Spectrum 

EE-GRP Energy Efficient Geographic Routing Protocol 

EEE-GRP Enhanced Energy Efficient Geographic Routing Protocol 

ETSI the European Telecommunications Standards Institute 

FSLS Fuzzy Sighted Link State routing 

FSM Finite State Machine 

FSPL Free Space Path Loss 

FSR Fisheye State Routing 

FTP File Transfer Protocol 

GEDIR Geographical Distance Routing 

GeoCast Geographic Addressing and Routing 

GFG Greedy-Face-Greedy 

GPS Global Positioning System 

GPSR Greedy Perimeter Stateless Routing 

GRP Geographic Routing Protocol 

X 



HIPERLAN High-Performance radio LAN 

HSR Hierarchical State Routing 

HTTP Hypertext Transfer Protocol 

ID Identity 

IEEE Institute of Electrical and Electronics Engineers 

ISM Industrial, Scientific and Medical 

LAN Local Area Network 

LANMAR Landmark Ad-hoc routing protocol 

LAR Location-Aided Routing 

LMR Lightweight Mobile Routing 

Ip Internet Protocol 

MAC Medium Access Control 

MANET Mobile Ad-hoc Networks 

Mbps Megabits per second 

MIT Massachusetts Institute of Technology 

MFR Most Forwarding within Radius 

MPR Multipoint Relay 

NFP Nearest with Forward Progress 

Non-FSPL Non Free Space Path Loss 

ODF Optimal-Distance Forwarding 

OFDM Orthogonal Frequency-Division Multiplexing 

OLSR Optimized Link State Routing 

OUI Organizationally Unique Identifier 

PDA Personal Digital Assistant 

PHY Physical layer 

QAM Quadrature Amplitude Modulation 

QPSK Quadrature Phase-Shift Keying 

RFC Request for Comments 

RREP Route Reply control message 
RREQ Route Request control message 
RERR Route Error control message 
RTS Request To Send 

xi 



Rx Receiver 

STD State Transition Diagram 

SNR Signal-to-Noise Ratio 

TBRPF Topology Broadcast based on Reverse Path Forwarding 

TC Topology Control 

TCP Transmission Control Protocol 

TORA Temporally-Ordered Routing Algorithms 

Tx Transmitter 

UDP User Datagram Protocol 

W Watt 

WiFi Wireless Fidelity 

WLAN Wireless Local Area Network 

ZRP Zone Routing Protocol 

Xll 



Abstract 

Mobile Ad-hoc networks extend communications beyond the limit of infrastructure- 

based networks. Future wireless applications will take advantage of rapidly deployable, 

self-configuring multi-hop mobile Ad-hoc networks. In order to provide robust 

performance in mobile Ad-hoc networks and hence cope with dynamic path loss 

conditions, it is apparent that research and development of energy efficient geographic 

routing protocols is of great importance. Therefore various mobile Ad-hoc routing 

protocols have been studied for their different approaches. Forwarding strategies for 

geographic routing protocols are discussed and there is a particular focus on the pass 

loss model used by those routing protocols, the restriction and disadvantage of using 

such path loss model is then discussed. 

A novel geographic routing protocol which incorporates both the link quality and relay 

node location information has been developed to determine an energy efficient route 

from source to destination. The concepts of a gain region and a relay region to minimize 

the energy consumption have been proposed to define the area in where the candidate 

relay nodes will be selected with the minimized hop count. The signalling overhead 

required by the protocol has been analyzed in various scenarios with different traffic 

load, node densities and network sizes. Discrete event simulation models are therefore 

developed to capture the behaviour and characteristics of the operation of the developed 

routing protocol under different path loss conditions and network scenarios. A non-free 

space path loss model has been developed with a random loss between the nodes to 

simulate a realistic path loss scenario in the network. An enhanced signalling process 

has been designed in order to achieve advanced routing information exchange and assist 

routing determination. 

Comparison of simulated characteristics demonstrates the significant improvement of 

the new routing protocol because of its novel features, the gain region to ensure the 

deduction of the energy consumption, the relay region to ensure the forward progress to 

the destination and hence maintain an optimised hop count. The simulation results 

showed that the energy consumption under the operation of the developed protocol is 

30% of that with a conventional geographical routing protocol. 
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Chapter 1 Introduction 

1.1 Overview 

Wireless networks utilise two main architectures: infrastructure (single-hop) networks 

and mobile Ad-hoc (multi-hop) networks (MANETs) [1]. The general form both these 

architectures is illustrated in Figure 1.1. 

Infrastructure network 

1ý 
1ý 

Figure 1.1 General structure of the wireless networks 

D 

A mobile Ad-hoc network is a network based on a set of autonomous nodes. There is no 
fixed infrastructure or a central server. All the nodes in the network act as routers to 

discover and maintain routes to other nodes. Wireless networks running in Ad-hoc 

mode offer more flexibility than infrastructure mode networks and eliminate single 

points of failure for the entire network. Ad-hoc networks [2-41 exclude the use of a 

wired infrastructure. A significant advantage of Ad-hoc networks is that mobile nodes 

can form arbitrary networks "on the fly" to exchange information without the need of a 

pre-existing network infrastructure. Mobile Ad-hoc networks can extend 

communication beyond the limit of infrastructure-based networks. Future wireless 

applications will take advantage of rapidly deployable, self-configuring multi-hop 

mobile Ad-hoc networks. 

Currently mobile Ad-hoc networks are utilised and proposed for various applications 

such as wireless sensor networks (WSN) which are networks of many individual nodes, 

Mobile ad hoc network 



each of which performs computations autonomously on data gathered via on-board 

sensors (optical, aural, temperature, etc. ) or received via a wireless link. 

Wireless networks of sensors are likely to be widely deployed in the near future because 

they greatly extend our ability to monitor and control the physical environment from 

remote locations and improve the accuracy of information obtained via collaboration 

among sensor nodes and online information processing at those nodes. Networking 

these sensors (empowering them with the ability to coordinate amongst themselves on a 
larger sensing task) will revolutionize information gathering and processing in many 

situations. Typical applications include habitat monitoring [5], tracking of moving 

objects [6] and environmental monitoring [7]. Other applications of Ad-hoc networks 

are target tracking, emergency rescue tasks and data acquisition in inhospitable or 
human inaccessible environments [8]. 

Multihop Ad-hoc networks have been the focus of recent research and development 

efforts in mobile networks [9]. MANET research generally assumes the following 

conditions [10]: 

" Distributed operation. The control and routing operations are distributed among 

network devices. 

" Multi-hop routing. Multi-hop forwarding decisions at each node require a 
distributed routing algorithm that can discover network topology so that routes can 
be formed between communicating nodes. 

" Fluctuating link capacity. MANETs operate in the wireless domain. Atmospheric 

properties, competition from other sources of RF radiation and noise limit the 

capacity of a node to transmit information. 

" Light-weight terminals. Since MANETs require mobility, nodes often run off 
battery power and conform to small form-factors that limit computing power. 

1.2 Aim and Objectives 

Routing protocols for mobile Ad-hoc networks are currently the subject of intensive 

research. The goal of routing is to deliver a packet from a source node to destination 
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node in a network. To solve the routing problem, nodes of the network execute a 

distributed "routing scheme". 

Geographic, or position-based routing uses the location information of nodes to find the 

route towards the destination. The co-ordinates of each node can be determined by using 

a GPS (Global Positioning System) receiver at each node and distributing this 

information to all other nodes within the network. Through location management 

schemes [11,12], a source node is able to use this information to determine the 

location of the destination and identify all the intermediate nodes that could be used as a 

relay to the destination. Properties such as stateless nature and low maintenance 

overhead make geographic routing an attractive technique. 

Conventional geographical routing protocols use location information as the only metric 

to select a relay node. Each node makes a decision about which neighbour to forward 

the message to based solely on the location of itself, its neighbouring nodes, and the 

destination node. The ideal FSPL (free space path loss) model is the basis of many 

protocols and is widely used in analytical and simulation studies. Each node has a fixed 

transmission range so that only the nodes within the range can receive the messages. 
Such a range can be modelled by a disk with fixed radius centred at the node. Hence, a 

maximum-distance greedy forwarding technique has been employed by those protocols 
in which a source node selects a relay node within its transmission range that is the 

closest to the destination in order to ensure a minimised hop count. However, the 

variability of wireless links exposes a key weakness in the greedy forwarding strategy 
which may result in packets being dropped and broken links. These schemes then have 

an innate weakness in terms of energy efficiency and link reliability. 

The wireless nodes are normally energy and memory constrained devices, such as PDAs, 

cell phones, pagers and battery-powered sensors. Mobile users rely on a small battery to 

power the terminal, and a large part of the required power may be used in signal 
transmission. Even when using a laptop with a larger battery, the power requirements of 
the 802.11 specification form a significant factor in battery life [13]. The hardware 

constraints prevent the nodes from performing some of the energy costly operations that 

are utilised by the traditional wired networks. It is therefore desirable for a routing 
protocol to try and achieve the lowest possible transmitted power. 
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The reduction in transmitted power can have several benefits [14-17]. The battery life of 

a terminal may be extended, and frequency re-use can be greater due to the reduction in 

interference, so increasing capacity. Alternatively, the reduction in path loss may 

improve service. High data rates, or even any service, may be unavailable to users near 

the edge of a conventional cell due to the maximum transmitted power being unable to 

achieve the required signal to noise ratio. With relaying the only requirement is that 

users can achieve the required signal strength at the next relay, meaning that coverage 

and high data rates should be available to more users. 

In order to provide robust performance in mobile Ad-hoc networks and hence cope with 
dynamic path loss conditions, it is apparent that research and development of energy 

efficient geographic routing protocols is of great importance. The aim of the work is to 

develop a novel geographic routing protocol which incorporates both the link quality 

and relay node location information to determine an energy efficient route from source 

to destination. The concepts of a gain region and a relay region have been proposed to 

define the area in where the candidate relay nodes will be selected, with the specific aim 

of maintaining a minimized hop count. 

The research programme therefore comprises the following objectives: 

" To study and investigate existing geographic routing protocols and the signalling 

processes. 

" To study simulation models including network models, node models and process 
models of MANET routing protocols by using a leading discrete event driven 

modelling and simulation software, the OPNET Modeler [18]. 

" To model and simulate variable radio path loss model. The purpose being to adopt 

accurate models to generate realistic path loss conditions for MANET simulation 

and hence to obtain more realistic network performance. 

" To develop an energy efficient geographic routing protocol incorporating variable 
path loss assignment. To analyse the signalling overhead required to operate the 

protocol compare its efficiency with that of established protocols for scenarios with 
different node density and network size. 
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" To seek to optimize the energy efficient geographic routing protocol by focusing on 
investigation of hop count with further improvement of relay region determination. 

The optimized energy efficient geographic routing protocol being designed to 

support a large number of hops to cope with longer separated source and destination 

nodes and provide improved performance in terms of both energy efficiency and 

optimised hop count. 

1.3 Outline of the Thesis 

In Chapter 2 wireless LAN technology and the IEEE 802.11 standard [19] are 
introduced. A range of routing protocols for mobile Ad-hoc networks are reviewed. 
Some key features of routing protocols for mobile Ad-hoc networks are discussed in 

particular for geographic routing. 

In Chapter 3a discrete-event simulation package, the OPNET Modeler, is introduced. 

The Modeler is considered as the simulation platform for developing, modelling and 

simulating the proposed routing protocols. Simulation models are developed and 
implemented on OPNET with a hierarchical structure. The network architecture for 

modelling of routing operation is determined. This is followed by a description of each 

of the simulation models used in OPNET. 

Chapter 4 introduces the development of an energy efficient geographic routing 

protocol. The focus is made up of the path loss model of the wireless radio transmission. 
Attention is then drawn to energy efficiency as a key issue of geographic routing 
protocols. The development of geographic protocols is reviewed and discussed in order 
to determine how an energy efficient geographic routing protocol will be achieved. The 

concepts of gain region and relay region are described to exploit the novel feature of the 

proposed energy efficient geographic routing protocol in which candidate relay nodes 
are defined. For comparison several conventional forwarding strategies are discussed 

with the relative advantages and disadvantages. The proposed routing protocol is 
designed and implemented within OPNET to simulate the energy efficient operation 
based on the framework described in Chapter 3. The routing performance is analysed in 

terms of total transmission power and route lifetime to show the benefit of the energy 
efficient geographic routing protocol. 
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In Chapter 5 further improvement of proposed energy efficient geographic routing 

protocol is carried out to obtain improved routing performance in a scenario where the 

hop count is increased through modification of the relay region. Attention is drawn to 

the relationship between the hop count and the size of each relay region which 
determines the number of candidate nodes for each hop. Instead of using maximum- 
distance forwarding to achieve a minimised number of hops, the proposed protocol 

predetermines an optimal number of hops and uses this hop count for route 
determination. A size control mechanism for the relay region is proposed in order to 

maintain a reasonable size of the relay region for each hop. The simulated 

characteristics are also compared with the routing protocol presented in Chapter 5. 

In Chapter 6 the signalling processes for the proposed routing protocols in Chapter 4 

and 5 are introduced. With the enhanced signalling system, the routing protocol is able 
to obtain additional information to assist route determination. An investigation with a 
focus on the impact of different network densities and traffic patterns on the proposed 

routing protocol is also carried out. The signalling system is simulated and the amount 

of signalling information is determined and analysed, and compared with the signalling 

overhead of some established routing protocols. 

Finally, Chapter 7 provides a summary of the research undertaken and the conclusions 
that have been drawn. The original contributions are also identified and suggestions for 

future work are presented. 
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Chapter 2 Mobile Wireless Networks 
2.1 Introduction 

Wireless LANs are used for providing network services in places where it may be very 
difficult or too expensive to lay cabling for a wired network. WLANs can be broadly 

classified into two types [20], infrastructure and Ad-hoc networks, based on the 

underlying architecture. 

In infrastructure networks, a stationary node called an access point (AP) coordinates the 

communication taking place between nodes in the LAN. The AN can interact with 

wireless nodes as well as with the existing wired network. The other wireless nodes, 

also known as mobile stations, communicate via APs. 

In Ad-hoc networks, no fixed infrastructure is needed. Mobile nodes communicate with 

each other. Signalling messages are forwarded through other nodes which are directly 

accessible. 

The two main standards for WLANs are the Institute of Electrical and Electronics 

Engineers (IEEE) 802.11 standard [211 and the European Telecommunications 

Standards Institute (ETSI) high-performance radio LAN (HIPERLAN) standard. The 

characteristics of mobile nodes modelled in this research project are based on the 

IEEE802.1 lb standard. The detail of the IEEE 802.11 standard is described in the 
following sections. Various routing protocols for Ad-hoc networks are also discussed in 

this chapter, especially for some routing protocols which are selected to compare the 

performance of the developed routing protocol. 

2.2 The IEEE 802.11 standard 
The IEEE 802.11 Working Group was formed in 1990 to define standard physical (PHY) 

and medium-access control (MAC) layers for WLANs in the publicly available ISM 
(the industrial, scientific and medical) bands. The objective of this standard is to provide 
wireless connectivity to wireless devices that require rapid deployment, which may be 

portable, or which may be mounted on moving vehicles within a local area. The IEEE 
802.11 standard also aids the regulatory bodies in standardizing access to one or more 
radio frequency bands for the purpose of local area communication. The 802.11 
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workgroup currently documents use in three distinct frequency ranges, 2.4 GHz, 3.6 

GHz and 4.9/5.0 GHz bands. Each range is divided into a multitude of channels. 

Currently, the most widely used are those defined by the 802.11 b and 802.11 g protocols 

which are introduced as follows. 

2.2.1 IEEE 802.11b 

The IEEE 802.11 b standard [21 ] was ratified in 1999 with operations in the 2.4 GHz 

ISM band, which is freely available for use throughout the world. This standard is 

popularly referred to as Wi-Fi, standing for Wireless-Fidelity. It can offer data rates of 

up to 11 Mbps. As shown in Figure 2.1, there are 14 channels designated in the 2.4 GHz 

range spaced 5 MHz apart with the exception of a 12 MHz spacing before Channel 14. 

In Europe, the allowable channels are 1-13. Channel 14 is only valid for direct-sequence 

spread spectrum (DSSS) and Complementary Code Keying (CCK) modes in Japan. 

As the IEEE 802.11b protocol requires 25 MHz of channel separation, adjacent 

channels overlap and will interfere with each other. There are three channels, channel 1, 

6 and 11, available to use without overlap. 

Figure 2.1 Wi-Fl channels in 2.4 GHz band 1211 

A receiver has a minimum received power threshold which is called the receiver 
sensitivity that the signal must have to achieve a certain bitrate. If the signal power is 
lower the maximum achievable bitrate will be decreased or BER performance will 
decrease. The IEEE802.1 Ib standard operates in the 2.4 GHz frequency range and uses 
the Direct Sequence Spread Spectrum (DSSS) modulation method. This results in a 
maximum data rate of 11 Mbps. As the distance between the access point and client 
increases, the data rate falls to 5.5,2, and I Mbps, respectively. Table 2.1 shows the 
typical receiver sensitivity values for these data rates for a 802.11 b device. 
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Data Rate (Mbps) Receiver Sensitivity (dBm) 

11 -82 

5.5 -87 

2 -91 

1 -94 

Table 2.1. Typical Receiver Sensitivity VS Data-Rate of IEEE802.11b 1211 

Usually, WLAN equipment has an output power of 15 dBm (about 30mW). The legal 

limit for radiated power (EiRP) for WLAN is generally set to 100mW (20dBm) in 

Europe. Figure 2.2 shows the indoor coverage of IEEE 802.11 b under different data 

rates with 100mW at 2.4GHz. While the data rate decreases from 1l Mbit/s to 1 Mbitls, 

the coverage of the AP increases from 48m to 124m in an indoor environment. This is 

because the receiver sensitivity increases as the data rate decreases. 

Figure 2.2. The Coverage of IEEE 802.11b 1221 

Table 2.2 below lists the transmission range for the IEEE 802.1 lb in the indoor and 
outdoor environment [22]. In the outdoor free space environment, the transmission 

range is 304m with 11 Mbps. When the data rate is down to 1 Mbps, the maximum 
transmission range reaches 610m. In multipath environments such as offices and other 
indoor environments, the maximum ranges at 1 Mbps and 11 Mbps are 124m and 48m 

respectively. 

9 



Data Rate (Mbps) 11 5.5 2 1 

Indoor Range (m) 48 67 82 124 

Outdoor Range (m) 304 - - 610 

Table 2.2. Transmission Range of IEEE 802.11 b 1221 

2.2.2 IEEE 802.118 

The IEEE 802.11g standard was published in 2003 [23]. This standard was involved in 

extending the 802.11b standard to support high-speed transmissions of up to 54 Mbps 

and uses the same Orthogonal Frequency-Division Multiplexing (OFDM) based 

transmission scheme as 802.11a, while maintaining backward compatibility with current 
802.11 b devices. The possible data rates for 802.11 g devices using OFDM are 6,9,12, 

18,24,36,48, and 54 Mbps, and it also achieves 5.5 and 11 Mbps when using 
Complementary Code Keying (CCK), and I and 2 Mbps under Differential Binary 

Phase-Shift Keying (DBPSK) / Differential Quadrature Phase-Shift Keying (DQPSK) + 

Direct-sequence spread spectrum (DSSS) modulation schemes. 

Table 2.3 lists the transmission ranges and modulation schemes for the IEEE 802.11g in 

the indoor and outdoor environment at different data rates [24]. Binary Phase-Shift 
Keying (BPSK), Quadrature Phase-Shift Keying (QPSK), 16 Quadrature amplitude 

modulation (16QAM) and 64QAM schemes are also used to support various data rates 
for IEEE 802.11 g. 

Data Rate 

(Mbps) 

Transmission 

Type 

Modulation 

Scheme 

Outdoor Range 

(m) 

Indoor Range 

(m) 

54 OFDM 64 QAM 34 27 

48 OFDM 64 QAM 61 29 

36 OFDM 16 QAM 69 30 

24 OFDM 16 QAM 99 43 

18 OFDM QPSK 122 55 

12 OFDM QPSK 145 64 
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11 DSSS CCK 149 67 

9 OFDM BPSK 168 76 

6 OFDM BPSK 198 91 

5.5 DSSS CCK 201 94 

2 DSSS DQPSK 210 107 

1 DSSS DBPSK 213 125 

Table 2.3. Transmission Range and Modulation Schemes of IEEE 802.11 g [24] 

2.3 Routing Protocols in Mobile Ad-hoc Networks 
A mobile Ad-hoc network (MANET) [25] is a self-organizing and self-configuring 

multi-hop wireless network, where the network structure may change dynamically. The 

changing topology of mobile Ad-hoc networks and the use of the wireless medium 

justify the need for different routing protocols compared to those developed for wired 

networks or centrally controlled cellular networks. Various routing protocols for mobile 

Ad-hoc networks have been proposed [26-34] to address the problem of decentralized 

routing. 

In Ad-hoc networks, nodes do not start out familiar with the topology of their networks; 

instead, they have to discover it. The basic idea is that a new node may announce its 

presence and should listen for announcements broadcast by its neighbours. Each node 
learns about nodes nearby and how to reach them, and may announce that it, too, can 

reach them. A classification of Ad-hoc routing protocols is shown below in Figure 2.3 

which differentiates the routing protocols according to their technique, link state, hop 

count and QoS in route discovery. 

Figure 2.3. Classification of Ad-hoc Routing Protocols 1351 
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In Figure 2.3, Ad-hoc routing protocols are classified in three broad categories: flat 

routing, hierarchical routing and geographic position assisted routing. Flat routing 

protocols adopt a flat addressing scheme. Each node in the network participating in 

routing plays an equal role. Routing protocols in flat network structure fall into two 

categories, namely, table-driven proactive routing and on-demand reactive routing. 

In contrast, in hierarchical routing, some nodes would be selected as header nodes 

amongst a cluster. Routing between nodes is different clusters must be directed via the 

header nodes. This scheme requires the complexity of selecting and maintaining the 

node hierarchy, but reduces the amount of signalling to support routing. 

Routing with the assistance from geographic location information requires each node to 

be able to obtain location information through location services such as Global 

Positioning System (GPS). 

2.3.1 Proactive Routing Protocols 

Many proactive (table-driven) routing protocols stem from conventional link state 

routing protocols which are based on the periodic exchange of routing table information 

between all nodes in the network, even if no data traff ic goes through. They aim to 

maintain fresh lists of all destinations and their routes. In this approach, each Ad-hoc 

node contains a routing table which specifies the next node in a route to any other node 
in the network. In mobile Ad-hoc networks, a route can be identified more quickly 

using proactive routing than reactive routing. However, the power and bandwidth 

consumption is larger due to topology table exchange among nodes. This takes place 

even if the network is in idle mode when no data transmissions occur in the network. So 

a large portion of the scarce wireless bandwidth is wasted on signalling overhead to 

broadcast routing tables. Structured routing can be utilized to reduce the route setup 
time and increase throughput. The main disadvantages of such algorithms are: 

0 Respective amount of data for maintenance 

" Slow reaction on restructuring and failures 

Some typical proactive routing protocols include the Fisheye State Routing (FSR) [36, 

37], Fuzzy Sighted Link State routing (FSLS) [38], Optimized Link State Routing 

(OLSR) [28,39,40] and Topology Broadcast based on Reverse Path Forwarding 
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(TBRPF) routing protocol [29,30]. In this thesis, OLSR is selected as one of the 

reference protocols to compare the performance with other routing protocols as well as 

my proposed protocol. More details of OLSR are described as follows. 

2.3.1.1 Optimized Link State Routing (OLSR) 

OLSR is an IP routing protocol which is optimized for mobile ad-hoc networks [28,39, 

40]. It is a table-driven proactive routing protocol based on link-states. Instead of 

relying on the number of hops to the destination node by distance vector protocols, link- 

state protocols determine the best route according to the link delay, load and bandwidth 

etc. It is acknowledged that link-state routes are more stable and accurate although 

estimating the best available route by this approach is more complicated than simply 

utilising hop count. Compared with pure link-state protocols, the control overhead 

information of OLSR is compact and the number of retransmissions required to flood 

these control messages is reduced. 

The perfect network context for OLSR is a low mobile and dense network scenario. The 

control signalling overhead of OLSR does not require a reliable transmission link, 

which is very suitable for the dynamic condition in wireless networks. Mobility is 

supported in OLSR by periodically broadcasting the overhead control signals in the 

network. OLSR uses Hello and Topology Control (TC) messages to discover and then 

discriminate link state information throughout the mobile ad-hoc networks. Individual 

nodes use this topology information to compute next hop destinations for all nodes in 

the network using shortest hop forwarding paths. Topology information is exchanged 

with other nodes of the network regularly. Each node in the network selects a set from 

the next hop neighbour nodes as "multipoint relay" (MPR) nodes. The purpose of 

multipoint relay set is to reduce the overhead control messages and provide route 

optimization. 

In OLSR, only nodes, selected as MPRs, are responsible for forwarding control traffic, 
intended for diffusion into the entire network. MPRs retransmit broadcast control 

messages while other one-hop neighbours receive messages and update their 
information accordingly but do not retransmit them [41]. MPRs provide an efficient 

mechanism for flooding control. traffic by reducing the number of transmissions 

required. A comparison of LSR and OLSR protocols is shown in Figure 2.4 . Using 
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LSR 24 retransmissions are required to diffuse a message up to 3 hops, while OLSR 

Link State Routing Optimized Link State Routing 

" Retransmission node (MPR) 

Figure 2.4. Comparison of LSR and OLSR 

The route is established by using the routing table, which is based on the topology table 

and the neighbour node list saved in each node. The topology table is built by 

broadcasting Topology Control messages periodically which contain the multipoint 

relay set of each node. This makes the multipoint relay set for each node available to 

use for all other nodes in the network. The purpose of having a multipoint relay set in 

OLSR is to avoid sending the same overhead control message multiple times to the 

same node. This will optimize the energy and network bandwidth consumption. The 

Route discovery procedure is described as follows: 

" Hello message is broadcasted by each node periodically that contains the 

information of its one-hop neighbours. The TTL of the Hello message is set to 1, 

which means the Hello message will not be forwarded further by its neighbours. 
Each node can obtain local topology information through the Hello message 

exchange. 

"A node (selector) chooses a subset of its neighbour nodes based on the local 

topology information to act as its MPRs, which will be specified in the periodic 
Hello messages later. MPR nodes generally have two main roles: 

  When a packet is sent or forwarded by a node, all the neighbours of the 

14 
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node will receive the packet. But only its MPR nodes will forward that 

packet. 

  The MPR broadcasts its selector list periodically throughout the network 

with MPR flooding. Thus every node in the network learns which MPR 

nodes could reach every other node. The number of retransmissions of 

topology information broadcast and the size of broadcast packet can then be 

reduced. As the result, the bandwidth consumption of OLSR is much lower 

than the original link state routing protocols. 

  With global topology information exchanged, stored and updated at every 

node, a shortest path from one node to other nodes through a series of MPRs 

could be computed using Dijkstra's algorithm 142]. 

The main advantages of OLSR are: 

" Minimized latency 

0 Suitable for large and high density networks 

" OLSR achieves more efficiency than classic link state algorithms in a dense 

network. 

" OLSR can support QoS monitoring by providing link quality and bandwidth 

information in link state entries. Thus, the quality of the path is known prior to 

route setup. 

Some disadvantages of OLSR include: 

" The OLSR can reduce to a pure link state routing protocol in the situation of low 

density networks, every neighbour of a node becomes a multipoint relay. 

" High signalling overhead of control messages ( reduced by MPR usage ) 

" High computation of the route for each node 

" Large storage requirement for routing information. 

" Implementation complexity 

2.3.2 Reactive Routing Protocols 

The reactive protocols are based on on-demand route discoveries that update routing 

tables only for the destination that has traffic going to it. The protocols find a route on 
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demand by flooding the network with Route Request packets. Reactive routing 

protocols suffer from the initial route setup latency, introduced by their discovery phase. 
This degrades the performance of interactive and/or multimedia applications. With light 

traffic and low mobility network, on-demand reactive routing protocols scale well to 

large populations in terms of low bandwidth and storage overhead. However, when the 

traffic becomes heavy in a dense network, more sources will search for destinations. 

Also, in a high mobility scenario, the pre-discovered route may not be valid even after a 

short period, requiring repeated route discoveries on the way to the destination. Route 

caching then becomes ineffective. 

The main disadvantages of such algorithms are: 

0 High latency time in route finding 

" Excessive flooding can lead to network clogging 

Examples of reactive routing include Ad-hoc On-Demand Distance Vector Routing 

protocol (AODV) [26] and Dynamic Source Routing protocol (DSR) [27], 

Associativity-Based Routing (ABR) [43] , Lightweight Mobile Routing (LMR) [44] and 
Temporally-Ordered Routing Algorithms (TORA) [45]. Among the many proposed 

reactive routing protocols, AODV and DSR have been extensively evaluated in the 
MANET literature and are being considered by the MANET IETF Working Group as 
the leading candidates for standardization. The details of AODV and DSR are described 

in the following sections as aspects of their performance is compared with that of the 

routing protocol proposed in this thesis. 

2.3.2.1 Ad-hoc On-Demand Distance Vector Routing (AODV) 

Ad-hoc On-Demand Distance Vector Routing protocol (AODV) discovers routes on an 
"on-demand" basis via a similar route discovery process, but uses a different 

mechanism to maintain routing information. It is a "Hop-by-hop" protocol and uses 

routing table, one entry per destination. Intermediate nodes use routing table to 
determine the next hop based on the destination node. It relies on routing table entries to 

propagate a route reply control message (RREP) back to the source, and route data 

packets to the destination. In AODV, upon receiving a query, a node learns the path to 
the source, which is called backward learning, and enters the route in the forwarding 

routing table. The intended destination node receives the request and responds using the 
path traced by the query. A full duplex path can be established through this procedure. 
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To reduce the signalling overhead in a new path search, the query packet will be 

dropped during the flooding stage if it encounters a node which already has a route to 

the destination. After the path is established, it is maintained as long as the source node 

uses it. A link failure message will be reported to the source node recursively through 

the intermediate nodes if the path is invalid. This in turn will trigger a new query- 

response procedure to update the route. 

A sequence number is used in AODV to ensure that routing information is up-to-date. 
The path discovery is established when a source node needs to communicate with a 
destination node, provided that the source has no routing information to the destination 

in its routing table. Path discovery is initiated by broadcasting a route request control 

message ̀RREQ' that propagates in the forward path. If a neighbour node knows the 

route to the destination, it will reply with a RREP that propagates through the reverse 

path. Otherwise, the neighbour node will re-broadcast the RREQ. AODV maintains a 

path by using Hello messages, used to detect that neighbours nodes are still in range of 

connectivity. If a link is lost or broken, the node immediately engages a route 

maintenance scheme by initiating RREQs. The node can also learn about a lost link 

from its neighbours through route error control messages RERR [46]. 

2.3.2.2 Dynamic Source Routing (DSR) 

The main difference between DSR and all other reactive protocols is that DSR is based 

on a source routing scheme in which the source node specifies the intermediate node 

sequence. In DSR, routes are stored in a route cache, data packets carry the source route 
in the packet header [27]. The entries which are stored in the route cache are updated as 
new routes are learned. When a node needs to send data to a destination node, it first 

searches its routing cache to see if it has a route to the destination. If a valid route exists 
in the routing cache, it will use that route to send the packet out. The source route is 

then carried by the data packet in the packet header. Route discovery is undertaken 
when a source needs a route to a destination. It is the major phase in DSR protocol, 

which is executed by flooding Route Request (RREQ) packets in the network as shown 
in Figure 2.5(a). The source node floods the network with RREQs. Each node receiving 
a RREQ adds itself to the path in the message and rebroadcasts it unless it is the 
destination node or it has the route to the destination in its cache. A destination node or 
a node knowing the route to the destination in its cache replies by unicasting with a 
RREP which contains the complete path built by intermediate nodes. RREQ and RREP 
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routing process are programmable by developing the process models within the process 

editor. The behaviour of processes are specified using finite state machines (FSMs) and 

an extended high-level language called Proto-C. The FSMs are represented using state 

transition diagrams (STDs) as the state transition approach is well suited to discrete 

event systems. Proto-C is based on a combination of STDs, a library of functions known 

as kernel procedures, and the general facilities of the C or C++ programming language. 

The description above essentially spans all the hierarchical levels of a simulation model 

on OPNET. Based on an object-oriented modelling approach and graphical editors, the 

layered modelling architecture and features of Proto-C language provide a flexible and 

open environment to support development of protocols and algorithms. As a powerful 

simulation package, OPNET Modeler incorporates a series of tools for model design, 

simulation, data collection, and data analysis. In this research use of OPNET for the 
development of the routing simulation models for MANET became an essential feature 

of the research programme. 

Much effort was put into the design and development of the routing protocol model for 

MANET on OPNET: from top layer design of the routing protocol, establishment of the 

node structure and implement action of each functional block at the node level, to the 
development of process models based on Proto-C programming. Furthermore, in order 
to produce performance analysis statistics such as hop count, route power consumption, 
life-time of the link, etc., the desired statistics were planned and programmed while 
developing the process models. 

3.2 Modelling of the MANET on OPNET 

3.2.1 Network Model 
The details of deploying a MANET model are introduced in appendix A. To establish a 

network model, various network parameters need to be configured such as network 
scale, node model type, number of nodes, distribution of the nodes etc. A typical 

example network for MANET on OPNET is shown in Figure 3.1. Each node within the 

network is uniquely identified by its IP address. IP auto-addressing is supported for 
MANET nodes. All MANET nodes are configured to belong to the same lP network. If 
there is a static assignment, that assignment will use a network address which is in the 
subnet to which all nodes must belong. If there is more than one static assignment and 
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the nodes have been given addresses in different networks, the first static assignment 

that is encountered becomes the network address of all the nodes in the subnet. 
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Mobile node placement can be chosen from the three distribution functions which are 

random, grid and circular distribution. In this project, random distribution was used to 

simulate a realistic deployment of mobile nodes in the network. The maximum 

communication distance between two nodes is a function of three parameters: the 

transmission power of the sending node, the path-loss propagation model, and the 

reception power threshold (receiver sensitivity) of the receiving node. The Dynamic 

Receiver Group configuration object lets you compute receiver groups, which are the 

set of possible receivers with which a node can communicate within the maximum 

communication distance. This configuration object lets you specify: 

" the criteria (channel match, distance threshold, and pathloss threshold) used to 
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determine which receivers belong to a receiver group 

" when the groups are used 

G how often group membership is computed 

By restricting the set of possible receivers, you can reduce the number of transmissions 

sent out by the nodes in the network and reduce simulation runtimes. The decrease in 

simulation speed depends on the following factors: 

" Number of possible neighbours for each node with respect to the total number of 

receivers 

" Number of recomputations during the simulation (refresh interval) 

3.2.2 Node Model 

All MANET-capable nodes are included in the MANET object palette as shown in 

Figure 3.2. 
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Figure 3.2 MANET Object Palette 

The following nodes can be used in MANET network models. 

" Wireless LAN workstations and servers: These node models are used to generate 

application traffic such as FTP, E-mail, and HTTP over TCP over IP over wireless 
LAN. These nodes can be configured to run any available MANET routing protocol. 

" MANET stations: These node models are used to generate raw packets over IP over 

wireless LAN. They function as traffic sources or destinations and can be 

configured to run any available MANET routing protocol. For this node type, 
Layer-2 is wireless LAN. 
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0 Wireless LAN routers and MANET gateway: These node models function as access 

points in a MANET. When MANET gateway functionality is enabled, these nodes 

can also connect MANET nodes to IP networks. 

Routers within a MANET must have the same MANET routing protocol configured on 

every router interface under attributes IP > IP Routing Parameters > Interface 

Information > Routing Protocols on a MANET station, as shown in Figure 3.3 below. 
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Figure 3.3 MANET Routing Configuration on Interface 

Applications are the predominant sources of traffic in the network. It is the traffic 

generated by applications that loads the network, makes demands on the bandwidth and 
the underlying network technology, and creates signalling overhead in MANET. The 

standard applications, such as FTP and Email, can be configured by the "Application 

Config" utility node to generate simulated traffic in the network model. To be an 

accurate representation of the application, an application model should have the same 
traffic characteristics in terms of the size of the packets generated, the rate at which they 

are generated etc. Raw packet generation can also be used by MANET stations in the 

network model. Raw packet generation can be configured from "MANET Traffic 

Generation Parameters" attributes on a MANET station in the Project Editor as shown 
in the following Figure 3.4. 
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Figure 3.4 Packet Generation Parameters 

The MANET traffic generator enables superposition of numerous packets' generators, 

which are defined by the following parameters: 

" Start time of generator activity (s) 

" Statistical distribution of time between packets (s) 

" Statistical distribution of the packet size (bits) 

" IP address of final destination 

" End time of generator activity (s) 

S MANET Traffic Generation Parameters 
Number of Rows 1 

i. 1 100.0 
Start Time (seconds) 100.0 
Packet Inter"Arrival Time (seconds) uniform (2.0,2.5) 
Packet Size (bits) constant (1024) 
Destination IP Address Random 
Stop Time (seconds) End of Simulation 

Figure 3.5. MANET Traffic Generation Parameters 

Figure 3.5 shows a sample of the MANET traffic generation editor. Number of Rows 

defines the number of different traffic patterns in the simulation. A uniform distribution 

is used in the simulation to generate random values for packet inter-arrival times. This 

parameter determines when packets are generated in the source node for transmitting to 

the destination node. In probability theory and statistics, the uniform distribution, 

29 



sometimes also known as the rectangular distribution, is a distribution in which all 
intervals of the same length (in this case 10"6s) have equal probability within the defined 

min and max range as shown in Fig 3.6 in which P(x) is the probability density function. 
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Figure 3.6. The probability density function of Uniform Distribution 

The maximum transmission range between two MANET nodes is a function of three 

parameters: the transmission power of the sending node, the path-loss propagation 

model, and the reception power threshold (receiver sensitivity) of the receiving node. 

Based on the configured values of these parameters, you can model MANET networks 

in which the communication distance is more than 300 meters. The IEEE 802.11 

standard limits the distance between nodes to 300 meters. Therefore, a network that 

extends beyond 300 meters might incur a performance degradation in the WLAN MAC 

algorithm. 

The receiver sensitivity concept is implemented through the reception power threshold 

attribute with MANET models. Packets with a reception power that is lower than the 

threshold cannot make the receiver lock onto their signal and will be treated as noise 

packets. When the signal of these packets is very weak, the receiver can simultaneously 

receive another packet with a strong signal from a nearby neighbour. 

The transmitter power can be configured on each MANET node. Transmission range is 

configured in the Transmit Power attribute as shown below. 
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Figure 3.7 Transmit Power Attribute 
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As shown in Figure 3.8, the node model of MANET simulates the protocol stack. GRP, 

DSR, AODV and TORA protocols are implemented over IP while OLSR is 

implemented over UDP. 

12L 

Geographic Routing Protocol (GRP) is implemented at the IP layer. As shown in the 

figure above, ip_dispatch is the root process for IP and has as a child process, 

manet_mgr. manet_mgr and manet_rte_mgr are the manager process models which 

provide a common interface to multiple MANET routing protocols. manet_mgr is 

responsible for spawning the GRP child process when a node is configured for GRP. 

Figure 3.9 shows the flow chart of signalling packets from routing protocols. The 

signalling messages generated by MANET routing protocols are sent to the manet_mgr 

process model and then to ip_dispatch and the IP routing process and finally to the 
MAC/physical layer for transmission. 
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Application layer 

3.2.3 Process Model 

The grp_rte process as shown in Figure 3.10 implements the GRP routing algorithm as 

well as the improved GRP protocol which is proposed in later chapters. 

piR_arrivsl 

Mý 

Figure 3.10 grp_rte Process Model 
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Init state: This state consists of the initialization of the process model. User defined 

attributes are loaded and routing information tables are initialized. A self interrupt is 

scheduled to move to the next state. A jitter between 0 and 5 seconds is added before 

sending out flooding packets. Once the initialization step is accomplished, the process 

transits to the wait for flood state. 

waitforflood state: This state performs initial flooding so that it bootstraps to reach 

steady state. A flooding message is broadcast to all nodes in the network to inform its 

presence and location information. A self interrupt is scheduled to move to the next 

state to initiate the first Hello Interval. A jitter between 0 and 5 seconds is also added 
before sending out hello packets. 

waitfor_hello state: This state is the initialization of the hello process. A node 
broadcasts a Hello message in order to advertise its presence to the neighbourhood. A 

schedule is made for the next periodic hello process according to a pre-defined hello 

interval. Once this step is accomplished, the process transits to the wait state. 

wait state: This is the idle sate for the node. It will move to other states when a new 

event is triggered such as the arrival of packet etc. 

pkt_arrival state: When a packet arrives, the node checks its attribute and handles the 

packet appropriately based on its type. The flow chart for this state can be seen in the 
Figure 3.11 below. 
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The arrived packet can either be: 

"A higher layer application packet waiting to be transmitted when a route is found. 

"A MANET signalling/routing packet. 

If the packet is from the application (higher) layer, the node then checks if the 

destination exists in its routing table. The application packet will be destroyed if the 

destination is not known to this node. Or the node will go through the routing process to 

find a relay node to send the packet to if the destination exits in the routing table. 

However, the packet will be destroyed if no next hop can be found. 

If the arrived packet is either a GRP control packet or a data packet from the lower layer 

then if the packet was sent out by the node itself, it will be discarded, if not, the node 

will check the type of option set in the packet. The packet may be one of the types listed 

below: 

"A Hello message. The node will add or update the neighbour node information to 

the neighbour table. 

"A flooding message. The routing table of the node will be updated with the 

information provided by the message. 

"A data packet. The node will check the address of the destination node. If the packet 
is for this node, it will be sent to the application layer. Or this node is just an 
intermediate node to the destination, the routing procedure will be executed to find 

the next relay node for the packet. 

"A position request option. The node will check if the request is for itself or one of 
the nodes within its routing table. If so, a position response packet will be sent back 

otherwise the packet will be resent out to the neighbourhood. 

"A position response option. The node will update the routing table with the 
information contained in this message. 

hello-broadcast state: This state broadcasts a hello request message and schedules the 

next periodic hello. 

position_update state: Check if the node has moved greater than the pre-defined 
threshold distance which the node needs to flood its current position to all other nodes 
in the network. 
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pos_req_expiry state: Find the list of destinations that the node is still waiting on the 

position information. When the position request timer has expired, node resends the 

position request message to the neighbour node and schedules the position request timer 

for receiving a position response message. 

The general information about process model for AODV, DSR and OLSR can be found 

from OPNET website and the user manual [60,611. 

3.2.4 Medium Access Control Model in OPNET 

OPNET supports simulation of Ad-hoc wireless networks using the physical layer and 

medium access control layer models. The IEEE 802.11 MAC protocol with Distributed 

Coordination Function (DCF) [21] is deployed as the MAC layer in the simulations. 
DCF is the basic access method used by mobiles to share the wireless channel and avoid 
hidden and exposed terminator problems [56]. The access scheme is Carrier Sense 

Multiple Access/Collision Avoidance (CSMA/CA) with acknowledgements. The nodes 
can make use of Request To Send / Clear To Send ( RTS / CTS) channel reservation 

control frames for unicast, virtual carrier sense, and fragmentation of packets larger than 

a given threshold. In the model, the RTS/CTS mechanism is deployed to minimize the 

effect of collisions over the wireless medium. 

3.3 Model development on OPNET 

3.3.1 Modelling wireless effects on OPNET 
MANETs have been proposed for scenarios with complex obstacle-rich environments. 
Therefore, it is important that MANET protocols be carefully evaluated in such 
conditions. Factors affecting received power include wavelength, distance, terrain, 
humidity, temperature, objects in the path etc. Wireless links are typically less reliable 
than wired links and need to be characterized appropriately. 

`Pipeline' is used in OPNET to simulate and denote a sequence of calculations for the 
transceiver characteristics such as path loss, signal strength and bit errors etc. The 
details of radio pipeline stages are described in appendix B. Each stage performs a 
different calculation for a radio transceiver. 

The fundamental performance measure computed by the default Radio Transceiver 
Pipeline is the average power level of signals received by radio receiver channels. By 
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computing this value for every relevant signal arriving at each radio receiver channel, 

the Received Power Model, which is the seventh stage of the pipeline, enables later 

stages to compute signal-to-noise ratio (SNR) and then derive bit error rate (BER). 

The computation of received power occurs independently for each packet that is able to 

reach and affect the radio receiver channel. The result of the Received Power Model 

invocation for each packet is a single double precision floating point value which 

represents the received power level for the packet. 

For all arriving packets, whether valid or invalid, the average power level of the 

received signal is computed. This computation is a link budget which takes into account 

the initial transmitted power, the path loss, and receiver and transmitter antenna gains. 
The power (in units of watts) allocated to the transmission is obtained from the packet's 
transmission data attribute. The base frequency of transmission and the bandwidth of 
transmission are also obtained from the transmission data attributes. The values of these 
two variables are then used to compute the centre frequency of the transmission. The 

wavelength lambda, of the packet transmission is given by the propagation velocity of 
light, c, divided by the centre frequency. 

The propagation distance (in meters) for the packet transmission is obtained from the 

packet's transmission data attribute. The free space propagation loss is computed as a 
function of wavelength and propagation distance with the relation given in the equation 
below. 

( 
Pd = 

lZ 
14m (3.1) 

Where Pd is the path loss, D is the distance between transceivers, A is the frequency. 

A link model is developed on OPNET to simulate the random path loss between nodes 
to facilitate the analysis of routing performance for MANET. This work will involve a 

matrix G for the extra path loss in addition to the FSPL model. Assume that N nodes 
exist in a network numbered from l to N. A matrix G for extra path loss can be defined 

as follows. 
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".. 
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(3.2) 

GN 
1 

GN2 
"' 

GNN 

G; j is the extra path loss between node i and j. The range of G is between 0 and 20 dB. 

The overall path loss is then calculated in the following equation. 

Ph =Pd+G, (3.3) 

Depending on the path loss between node i and j, a transmission on this link is either 

possible or not which defines 1 or 0 for Cy. A connectivity matrix C with N nodes is 

expressed as: 

C11 C12 GIN 

C, 
C21 C22 C2N 

(3.4) 

CNl CN2 CNN 

With this connectivity matrix, the connection status between any nodes can be obtained 

while conventional method only uses distance metric to determine nodes connectivity. 

3.4 Summary 
In this chapter, OPNET modeller has been introduced and MANET models have 

been discussed. The simulation carried out in this project follows the characteristics 
discussed in this chapter. 
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CHAPTER 4 Development of an Energy Efficient Geographic 

Routing Protocol (EE-GRP) 

4.1 Introduction 

Geographical approaches build on the proactive or reactive techniques previously 

described and in addition incorporate geographical information to aid in routing [11,57- 

61]. This geographical information can be in the form of actual geographic coordinates 

as obtained through the global positioning system (GPS), or can be obtained through 

reference points on some fixed coordinate system. The use of geolocation information 

can prevent network-wide searches for destinations, as either control packets or data 

packets can be sent in the general direction of the destination rather than in all directions 

if the recent geographical coordinates for that destination are known. This reduces the 

control overhead generated in the network; however, all nodes must have continual 

access to the geographical coordinates of network nodes for these approaches to be 

useful. 
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Figure 4.1. Forwarding Progress for Geographic Routing 

Most geographic routing approaches are based on the concept of progress, which is 

defined as the projection of the distance travelled from the source node to any 
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neighbouring nodes in a forward direction along the line from the source to the 

destination as shown in Figure 4.1. Any neighbouring nodes, (as previously described), 

of the source normally fall within the maximum transmission range rs. Any nodes 

within the shaded area identified in Figure 4.1 are those with positive progress toward 

the destination. Candidate nodes for use in relaying data, are therefore those neighbour 

nodes which have a forward progress less than rs and lie within the shaded area shown 
in Figure 4.1. 

A typical example of forward strategy for geographic routing is the maximum-distance 

greedy forwarding routing scheme in which packets are forwarded to a neighbour which 
is closest to the destination D and lies within the maximum transmission range. In the 

example shown in Figure 4.1 this protocol would choose node N2 as the relay node. The 

maximum-distance greedy forwarding scheme is designed with the following aims: 

" Maximum Forwarding Distance 

0 Minimum hop count 

49 Minimising network messaging 

" Reducing power consumption 

Some basic position-based routing algorithms have also been proposed which are 
discussed below. 

Consider the angle formed by line segments SN and SD, where S is the forwarding node, 
N is a potential next hop and D is the destination. The compass routing algorithm [62], 
forwards packets to the neighbour N that forms the smallest angle with the destination. 

Compass routing algorithm is also memoryless. 

Randomized Compass routing algorithm [63] is a variation of the compass algorithm 
that avoids loops with random decisions. It is also a memoryless algorithm. Consider as 
in the compass routing the line defined by forwarding node and destination. At each 
node, two options are considered to route a packet: the neighbour with smallest angle 

above that line and the neighbour with smallest angle below that line. One of those 

neighbours is randomly chosen to be the next hop. 
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Consider that line SD is the x-axis, where S is the forwarding node and D is the 

destination node. In the Most Forwarding within Radius [62] (MFR) protocol node S 

forwards the packet to the node A that maximizes progress along x-axis. 

Geographical Distance Routing (GEDIR) [64] resembles the greedy algorithm, with a 

subtle difference. Packets are sent to the neighbour node that is closest to destination D, 

despite the distance of the source node to the destination. This means that a packet can 
be sent to some node that is actually more distant from D than the sending node S. The 

rationale for this is that node may have some neighbour which is closer to D than S is. 

The only kind of loop that may occur in this algorithm is between two consecutive 

nodes and, therefore, one can make it loop-free. 

Many other forwarding schemes have been studied and proposed [7-14]. Examples of 

nodes chosen using such schemes are shown in Figure 4.2. In all these schemes the 
location of the final destination (D) is assumed to be known by the source node. The 
Most Forward within Radius (MFR) routing scheme [65] selects MI as the chosen relay 

node as it provides the greatest forwarding progress toward the destination, D, within a 
defined maximum radius rs. MFR is a progress-based algorithm competitive in terms of 
hop count, i. e. designed to offer the lowest number of hops to the destination which also 
provide minimised end-to-end delay. However, as indicated in [66-69], long distance 

links are unreliable in reality due to the unpredictability and rapid change of wireless 

conditions which significantly affect the link quality. Hence the long-hop-distance route 
selected by MFR may not be viable and may fail. 

Compass Routing [62], selects node M2 which is closest to the straight line between 

source and destination, the source node uses the location information of the destination 
D to calculate its direction. Then the packet is forwarded to the neighbour M2, such that 

a node closest to the direct SD path is chosen. This process repeats until the destination 

is eventually reached. The route selected by Compass Routing gives the minimised 
overall distance but may need more hops than MFR. 

M3 is selected by the Nearest with Forward Progress (NFP) routing [70] scheme as it is 
the closest node to the source node S while still offering forward progress. The principal 
aim of this scheme is to minimise the power consumption for each single hop, however 
it can lead to a large hop count. NFP is not suitable for high density networks because 
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the delay caused by the large number of hop count for the route may exceed system 

requirements. 

M4 is the node choice for greedy forwarding based routing [711 which chooses the 

closest node to the destination, although M4 has less forward progress than M1 which is 

selected by MFR. All these protocols use position information as the only metric for 

route decision and ignore link quality. To resolve this problem, an energy-aware 

geographic routing protocol needs to be specified to choose a relay route which offers 
low power consumption through use of a relay node with good quality links while also 

providing adequate progress toward the destination. 
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Figure 4.2. Examples of Node Choice for Different Geographic Routing Protocols 

4.2 Energy Efficient Forwarding for Geographic Routing 

Many energy based routing protocols have been proposed [72-78] for mobile Ad-hoc 

networks. An energy-aware geographic routing protocol which aims to reduce the total 

energy consumption will not only focus on distance-based greedy forwarding, but also 
the power requirement for selected links which then becomes one of the major metrics 
for geographic route determination. 
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The total power consumption of a selected route can be expressed as the sum of powers 

required for each individual hop as in the Equation 4.1. 

n 
PTotal(d)=YP 

x=1 
(4.1) 

Where PTota[ is the total power consumption of the route, Prx is the required 

transmission power for each hop of the selected route which does not include the 

processing power and n is the number of hops. 
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Figure 4.3. Forwarding Schemes Comparison with Four Hops 

(a) Maximum-Distance Forwarding 

(b) Optimal-Distance Forwarding 

(c) Energy-Greedy Forwarding 

Examples of routing protocols which seek to reduce energy consumption are shown in 

Figure 4.3. In this figure, route (a) shows an example of the maximum-distance 

forwarding scheme for a simple network in which the source and destination are 

separated by distance d and which assumes a FSPL model for all inter-node hops. The 

source node finds a relay node closest to the destination within its maximum 

transmission range rs until the final relay node falls within rs of the destination. This 

process provides a minimum hop count, which helps to minimise total energy 

consumption. 

An improved optimal-distance forwarding (ODF) scheme which is also based on a 
FSPL model is shown in (b). In this case, instead of forwarding the packets to the 

neighbour closest to the destination or the neighbour which has the maximum forward 
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progress as in (a), the packets are transmitted to the neighbour which is closest to the 

energy optimal relay position which can be shown is that for which each hop has an 

equal distance which in the four hop case shown, is d/4 [78,79]. 

Neither of the above schemes takes into account the fact that the actual path loss 

between nodes is rarely that given by the FSPL model and will actually vary with both 

node location and time. The effect on the chosen source-destination route of considering 

variable inter node path loss is shown in route (c) which uses an energy-greedy 

forwarding scheme with a realistic path loss model. In this case a relay node is selected 

not only by its location but also by its link quality i. e. the path loss to it, and the total 

energy consumption of the route is then minimised by selecting the node which has the 

lowest energy consumption for each hop. This may lead to a longer source-destination 

path than the above algorithms, but would provide a lower total energy consumption. 

If a realistic path loss model is used, the maximum-distance forwarding route (a) may 

not provide viable links because potentially the path loss to the chosen nodes may be 

very high. Also the energy optimal relay position (b) may not provide optimized energy 

consumption for a route because the actual required transit power is determined not only 
by the distance of the link, but also by the arbitrary path loss which is not identical for 

each hop. In order to develop an energy efficient geographic routing protocol, the 

principle of the power requirement between nodes will be studied and analysed. 

Note the circles shown in the above figure reflect the maximum transmission distance 

for the nodes used in route (a). More circles should be drawn around the relay nodes for 

the other schemes, but are omitted to aid clarity. 

4.3 The Concept of a Gain Region 

4.3.1 Geometrically Based Analysis for Transmission Power Reduction 

The main criteria influencing the protocol design proposed in this work is energy 

efficiency, that is the protocol seeks to reduce total power consumption by analysing 
how energy can be reduced between the source and the destination and defining areas 
for relay node selection rather than simply using a straight line distance based 
forwarding scheme. Introducing a model which seeks to minimise power consumption 
is aided by definition of a new concept called gain region between source and 
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destination. When nodes lying within this region are chosen for relay purposes it can be 

shown that the total power consumption of a multi-hop route can be lower than the 

required power for the direct transmission between source and destination. This is 

shown below by reference to Figure 4.4, for a simple 2-hop route. 

Relay Node 

Pt(r2) 

Pt(rl) + Pz(r2) <= Pt(d) 

Source 

Figure 4.4. Two-Hop Example 

In Figure 4.4, P, (d) is the required transmission power for a direct link from source to 

destination node. P, (r, ) and Pt(r2) are the transmission powers for the source and relay 

node in a 2-hop route respectively. The total power consumption for a two-hop route 

through a relay node may be lower than that of the direct transmission between source 

and destination i. e. 

P, (r! )+P, (r2)<= P, (d) (4.2) 

If certain conditions are satisfied. To determine those conditions consider a path loss 

model in which the received signal power at distance x from the transmitter can be 

calculated by: 

PG G" 

where Pt is the transmitted signal power, G, and G, - are the antenna gains of the 

transmitter and the receiver respectively these gains are assumed to be the same for all 
nodes in the network, X is the wavelength, and L is the system loss which are also 
assumed to be constant for all nodes. The path loss exponent rl is environmentally 
dependent, and is typically in the range of 2 to 5 where 2 is for propagation in free space 
and the larger values for the path loss in environments such as buildings, stadiums and 
other indoor environments. 
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For the definition of a gain region, we assume a power control mechanism is 

incorporated within each node. This mechanism adapts the transmitted power to the link 

loss so that the received power at each mobile node P,. is constant. P, is therefore 

proportional to some power q of the distance between two nodes x. Equation 4.2 then 

becomes: 

P ,. L 4nm 
+PL 

l4ýn- 
<PL4, rd " 

(4.4) 
G1G, A, G, G,. AZ J G1G, lA 

Where rj is the distance between the source and the relay node, r2 is the distance 

between that relay node and destination and rj, r2 and d lie within range rs. Then 

Equation 4.4 can be simplified to, 

rt" + r2" <_ d'' (4.5) 

The region between source and destination for which Equation 4.5 is satisfied then 
defines a gain region. The term gain is used simply to reflect the fact that the 

circumstances described above can lead to a lower power consumption than the direct 

transmission route. 

The exact boundary and the resulting gain region shape for which a two-hop route from 

source to destination reduces the total transmit power is then determined by the path loss 

exponent ii. 

The simplest gain region can be defined by assuming a model based on free space 
propagation which is line-of-sight based with the path loss exponent q=2.0. In this case, 
the signal strength observed at the receiver is inversely proportional to the square of 
distance, and Equation 4.5 becomes 

rý2+r22 5d2 
(4.6) 

Equation 4.6 defines a gain region which is represented as a circle of diameter equal to 
the source-destination distance as shown in Figure 4.5. Outside the region a relay node 
will not be selected because the total transmission power required for a 2-hop route 
between source and destination would exceed that for any relay node selected within the 
gain region and for the direct source-destination transmission. 
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Sou 

Relay Node 2 

Gain Region 

Figure 4.5. Concept of a Gain region 

In Figure 4.5, Pa, P, s, and Pd are the transmission power from the source to the 

destination, the source to the relay node and the relay node to the destination 

respectively. Hence for a FSPL model the gain region defines a region in which 

transmission from source to destination via a single relay node would provide lower 

power consumption than direct transmission. Utilising relay node I which lies at the 

edge of the gain region will give the same total required transmission power as that for 

the direct transmission between source and destination, while utilisation of any other 

nodes within the gain region, such as relay node 2, would require a lower total 

transmission power than the direct route. 
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Figure 4.6. Total Transmission Power in the Gain region 3D 
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Figure 4.6 illustrates the variation with relay node position of the overall power required 

for a simple two-hop network. The source and destination are assumed to be 400 meters 

apart and the power required for the direct link between them is 5mW with the path loss 

exponent of il = 2.0. Since the 400m distance between the source and destination nodes 

exceeds the maximum distance requirement according to the 802.1 1 standard, a relay 

node between them is then required. The lowest total transmission power or the 

maximum gain is achieved for a relay node at the position of the centre of the direct line 

between source and destination which is also the centre of the gain region. The overall 

power reduction can be evaluated along the directions from the centre of the gain region, 
", 

which corresponds to the region where hops can decrease the required transmit power. 
The required transmission power increases rapidly with increasing distance of the relay 

node from the centre of the gain region. A 2D representation of the total transmission 

power in the gain region under the same network condition as Figure 4.6 is shown in 
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Figure 4.7 below. The power required for a relay node positioned in the network is then 

determined by the distance between the node and the centre of gain region 

Q 0.006-0.008 W 

F1 0.004-0.006 W 

Q 0.002-0.004 W 

Q 0-0.002 W 
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Figure 4.7.2D Representation of Total Transmission Power in the Gain region 

Figure 4.8 shows the gain regions calculated using Equation 4.5 for three different path 

loss exponents, where the distance between source and destination has been normalized 

to 1. For larger path loss exponents, the gain region is elongated perpendicular to the 

direct link direction between source and destination. In Figure 4.8 high path loss 

exponents which would not be found in practice have been selected to demonstrate the 

general dependency of the shape of the gain region on the path loss exponent. 
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Figure 4.8. Gain Regions with various path loss exponents q 

4.3.2 Relay Region 

Having defined the gain region, a natural extension is to specify a relay region. This can 

be defined as the overlap of the area covered by a circular region of radius equal to the 

transmission range and the gain region. The relay region is then shown as the shadow 

area in Figure 4.9. All nodes falling within the relay region will constitute the source 

node neighbour table and may, if path loss and battery life permit, be used as a relay 

node. 

Y 
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To minimise the energy consumption for a given route, the number of relay nodes 

should be limited, because the processing energy at each relay node is a significant 

contribution to the total energy consumption. The transmission range determines the 

maximum distance for each hop but there should also be a minimum distance in order to 

limit the hop count. One approach to defining a modified relay region is that the first 

relay node falls within a distance rd from the destination where 

rd =(n-1)*rs (4.7) 

Equation 4.7 implies that n-1 hops are possibly left from the relay region to the 

destination if we assume a minimum hop count of n. The modified relay region is 

shown as the shadow area in Figure 4.10. 
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Figure 4.10. Relay region for Multi-hop Network 

Those nodes lying within the relay region would constitute the source node relay table. 
For multi-hop routes, the process can be repeated by assuming the relay node acts as the 

new source node as illustrated in Figure 4.11 for a four hop network scenario. Three 

gain regions and relay regions have been defined by rdi, rd2 and rd3 respectively. 

rd, = 3r, (4.8) 
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r,, = 2r,. (4.9) 

r13 = r,. (4.10) 
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Figure 4.11. Multi-hop Network Example 

4.4 Energy Efficient Relay Node Selection 

The energy efficient routing protocol aims to minimize the total energy consumed in 

forwarding a packet from source to destination. Minimum-energy routing can exploit 

path loss awareness by forwarding traffic using a sequence of low power transmissions. 

Having established a process to define a region in which acceptable relay nodes may be 

found, the process of selecting a node within that region is now discussed. Within the 

relay region, a relay node will be selected to minimise the total transmission power or 

maximise node lifetime. 
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The model assumes that all nodes are aware of the location and battery power of 

neighbour nodes lying within the transmission range, and of the actual path loss to those 

nodes. This information is gathered through the Hello messages sent periodically 

through an enhanced signalling process system which will be discussed in details in 

chapter 6. When a packet needs to be forwarded to the destination node, the source node 
firstly looks for the destination node within its neighbour table. If the destination node is 

not in the neighbour table, then a node within the source node's relay table must be 

selected. The metrics listed below are used to select the relay node. 

" Location coordinates determine the distance from the source node to the 

potential relay node and from the relay node to the destination. 

" The actual path loss between source and relay node which also determines the 

required transmission power of the source. 

" The relay node battery level which determines its remaining life time. 

Although the gain region can be obtained from the analytical solution based on an ideal 

FSPL model, the path loss exponent il between any nodes is actually arbitrary and this 
determines the required transmission power between nodes assuming a fixed receive 

power level. In order to reduce the total power consumption of the route, links with a 

smaller path loss are preferentially selected, however the general constraint of 

minimising the hop count must also be considered. 

Mobile node lifetime is constrained by battery power which makes energy efficiency a 
critical issue. The proposed protocol can either minimise the total power consumption 

of the route or maximise the life-time of the nodes. The route lifetime can be expressed 

as the minimum of the lifetimes of its constituent links. 

. With these considerations in mind, three possible route selection techniques have been 

implemented through the use of different metrics and criteria to estimate the link cost. 

" Position-based routing which purely uses location information for route determination. 

" Power-aware-based routing tries to minimise the total power consumption of the route. 
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" Battery-life-based routing tries to maximise the life-time for the route and sustain 
for as long as possible nodes with low battery level as potential relay nodes in the 

network. 

4.4.1 Power Aware Based Routing 

For power-aware-based-routing, link cost is calculated locally by the current forwarding 

node using a sum of the power of the known links and the predicted power requirement 

of unknown remaining links: 

P(P) Ppt + Ppn 
(4.11) 

where P(p) is the link power for a candidate node. Pp, is the required transmission power 

from the current node to the candidate node within the relay region which is determined 

from the actual path loss between them obtained through a Hello message procedure. 

Pp� is the potential required transmission power which is determined by the distance 

between the candidate relay node to the destination. The procedure used to determine 

this value is as follows. The maximum transmission range rs of each node is constrained 
by the limitation of maximum transmission power. The minimum possible number of 
hops for the remaining distance can then be predicted as: 

h,, = roundup(d� / r5) (4.12) 

where h� is the roundup integer value for remaining hop count, d� is the remaining 
distance to the destination. 

Hence the potential power consumption for that distance is calculated using a 

predefined reference transmission power Pref which is used to estimate the potential 
required power for each remaining relay node multiplied by the hop count: 

ppn hn * rref (4.13) 

In Equation 4.13, the predefined reference transmission power P, ef is calculated by 

using Equation 4.3 based on the average hop distance d�/h� for the remaining hops and 
the FSPL model. 
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4.4.2 Battery Life Based Routing 

Battery-life-based routing can be undertaken by examining the remaining battery level 

in comparison with the full battery capacity of the mobile nodes. 

Battery capacity is determined by the amount of electrical energy the battery can deliver 

over a certain period of time and is measured in Ampere hours (Ah) when discharged at 

a uniform rate over a given period of time. When multiplied by the average battery 

voltage over the discharge cycle the battery capacity becomes watt-hours (Wh). If a 

potential relay node has a remaining battery level of Bremarn (Wh) then the remaining 

working hours or life-time can be calculated by the equation below: 

(4.15) Tremain Bremain 1p 

where Treurain is the remaining life-time of the battery and p is the transmit power 

required to reach the next relay node or destination. 

The link cost, T(b), is described as: 

T (b) = arg min {Tb, 5Tb�} (4.16) 

where Tb, is the life-time of the link between the current node to its candidate node and 
is determined by dividing the remaining battery capacity by the transmission power 

required to reach the candidate node which can be obtained through received Hello 

messages. Tb� is the life-time of the link from the candidate node to next relay node 
which is calculated by dividing the remaining battery capacity B� of the candidate nodes 
by the reference transmission power Prei 

Tbn =B �/ Pref (4.17) 

Once the decision to select the first relay node has been made, the second gain region 
will then be defined between the first relay node and the destination. The subsequent 
relay nodes can be chosen by defining a gain region between the current relay node and 
the destination. 
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4.5 Simulation and Results for Three-hop Scenario 

To simplify the simulation analysis, the network is designed with three hops. Results for 

a larger number of hops are achievable using the same techniques as in this three-hop 

network. The proposed routing scheme for the network as shown in Figure 4.12 is 

modelled and implemented on the OPNET Modeler simulation platform. 240 nodes are 

randomly deployed on a network of 350m by 350m square. Each node has been 

assigned a random battery level and a random path loss exponent in the range 2-4, to 

neighbour nodes. The antenna gains and system loss in (4.3) are set to unity. A 

frequency of 2.4 GHz is assumed corresponding to the frequency band used in WiFi 

applications. The gain regions used in the routing protocol are determined as discussed 

above. 
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Figure 4.12. Three-hop network 

In order to estimate the performance of the proposed routing protocol, Simulation 

results were obtained from 30 different path loss exponent assignments. According to 

the standard, the maximum transmission range for WiFi equipment in open space is 

about 300 meters and that distance may be reduced to 100 meters in an indoor office 

environment. An initial maximum transmission range of 140m was used for all the 

nodes which determines the minimum number of hops for the selected route to be 3. 
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Routes with more hops could be enforced by using a smaller transmission range or 

increasing the source to destination distance if required. In order to demonstrate the 

advantage of the proposed protocol, its performance is compared to a straight-line ODF 

(Optimum-Distance Forwarding) route based on a conventional geographic routing 

protocol. The ODF route uses equal distance for each hop and the hop count is 

determined by the distance between the source and destination and the maximum 

transmission range. In the results presented in Figures 4.13 to 4.17, the transmission 

power and route life-time are based on an average of the results obtained from the 30 

simulation results. 

In the following simulations, the transmission range is varied from 130 to 180 meters to 

analyse the performance of the proposed routing protocol under different range 

conditions. 
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Figure 4.13 Comparison of total transmission power (140m range) 

Figure 4.13 shows a comparison of the total transmission power for the selected route 
determined by the power-aware-based routing scheme, the ODF route and the Optimum 

Route which has the lowest total power consumption obtained through analysis of all 

possible end-to-end routes which could be achieved if each node is aware of the link 

loss to all other nodes. It can be observed that in the ODF route the average total 

transmission power from 30 simulations is 46.73 mW. However, by introducing the 

56 



proposed protocol, the total transmission power of the selected route is decreased to 

15.51 mW which is 33.2% of that for the ODF route. 

Comparison of the route life-time for the selected route determined by the battery-life- 

based routing scheme and for the ODF route is presented in Figure 4.14. The life-time 

of the ODF route is 3.06 hours whereas that for the selected route has a life-time of 42.4 

hours. The increased life-time for the selected route implies an enhanced routing 

performance provided by the proposed protocol. The significant improvement in route 

life-time arises because under this protocol a node with high battery level is 

preferentially selected even though the total route transmission power may not be the 

lowest under the power-aware based routing protocol. A node with high remaining 

battery capacity has a greater chance of being selected even if its transmission power 

may not be the lowest. 
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Figure 4.14 Comparison of route life time (140m range) 

The maximum permitted transmission power determines the transmission range of a 

mobile node and hence the maximum distance for each hop. The ODF route is not 

affected by the maximum transmission range if the possible hop count between the 

source and destination is not affected and remains the same. This is because the required 

equal distance for each hop won't be affected by the change of maximum transmission 

range. The ODF route will select the same relay nodes at the same locations under the 

same hop count. However, the selected route may change as the distance for each link 
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of the selected route changes according to the transmission range. If the maximum 

transmission range increases, the size of the relay region between the source and 

destination node also increases as illustrated by the relay region u2 shown in Figure 

4.15. The increased size of this region provides more candidate nodes and a greater 

possibility of finding a better route. In effect a relay node for minimised power 

consumption or maximised lifetime would be selected from a larger number of 

candidate nodes. The position of the selected relay node then affects the size of 

subsequent gain regions and the number of candidate nodes within those relay regions. 
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Figure 4.15 Increased Relay Region Size by Increased Tx Range 

As shown in Figure 4.15 with an increased size of relay region a2 caused by the 

increased transmission range, there will be a higher possibility to select a relay node 

which is closer to the destination. In Figure 4.15, the position of the relay node C1 

which is selected under a smaller transmission range rr/ determines the relatively small 

size of relay region 0 1. In some cases with small transmission range rsj, the resulting 

small size of the relay region 01 may lead to there being no candidate nodes within it. 

Relay node C2 selected under transmission range rs2 defines an increased size of relay 

region i3 2 which would contain more candidate nodes for relay selection. 
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Figure 4.16 Comparison of total transmission power with different transmission range 

For a source to destination distance of 350m and a three hop route, Figure 4.16 shows 

how increasing the transmission range lowers the total transmission power requirement. 

The power reduction arises from the increased choice of nodes within the gain region. 
The choice of a relay route lying closest to the straight-line route between source and 
destination does not on average lead to a lower power transmission as the path loss 

between these nodes can be very high. For the maximum transmission range of 170 m 

the required transmission power utilising power-aware based routing is 9% of that 

required using the straight line route (ODF). As can be observed from Figure 4.16, with 

the increment of transmission range the total power consumption of the selected route 

reduces as the transmission range increases from 130m to 150m. When the transmission 

range is greater than 150 meters, the results for the selected route are very close to those 

of the optimum route because the sizes of the gain region becomes large enough for 

routes with the lowest or nearly the lowest power consumption to be found. 

Figure 4.17 shows how increasing the range affects the route lifetime. The increased 

node choice leads to an increase in the link lifetime and as with the analysis of power 
transmission, a significant improvement over the lifetimes achievable for the ODF 

routing is obtained. However, route lifetimes for the ODF route solution are constant 
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with transmission range changes because its route remains the same under three hops. 

Relay nodes with longer battery life were found within the larger relay regions 
determined by the increased transmission range. 
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Figure 4.17 Comparison of route life time with different transmission range 

4.6 Summary 

This chapter introduced the development of an energy efficient geographic routing 

protocol. For comparison several conventional forwarding strategies were discussed 

together with their relative advantages and disadvantages. The concepts of gain region 

and relay region were described to exploit the novel features of the proposed energy 

efficient geographic routing protocol in which candidate relay nodes are defined. 

Based on the framework described in Chapter 3, the proposed routing protocol was 
designed and implemented within OPNET to simulate the energy efficient operation. 
The routing performance has been analysed in terms of total transmission power and 
route life time to show the benefit of the energy efficient geographic routing protocol. 
The proposed routing protocol is shown to provide both power and route lifetime 

advantage over several established protocols. 
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Chapter 5 Development of Enhanced Energy Efficient 

Geographic Routing Protocol 

5.1 Routing Protocol Improvement through Relay Region Modification 

The routing approach EE-GRP discussed in the previous chapter minimises the hop 

count but can lead to small relay regions. As the relay nodes are selected from within 

the relay region, the size of the relay region determines the number of nodes which are 

eligible to act as a relay. A better relay node with lower relay energy consumption can 
be selected if the number of candidate nodes is increased through use of a larger relay 

region. As such a modified technique is now described which seeks to ensure adequate 

size relay regions are used for each hop and thereby produce a more energy efficient 

performance through hop count optimisation. 

An initial step towards defining a new technique is described with the aid of Fig 5.1 

which illustrates a new approach to defining the relay region. In the diagram the relay 

region is the shaded area formed by the overlapping region created by circles of 
diameter rs (the transmission range) drawn from the source node and rd (defined below) 

drawn from the destination node. 
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Figure 5.1 Gain region for multi-hop network 
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rd is the only unknown metric which will determine the size of relay region. The range 
for the distance of rd can be defined as: 

d-r <_rd _<(n-1)rs (5.1) 

Where n is the hop count between the source and destination. When rd equals (d - r), 
the minimum zero size of relay region would be defined. In this case, a relay node 

would have to lie on the straight line route between the source and destination at a 
distance rs from the source. This extreme situation is illustrated in Figure 5.2. 

The upper limit of (n-])* rs arises from the definition of the minimum hop count under 

n=roundup(d/r, ). The maximum size of relay region defined by the upper limit is shown 
in Figure 5.2. 
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Figure 5.2 Limits of rd which define the relay region 
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The size (area) of the relay region shown as the shaded area in Figure 5.1 is given by: 
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Where 

r2+d2-rd 
91 =2x cos-1 2 rsd 5.3 

rd 2+ d2 - r2 

e2 =2x cos-1 s C 2rd d 5.4 

Then (5.1) can be represented as 

(rz+d2 rzz 
\r2+2 

2 
rsz x2x cos-1 `2 rs sin \2 x cos-1 2r ll SS 

srelay 
22 

2 d22(2d22 
rd x2X COS-1 

ýrd +) 
rd sin 12X COS-1 

(rd + 

2! T-s 

(5.5) 

However while the above scheme provides a new model for defining the relay region, in 

this model, the maximum size for the relay regions provides a relay node choice with 

lower energy consumption for the first hop only. The remaining hops may have 

extremely small relay regions which can lead to a situation in which there are no 

available nodes within the region. 

The reason why this problem can occur is now discussed. The maximum width of the 

first relay region is given by: 

nxr3 -d (5.6) 

The problem of a small size being produced for subsequent relay regions can occur 

when a relay node in the first relay region which is close to the source node is selected. 

This problem is not significant in three-hop networks, but becomes critical when hop 

count increases as shown in Figure 5.3. In this figure the first relay region determined 

by using the criteria defined in Equations 5.1-5.6 is large but the choice of a node lying 

close to the source in the first region leads using 5.1 - 5.6 to the subsequent regions 
being too small to support an adequate choice of nodes. 
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Figure 5.3 Limited Relay Region Size under Minimum Hop Count 

In order to achieve the minimised hop count in Figure 5.3, the remaining hops have to 

satisfy the condition that the distance for each hop is approximately the maximum 

transmission range. This can only be satisfied in a free space scenario under FSPL 

model. When a non-FSPL model is applied, the radio signal is degraded more heavily 

and the maximum transmission range is not achievable. The requirement to minimise 

the hop count can therefore lead to a relay region which is very small and there may be 

no candidate nodes within the relay region. If minimum hop count fails, due to the 

above problem, the hop count can be increased by I and the process of defining a region 
is then undertaken with the new hop count. With an increased hop count, the defined 

relay region is larger which increases the number of candidate nodes as shown in Figure 

5.4. However on the negative side the hop count has now increased. 
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Figure 5.4 Solution to Limited Relay Region Size Problem - Step I 
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5.2 Optimisation for Relay Region Size 

Given the problem just discussed an alternative method of defining the relay region is 

now proposed. In order to ensure that an adequate number of potential relay nodes will 

exist for each hop, a system of constraining the size of the relay regions is proposed. 

The regions are defined such that their areas will provide reasonable probabilities that 

adequate potential nodes exist for all expected node densities. 

For multi-hop routes, the ideal scenario is that each link has the same distance of din as 

shown in Figure 5.5, where d is the distance between source and destination nodes and n 
is the minimum number of hops under transmission range rS. 
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Figure 5.5 Optimised Size of Relay Region with n hops 

Based on Figure 5.5, the optimal distance from the destination rd, for each hop can be 

defined as: 

rj = (remaining 
_ 

hop - 2) * d,, +r,. (5.7) 
Where 

day, =d/n (5.8) 

rd3=(n-4)*d av+rs 

I" , 
rdn = rs 

rd2 d,, +rs +r 

-------------- 

d Source , 
_--- Destination 1 day=d/n'ý, ý, 

------------ rd, = (n a? ) * da 
y+rs, 

Figure 5.6 Distance from destination for each hop 
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As shown in Figure 5.6, the new condition for the distance requirement of each hop to 

the destination is applied which defines a positive forward process for each hop to 

guarantee packet delivery under the remaining hop count. For example, if the source 

and the destination nodes are 300m from each other, the maximum transmission range 

is 90m, the minimum hop count and dm, can be calculated as: 

n= roundup(300m / 90m) =4 (5.9) 

da,, = 300m/4 = 75m (5.10) 

The d�,;,, which is the minimum forward distance for each hop can be obtained: 

d,,,;,, = 75 - (90 - 75) = 60m (5.11) 

By defining the minimum hop distance for each hop, the relay region can maintain a 

reasonable value. 
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Figure 5.7 Size Control Mechanism for Relay Region 

To illustrate how this revised model of relay region selection improves the node 

selection opportunities, in Figure 5.7, region I and II are the sizes for the second relay 

region when nodes RI and R2 are selected for the second hop respectively. As these 

two nodes reflect the extreme choices for nodes within the first relay region (R I being 

closest to the source and R2 furthest away) the subsequent relay regions produced using 
them as source nodes reflect the extremes of possibilities. It can be seen that even the 

smallest region I still has a reasonable area, although the number of nodes that may be 

contained in the relay region is dependent on the product of the node density and the 

region area. Region I has the smallest size and this size has to satisfy the condition that 
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a certain number of candidate nodes can be found within this region. In the simulation, a 

minimum of 3 candidate nodes were used for this condition of the relay region. 

To illustrate the issue, Table 5.1 shows the calculated relay region size for different hop 

count and transmission range based on the scenario used in Chapter 4 in which there are 
240 nodes in the network, the network physical size is 350X350m2 and the distance 

between source and destination node is 350m. In this scenario the node density is 

0.001959 node/m2 and under such conditions the minimum relay region area needed to 

provide an average of three nodes is 1531 m2. 

Hops g 70 m 80 m 90 m 100 m 110 m 120 m 
3 --- --- --- --- --- 288 m2 
4 --- --- 171 m2 1974 m2 4887 m2 8689 m2 
5 --- 1302 m2 3795 m2 7169 m2 11332 m2 16236 m2 
6 1546 m2 4046 m2 7376 m2 11464 m2 16270 m2 21774 m2 
7 

-- 
3382 m2 6437 m2 10239 m2 14753 m2 19957 m2 25837 mz 

F 
8 4972 m2 8370 m2 12480 m2 17277 m2 22748 m2 28883 m2 

Table 5.1. Size of Relay Region under Different Tx Range and Hop Count 

When the transmission range equals 120m, the source node may theoretically reach the 
destination within 3 hops and a candidate relay node may be found within a relay region 

of 288m2 size. However due to the low density of the nodes and NFSPL, the source 

node may fail to find a relay node in the relay region under such network conditions. 
Hence, 3 hops for 120m transmission range in the network are not achievable and 4 
hops would be the optimised hop count in this case. When the transmission range was 
70m, 5 hops is the minimum theoretical hop count and six hops would provide a relay 
region area which satisfies the minimum area requirement to support three nodes. 
However, while based on node density, a minimum area which should contain three 

nodes can be defined, it was shown during numerous simulation runs (varying node 
distributions) that owing to the random distribution of nodes, occasionally the number 
of nodes within the defined region fell below the required number and the experimental 
simulation results actually showed that the optimised hop route can be found when the 
relay region size is no less than 3000m2 which in the latter case of a 70 m transmission 

range would require 7 hops as the optimised hop count. 
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Whether a route using a small hop count can be implemented or not depends on the 

difference between nm;,, *rs and d, which is determined by the following metrics. 

" Distance between source and destination 

0 Maximum transmission range of each mobile node 

" Node density for the network 

" Distribution of the nodes 

" Path loss condition of the network 

Instead of using maximum-distance forwarding to achieve a minimised number of hops, 

an improvement to the protocol proposed in this chapter determines an optimal number 

of hops based on the above metrics and applies the steps below to optimise the route 

power consumption: 

"A determination of the minimum hop count based on source to destination 

distance and transmission range. 

"A determination of the optimal number hop count nopt. based on node density 

Energy efficient routing protocol is launched in response to the requirements for 

improved energy saving on selected route. 

Figure 5.8 shows the flow chart of the enhanced energy efficient geographic routing 

protocol EEE-GRP routing process. Firstly, the source node or the current node collects 
the network parameters such as network physical size, number of participating nodes 
(and so calculates node density), maximum transmission range and path loss conditions 
between neighbour nodes. 
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Figure 5.8 Flow Chart of Routing Process 

Secondly, an optimised hop count between the current node and the destination node is 

then calculated based on the previous collected network parameters. 

The EEE-GRP protocol will try to use nn;,, = roundup(d/rs) as the optimised hop count 
initially. The main criterion is the number of candidate nodes within a defined relay 

region which is determined by the optimised hop count. By using the network 

parameters collected in the first step. If using n; � as the nop: could not provide a 

reasonable size for the relay region, nm;,, +l will be used for the nop,. A larger size for the 

relay region then can be defined which will be evaluated for the number of candidate 

nodes within the region. The increase of the hop count by one for nop, will carry on until 
the defined relay region size satisfies the condition that a certain number of candidate 

nodes can be found. 

Thirdly, a relay region for the current hop will be defined according to the region 

calculated using the optimised hop count npp. 
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Finally, a relay node will be selected within the relay region to achieve energy 

efficiency. 

5.3 Simulation Results 

Table 5.2 shows the comparison of results of 15 simulation runs for the proposed EEE- 

GRP protocols with a low (3-4) hop count scenario. The results show the hop count, 

total transmission power of the selected route and total power consumption of the route 

which included the processing power of each relay node involved in routing. The 

processing power normally varies with different products. To simplify analysis, 30mW 

fixed processing power is assumed in the simulation. The EEE-GRP protocol proposed 
in this chapter shows the same hop count as that derived using the EE-GRP protocol. 
However, the total power consumption of the route for the EEE-GRP protocol proposed 
in this chapter is sometimes higher than the previous proposed EE-GRP protocol 
defined in Chapter 4. This is because the relay region for the first hop defined by 

enhanced protocol is smaller than the EE-GRP protocol which results in a lower number 

of candidate nodes and consequently higher power consumption for some routes. As 

observed from 15 simulation runs, the average `Total Tx Power' and `Total Power 

Consumption' of the EE-GRP protocol in Chapter 4 are 9.80mW and 107.80mW, while 
the corresponding figures for the improved protocol are 10.65mW and 108.65mW 

which are 8.67% and 0.79% higher respectively. 
EE-GR P EEE-G RP 

No. of 
Simulati 

on 
Hop Coun 

Total Tx 
Power 
(mW) 

Total Power 
Consumption 

(mW) 
Hop Coun 

Total Tx 
Power 
(mW) 

Total Power 
Consumption (mW) 

1 3 12.06 102.06 3 12.72 102.72 
2 3 7.42 97.42 3 7.42 97.42 
3 5 5.38 155.38 5 9.14 159.14 
4 3 16.60 106.60 3 16.60 106.60 
5 3 14.24 104.24 3 14.24 104.24 
6 3 17.48 107.48 3 17.48 107.48 
7 4 4.77 124.77 4 6.17 126.17 
8 3 8.79 98.79 3 12.01 102.01 
9 4 3.82 123.82 4 3.82 123.82 
10 3 12.56 102.56 3 12.64 102.64 
11 3 9.55 99.55 3 9.55 99.55 
12 3 9.45 99.45 3 11.04 101.04 
13 3 7.96 97.96 3 7.96 97.96 
14 3 10.48 100.48 3 10.48 100.48 
15 3 6.42 96.42 3 8.42 98.42 

Average 3.27 9.80 107.80 3.27 10.65 108.65 
. au- o.... --sawl- .. vsuus iur rower consumption with Low Hop-Count 
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Table 5.3 shows the simulation results for higher hop count scenarios. The improved 

EEE-GRP protocol performs much better than the previous EE-GRP protocol in terms 

of hop count. The average ̀ Total Tx Power' of the EE-GRP protocol is 5.88mW, while 

the corresponding value for the EEE-GRP protocol is 7.33mW which is 24.66% higher. 

The benefit of low hop count for the enhanced protocol is obvious when the processing 

power is taken into consideration for each relay node. The average total power 

consumption for the enhanced protocol is 161.33mW which is 20.87% lower than that 

of the EE-GRP protocol. 

EE-GR P EEE-G RP 

No. of 
Simulatio 

n 
Hop Count 

Total Tx 
Power 
(mW) 

Total Power 
Consumption 

(mW) 
Hop Coun 

Total Tx 
Power 
(mW) 

Total Power 
Consumption 

(mW) 

1 7 6.89 216.89 6 8.23 188.23 
2 6 6.42 186.42 5 6.59 156.59 
3 7 4.33 214.33 5 10.22 160.22 
4 5 6.08 156.08 5 6.08 156.08 
5 6 3.66 183.66 5 7.29 157.29 
6 8 5.07 245.07 5 6.34 156.34 
7 7 4.94 214.94 5 6.25 156.25 
8 6 5.23 185.23 5 7.74 157.74 
9 6 7.75 187.75 5 4.04 154.04 
10 6 3.52 183.52 5 3.86 153.86 
11 7 4.90 214.90 5 5.30 155.30 
12 6 8.90 188.90 5 4.79 154.79 
13 8 4.65 244.65 6 13.45 193.45 
14 7 4.87 214.87 5 3.67 153.67 
15 7 11.04 221.04 5 16.12 166.12 

Average 6.60 5.88 203.88 5.13 7.33 161.33 

Table 5.3. Simulation Results for Power Consumption with High Hop-Count 

Table 5.4 shows the comparison of route lifetime in a low hop-count scenario. In this 

scenario, the hop count of EEE-GRP route is not improved since only a maximum of 4 
hops were simulated. EEE-GRP is not able to show its advantage in terms of hop count. 
While both protocols have the same hop count in the simulation, the enhanced protocol 

shows no increase for the route lifetime because it defined a limited size for each relay 
region which is smaller than the relay region size defined by EE-GRP hence a lower 

number of candidate nodes for each hop. The original EE-GRP protocol has an average 
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route lifetime of 23.41h and the corresponding figure for the EEE-GRP protocol is 

21.07h. 

EE -GRP EE E-GRP 

No. of 
Simulati 

on 
Hop Coun Route Lifetime 

(hour) 
Hop Coun 

Route 
Lifetime 
(hour) 

1 3 16.23 3 16.23 

2 3 20.93 3 20.93 
3 4 68.65 4 51.80 
4 3 19.48 3 19.48 

5 3 15.48 3 15.48 
6 3 16.71 3 16.71 
7 3 21.05 3 21.05 
8 3 9.08 3 9.08 

9 3 46.73 3 30.04 
10 3 43.67 3 43.67 
11 3 17.16 3 15.48 
12 3 16.54 3 16.54 
13 3 9.50 3 9.50 
14 3 19.96 3 19.96 
15 3 10.03 3 10.03 

Average 3.07 23.41 3.07 21.07 

Table 5.4 Simulation Results for Route Lifetime with Low Hop-Count 

Simulation comparison for the route lifetime with a high hop-count scenario is shown in 

Table 5.5. The improved protocol shows its advantage over the previous EE-GRP 

protocol in terms of hop-count. The average hop-count of EEE-GRP protocol is 6.13 

while the EE-GRP protocol has an average hop-count of 7.47. However the route 
lifetime of enhanced protocol was lower than the EE-GRP protocol in this case due to 

the reduction of the hop-count which makes the size of relay region for each hop 

smaller and hence offers a smaller number of candidate nodes in the relay region. A 

higher power consumption of the link is normally observed when a relay node is 

selected from within a smaller number of candidate nodes when an optimised hop count 
is used to reduce the hop count. 
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EE-GRP EE E-GRP 

No. of 
Simulati 

on 
Hop Couni 

Route 
Lifetime 

(hour) 
op Coun 

Route 
Lifetime 
(hour) 

1 8 51.270113 6 50.839003 
2 7 49.453564 6 46.8732 
3 7 19.865215 6 18.577591 
4 7 47.46603 6 42.524534 
5 8 35.53968 6 18.986918 
6- 7 21.997753 6 19.004572 

7 46.379041 6 37.698785 
d 

7 43.445248 6 21.576427 
8 21.31395 6 20.755099 
8 10.426106 6 7.887186 

11 8 10.317595 6 3.875202 
12 8 18.397442 7 14.361526 
13 7 54.308309 6 33.103751 
14 7 37.616751 7 18.680255 
15 8 21.640423 6 19.098826 

Average 7.47 32.63 6.13 24.92 

Table 5.5 Simulation Results for Route Lifetime with High Hop-Count 

5.4 Summary 

This chapter introduced several modifications to an initial model aimed at providing an 

enhanced energy efficient geographic routing protocol. A hop-count optimization 

mechanism is developed to determine the optimized hop-count for the route instead of 

using the minimised hop-count. 

The routing performance has been analysed in terms of power consumption and route 
life time to show the effects of the model revisions. The improved proposed EEE-GRP 

routing protocol is shown to provide lower hop-count over previous protocol while the 

energy efficiency is still maintained. 
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Chapter 6 Signalling Processes for Geographic Routing 

Protocol 

6.1 Introduction 

The new geographic routing protocol described in Chapters 4 and 5 requires an 
improvement of the signalling system for GRP. The signalling process gathers and 
distributes routing information between all nodes in the network. In this chapter, a 

signalling process for the new geographic routing protocol is described. The signalling 

system is simulated and the amount of signalling information is calculated and analysed. 

6.2 Description of the Signalling Process 

Figure 6.1 illustrates a flow chart of signal messages for mobile Ad-hoc networks 
(MANET) using the proposed geographic routing protocol as described in chapter 4 and 
5. Each node will initially broadcast its geographic information to the whole network. 
On receipt of the flooding message, nodes can then provide a Geographic Table to 

maintain and update the location information of all the nodes in the network. Hello 

messages will be sent periodically to the neighbour nodes to help establish and update 
the neighbour table. A more detailed description of the process involved is now given. 

Initial Flooding 

Receive 
Flooding Messages 

Update 
Geographic Table 

Broadcast 
Hello Messages 

Receive 
Hello Messages 

Update 
Neighbour Table 

Figure 6.1 Flow Chart of Signal Messages 
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6.2.1 Initial flooding for co-ordinate distribution 

The flooding mechanism performed in the initial stage by all nodes in the network 

allows the dissemination of co-ordinate information between all the nodes in the 

network. At the establishment of the network, an `initial flooding' will be executed to 

bootstrap the network. It is assumed that each node can determine its own position using 

a GPS or related location service. In this procedure, each node broadcasts a beacon to 

the broadcast MAC address, containing only its own identifier (e. g., IP address) and 

position. Figure 6.2 shows the structure of the MAC address. The first three octets (in 

transmission order) identify the organization that issued the identifier and are known as 

the Organizationally Unique Identifier (OUI). The following three octets are assigned 
by that organization in nearly any manner they please, subject to the constraint of 

uniqueness. Packets sent to the broadcast MAC address are received by all stations on a 
local area network. In hexadecimal the broadcast address would be 

"FF: FF: FF: FF: FF: FF". A locally administered address is assigned to a device by a 

network administrator, overriding the burned-in address. Universally administered and 
locally administered addresses are distinguished by setting the second least significant 
bit of the most significant byte of the address. 

As shown in Figure 6.2, if the least significant bit of the most significant byte is set to a 
0, the packet is meant to reach only one receiving NIC. This is called unicast. If the least 

significant bit of the most significant byte is set to a 1, the packet is meant to be sent 
only once but still reach several NICs. This is called multicast. Instead of broadcasting 

to all the nodes in the network, the message can be sent to a certain group of nodes. 
Usually the network administrator determines which node is authorized to join the 

network [79]. Each authorized node has to manually set up the network parameters 

which are obtained from the network administrator. 
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Figure 6.2 Structure of MAC Address 

The position is encoded as two four-byte floating-point quantities, for x and y 

coordinate values. Some initial flooding messages may not be received by every node 
due to channel collision. The flooding signal may need to be re-transmitted to ensure the 

successful delivery to every node in the network. The number of initial floods sent out 
by each node then depends on the size and density of the network. The more nodes and 
the higher the density of the network, the large the number of initial flooding messages 
that need to be sent out to ensure all the nodes in the network know the information of 

each other. The content of a flooding message is as follows in Table 6.1. The size of 

each flooding message is 13 bytes. 

Table 6.1 Flooding Message 

At the establishment of the network or when a node comes in and wants to join the 
network, an ̀ initial flooding' will be executed once or several times with a random time 
interval between transmissions to ensure that flooding message can be received by all 

6th byte 5th byte 4th byte 3rd byte 2nd byte ist byte 

lst octet 2nd octet 3rd octet 4th octet 5th octet 6th octet 

Flooding Message 
Mes. Type My ID (IP) My Location 

1 Byte 4 Bytes 8 Bytes 
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the nodes in the network. The retransmission of flooding message may be needed due to 

the nature of the wireless channel which may cause collisions as discussed previously. 

The number of re-transmissions of the flooding message is determined by the size and 

density of network, the number of nodes, the mobility of nodes and the network traffic 

load. Each node sends out its flooding message to its neighbour nodes and those nodes 

that successfully receive that flooding message will broadcast to their neighbour nodes 

as well. Multiple copies of the same flooding message may be received by some of the 

nodes, but only one copy will be re-broadcasted, others will be discarded. It was 

observed empirically that the flooding message needs to be sent three times to enable 

the flooding message to be received by every node in the network for simulated network 

scenarios. 

A limited hop count can be applied to the flooding message in order to reduce the 

signalling overhead caused by short distance transmission. The hop count is then 
determined by the size of the network and the maximum transmission range of each 

node. 

A time slot scheme for the flooding message may help to reduce the signalling overhead. 
Each node sends out its message at particular time slot to avoid collusion. But in mobile 
Ad-hoc networks, synchronization is a major challenge unless a centralized server is 

provided to support synchronization of all the nodes in the network. 

6.2.2 Geographic Table 

Instead of using a routing table, a geographic routing protocol uses a geographic table to 

store the location information of all the nodes in the network. When a node receives a 
flooding message from another node, it incorporates the data into its geographic table 

which takes the form shown in Table 6.2. The geographic table is updated when nodes 
that change position send out a new flooding message. This process will be discussed 

later. 

Geographic Table 
ID Location Time Stamp 

4 Bytes 8 Bytes 2 Bytes 

Table 6.2 Geographic Table 
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6.2.3 Hello messages Broadcast 

Hello messages are used to periodically provide all nodes with basic information about 

the neighbour nodes with which they have contact. Each node transmits a Hello 

message to the network broadcast address, containing only its own identifier (its IP 

address) and position. Through the Hello message process, each node determines the set 

of other nodes within direct communication range (within one hop). A simple Hello 

message structure as shown in Table 6.3 can be the same as the Flooding Message while 

the `mes. Type' will distinguish the type of message. More information such as the 

position information of neighbour nodes can be provided to help routing determination. 

The time interval between Hello messages is normally determined by the following 

parameters: 

The density of the nodes. The Hello messages from a node only affect its neighbour 

nodes. With a large network density, each node generally has more neighbour nodes. 
In this case, Hello messages will be sent out less frequently in order to reduce the 
interference. 

The traffic load, when the traffic load increases, Hello message interval should 
become larger which means less Hello messages are sent out to reduce the 

signalling overhead and increase the network throughput. 

The mobility of nodes. When a node moves away from its original position, it 

changes the connectivity with its neighbour nodes. Hence the Hello messages need 
to be sent out to inform its neighbour nodes. The faster the node moves, the more 
frequently Hello messages are sent out. 

Hello Message 
Mes. Type My ID My Location 

1 Byte 4Bytes 8 Bytes 

Table 6.3 Hello message 

Hello Message 
Mes. Type My ID My Location Battery Level 

1 Byte 4 Bytes 8 Bytes I Byte 

Table 6.4 Hello message with Battery Information 
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6.2.4 Neighbour Table Establishment 

Any nodes which lies within the maximum transmission range of a source node and are 

able to receive packets from it successfully are the neighbour nodes of the source node. 
By receiving Hello messages from neighbour nodes, each node will establish a 

Neighbour Table as shown in Table 6.5. 

Neighbour Table 
One-Hop Neighbours 

ID Location Validity Time 
4 Bytes 8 Bytes 1 Byte 

Table 6.5 Neighbour Table 

Upon not receiving Hello message from a neighbour for a period longer than the 

validity time interval, a node assumes that the link to the neighbour is lost, and deletes 

the neighbour from its table. The IEEE 802.11 MAC layer also gives direct indications 

of link-level retransmission failures to neighbours which can be interpreted identically. 

To maintain local connectivity, Hello messages are periodically sent out to neighbour 

nodes. 

6.2.5 Position Request 

If the position information of the destination node is not included or valid in the 

neighbour table of the source node, a position request will be executed to help find the 
location of the destination. That request will be broadcasted through the network. Any 

nodes which contains the location information of the destination node will reply to the 

source node. 

6.2.6 Flooding for Position updates 

When a node moves, it can determine the distance it moves from its original location 

using GPS data. If the node has moved more than a predefined distance, then it will 
broadcast a co-ordinate message to the whole network to update its new position. The 

reason to define a distance threshold is to reduce the signalling overhead caused by co- 
ordinate messages. The distance threshold is defined based on the density and size of 
the networks and the mobility of nodes. 
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6.2.7 Forwarding 

When a source node wants to communicate with a destination node, it firstly checks its 

neighbour table to see if the destination node is its neighbour. If so, it sends the packet 

to the destination directly. However, if the destination node is not its one-hop neighbour, 

a routing decision needs to be made to find a relay node within its neighbour table, 

which lies closer to the destination than the source node. 

Geographic routing protocols usually follow a scheme based on the shortest distance to 

the destination. Each node that receives the data packet considers which of its neighbour 

nodes is closest to the destination and selects that neighbour to forward the packet to. 

To avoid loops, neighbour nodes that have already been traversed are omitted. Many 

such forwarding strategies have been proposed. Examples of which are discussed in 

chapters 2 and 4. 

All those Geographic Forwarding schemes must meet the following basic requirements: 

" Each node has a unique ID which is known to all the nodes throughout the network. 

" Using GPS as an alternative positioning system, each node determines its location 

in the form of latitude and longitude. 

" Each node periodically broadcasts a `Hello' packet to its radio neighbours 
informing them of its ID, its current location and velocity. 

" Each node maintains a local database containing its current neighbour IDs and 
geographic locations. 

6.2.8 Face Routing 

Greedy forwarding can lead into a dead end, where there is no neighbour closer to the 
destination. Then, face routing [80-83] helps to recover from that situation and find a 

path to another node, where greedy forwarding can be resumed. A recovery strategy 
such as face routing is necessary to ensure that a message can be delivered to the 
destination. The combination of greedy forwarding and face routing was first proposed 
in 1999 under the name GFG (Greedy-Face-Greedy) [84]. As shown in Figure 6.3 
below a message is routed along the interior of the faces of the communication graph, 
with face changes at the edges crossing the S-D-line. The final routing path is shown in 
blue. 
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S 

6.3 Enhanced Signalling Messages 

D 

In conventional geographic routing protocols, a node will only send out its own location 

through Hello messages. However the signalling messages may require further 

neighbourhood information, which is reflected in the contents of messages sent by 

nodes when they, change activity status, react to topological changes, or simply 

periodically send update messages. A Hello message may contain, in addition to its own 
ID, its position and a list of one-hop neighbours. Other content is also possible, such as 

a list of one-hop neighbours with their positions and battery levels, a list of two-hop 

neighbours etc. 

More detailed information for example a list of two (or more) hop neighbours can help 

to improve the routing efficiency as illustrated in Figure 6.4 below. In this example, 

node A and B are both candidate relay nodes for transmission of data for node S to node 
D. A protocol which simply identifies node position would select node A as the relay 

node since it is closer to destination node D than node B. However Node A may have 

no connection with D and to reach node D requires one more hop through node C. Node 

B may have direct connection with D and the route through node B will have one hop 

less than the route through node A. This route could only be chosen if the relevant 

neighbour data had first been communicated and established in the routing table of node 
S. 
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Figure 6.4 Final hop problem 

An example of the neighbour table for node S is shown in Table 6.6. This table 

maintains and updates the location information of all nodes in the network. 

Geographic Table 

ID Location Validity Time 

A (XA, YA) TA 

B (Xe, YB) TB 

C (Xc, Yc) Tc 

D (XD, YD) TD 

Table 6.6 Neighbour Table for Node S 

By receiving a simplified Hello messages as described in Table 6.3, nodes S establishes 
its routing table for node A and B as shown in Table 6.7. However, the routing 
information about node D is not included in the routing table which may cause the 

problem as discussed early. 

Routing Table S 

One-Hop Neighbors 

ID Location Battery Level Link 
Quality 

Validity Time 

A (XA, YA) BA QA TA 

B (Xe, YB) BB QB TB 

Table 6.7 Improved Routing Table for Node S 
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In order to develop an energy efficient geographic routing protocol, other content is also 

possible in Hello message in addition to its own ID and position, such as a list of one- 

hop neighbours with their battery levels and positions. An example of an enhanced 

Hello message as shown below in Table 6.8 contains the battery information which can 

be used as one of the criteria for routing decision. 

Hello Message 
Mes. Type My ID My Location Battery Level 

1 Byte 4 Bytes 8 Bytes 1 Byte 
Neighbouring Table 

ID Location Battery Level Link Quality 
4Btes 8Btes 1Bte 1Bte 

Table 6.8 Improved Hello message 

The link quality is then estimated by measuring the power level of the received Hello 

message. The status of battery level and link quality can be updated through periodic 

Hello messages. An improved neighbour table which contains the link quality for one 

hop neighbours is shown in Table 6.9. 

Neighbour Table 
One-Hop Neighbours 

ID Location Battery Level Link Quality Validity Time 
4 Bytes 8 Bytes 1 Byte 1 Byte 1 Byte 

Table 6.9 Improved Neighbour Table I 

In order to select the proper route to node D, routing information about two-hop 

neighbours is needed as shown in Table 6.10. 

Neighbour Table 
One-Hop Neighbours 

ID Location Battery Level Link Quality Validity Time 
4 Bytes 8 Bytes I Byte 1 Byte 1 Byte 

Two-Hop Neighbours 
ID Location Battery Level Link 

Quality 
Intermediate 

node 
Validity 

Time 
46tes 8Btes 1Bte 1Bte 4Btes 1Bte 

Table 6.10 Improved Neighbour Table 11 
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By using enhanced Hello message, node A and B send out more information which 

includes its neighbouring table as shown in Table 6.11 and 6.12. 

Hello MessageA 
Mes. Type My ID My Location Battery Level 

Hello A (XA, YA) BA 
Neighbouring Table 

ID Location Battery Level Link Quality 
C (Xc, Yc) Bc Qc 
S X 

,Y 
B Q 

Table 6.11 Hello message for Node A 

As shown in Table 6.11 for the Hello message from node A, only node C and S are in 

the neighbouring table since the node D has no direct connection with node A. 

Hello Message B 
Mes. Type My ID My Location Battery Level 

Hello B (XB, YB) BB 
Neighbouring Table 

ID Location Battery Level Link Quality 
C (Xc, YC) Bc QC 
S (Xs, Ys) Bs Qs 
D X ,Y 

13D iQ 

Table 6.12 Hello message for Node B 

From the Hello message from node B as shown in Table 6.12, routing information for 

node D can be found which will help node S to select route to node D. The final 

neighbour table for node S is shown in Table 6.13, from which node S can find the route 
to D with a minimised hop count. 
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NeighbourTable S 

One-Hop Neighbors 

ID Location Battery Level Link 
Quality 

Validity Time 

A (XA, YA) BA QA TA 

B (XB, YB) BB QB TB 

Two-Hop Neighbors 

ID Location Battery Level Link 
Quality 

Intermediate 

node 
Validity 

Time 

C (Xc, Yc) Bc QC A Tc 

D (XD, YD) BD QD B TD 

Table 6.13 Neighbour Table of Node S 

By utilizing the enhanced signalling messages, all the nodes are able to obtain full 

detailed routing information for their two-hop neighbours which will help facilitate a 

routing decision. An example for a network with 11 nodes is shown in Figure (5 f[ ow., 

The black arrow lines show the connectivity of the nodes. Hello messages are 

periodically sent out by each node which contain the information of the node itself and 
its neighbours. At the beginning of the network, the Hello message may only contain 
the information of the node itself because no information from its neighbours has been 

received yet and such information can be updated later. Tables 6.14 to 6.16 show the 
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final version of Hello messages of node A, D and H respectively with full neighbour 

information. 

Hello MessageA 
Mes. Type My ID My Location Battery Level 

Hello A (XA, YA) BA 
Neighbouring Table 

ID Location Battery Level Link Quality 
B (XB, YB) BB QB 
C (Xc, Yc) Bc QC 
E (XE, YE) BE QE 

K (X ,Y B Q 

Table 6.14 Hello message of Node A 

Hello Message D 
Mes. Type My ID My Location Battery Level 

Hello D. (XD, YD) Bo 
Neighbouring Table 

Ig' Looätion Battery Level Link Quality 
B (Xs, Ya) Bs QB 
C (Xc, Yc) BC Qc 
F (XF, YF) BF Q 

X 
,Y 

B Q 

Table 6.15 Hello message of Node D 

Hello Message H 
Mes. Type MyID My Location Battery Level 

Hello H (XH, YH) BH 
Neighbouring Table 

ID Location Battery Level Link Quality 
F (XF, YF) BF QF 
I X 

,Y B Q 

Table 6.16 Hello message of Node H 

By receiving Hello messages from its neighbours, a node updates its neighbour table for 

routing purposes. The neighbouring table information from received Hello messages is 

then classified into ̀ One-Hop Neighbours' and ̀ Two-Hop Neighbours' and is stored in 

the neighbour table. Such a neighbour table is kept updated by obtaining the latest 
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information from periodic Hello message mechanism. Tables 6.17 to 6.19 show the 

Neighbour tables of node A, H and D respectively. 

Neighbour Table A 

One-Hop Neighbours 

ID Location Battery Level Link 
Quality 

Validity Time 

B (Xe, YB) BB QB TB 

C (Xc, Yc) BC Qc Tc 

E (XE, YE) BE QE TE 

K (XK, YK) BK QK Tk 

Two-Hop Neighbours 

ID Location Battery Level Link 
Quality 

Relay Node Validity Time 

D (XD, YD) BD Qp C TD 

G (Xc, Yc) Bc Qo C TG 

J (Xi, Yj) Bj Q B Tj 

Table 6.17 Neighbour Table of Node A 

Neighbour Table H 

One-Hop Neighbours 

ID Location Battery Level Link 
Quality 

Validity Time 

F (XF, VF) BF QF TF 

I (Xi, Y1) Bi Q1 T, 
Two-Hop Neighbours 

ID Location Battery Level Link 
Quality 

Relay Node Validity Time 

D (XD, YD) BD QD I To 

G (XG, YG) BG QG I TG 

J 
16- 

(Xi, YY) Bj Qj F Tj 

Table 6.18 Neighbour Table of Node H 
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Neighbour Table D 

One-Hop Neighbours 

ID Location Battery Level Link 
Quality 

Validity Time 

B (Xe, Y(3) BB Qa TB 

C (Xc, Yc) Bc Qc Tc 

F (XF, YF) BF QF TF 

(XI, Y1) Bi Qi T, 

Two-Hop Neighbours 

ID Location Battery Level Link 
Quality 

Relay Node Validity Time 

A (XA, Y, o, ) BA QA B TA 
E (XE, YE) BE QE C TE 

G (XG, YG) BG QG I TG 
H (XH, YH) BH QH I TH 

J (Xe, Yj) Bj Qj F Tj 

K (XK, YK) BK QK B TK 

Table 6.19 Neighbour Table of Node D 

With the enhanced signalling message scheme, full detailed routing information for all 
the nodes in the network can be established as shown in Table 6.19 for the neighbour 
table of node D. 

6.4 Simulation & Results Analysis 

6.4.1 Simulation Scenario 

Five routing protocols namely Ad-hoc On-Demand Distance Vector (AODV), Dynamic 
Source Routing (DSR), Optimized Link State Routing (OLSR), Geographic Routing 

Protocol (GRP) and the Enhanced Energy Efficient Geographic Routing Protocol (EEE- 
GRP) are simulated and compared in this session to show their performance in terms of 
routing signalling overhead by looking at the amount of routing traffic overhead 
generated and the transmission delay. 

The EEE-GRP is developed by using an improved Hello message type as shown in 
Table 6.20 which contains the location information of neighbour nodes to assist routing 
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decision. After receiving the improved Hello message from neighbours, each node 

establishes a routing table for its one-hop and two-hop neighbours. 

Hello Message 
Mes. Type My ID My Location Battery Level 

1 Byte 4 Bytes 8 Bytes 1 Byte 
Neighbouring Table 

ID Location Battery Level 
4 6tes 8 6tes 1Bte 

Table 6.20 Improved Hello message 

6.4.2 Signalling Processes for other Routing Protocols 

In this section, the major signalling processes for AODV, DSR and OLSR protocols are 
introduced. A comparison of simulation results follows this section. 
6.4.2.1 Signalling Processes for AODV 

Route discovery 

The AODV [26] model implements the complete set of route discovery mechanisms: 
broadcasting route requests (RREQ), creating a reverse path while forwarding RREQ, 

route replies (RREP) by intermediate nodes or destination node, and creating a forward 

path while forwarding RREP. Rate limit, maximum number of retries, and exponential 
backoff between each retry during the route discovery are also implemented. 

Maintaining sequence numbers 

The AODV model maintains sequence numbers to avoid loops during route formation 

or update. Each node maintains a sequence number that is updated accordingly while 
receiving AODV control packets. 

Hello messages 

A node offers link connectivity information by broadcasting local Hello messages. Only 

the nodes that are part of an active route use Hello message. Every 
HELLO_INTERVAL seconds, each node checks whether it has sent a broadcast within 
the last HELLO_INTERVAL seconds. If not, it broadcasts a Hello message. 

Maintaining local connectivity 

Each forwarding node maintains its continued connectivity to its active next hops. If a 
node doesn't receive any packet (Hello or otherwise) from a neighbour within 
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ALLOWED HELLO LOSS x HELLO INTERVAL seconds, it assumes that the link 

to the neighbour is lost. The following protocols also have the same parameter for the 

Hello message process. 

Route maintenance 

Each AODV routing table entry is associated with a route expiry timer. This timer is 

calculated during the route discovery process. The timer is refreshed with each packet 

using that route entry. If a route is not used for more than ACTIVE_ROUTE_TIME 

seconds, it is marked INVALID and cannot be used for forwarding packets. An active 

route can also be marked INVALID after detecting a link break (next hop connection 
failure). A route is deleted from the routing table only DELETE_PERIOD seconds after 
it has been marked invalid. 

Route reply by intermediate node 

During route discovery, an intermediate node having a "fresh enough" route to the 
destination can send a reply to the source. This feature can be switched off by enabling 
the DESTINATION ONLY flag. With this flag set, only the destination node can reply 

to a route request. 

Gratuitous route reply 

In order for a destination to learn of routes to the originating node, the originating node 

sets a "gratuitous route reply" (G) flag in the route request. If an intermediate node 

replies to a route request having the G flag set, it also unicasts a gratuitous route reply to 
the destination node. 

Expanding ring search 

To prevent unnecessary network-wide dissemination of route requests, originating 
nodes use the expanding ring search technique. In this technique, the originating node 
initially uses a TTL equal to TTL_START in the route request IP header and sets the 
timeout for receiving a route reply to RING_TRAVERSAL_TIME seconds. In case of 
timeout without a route reply, the originator broadcasts the request again with TTL 
incremented by TTL_INCREMENT. This continues until TTL reaches 
TTL THRESHOLD, beyond which TTL is set to NET_DIAMETER (network-wide 
broadcast) for each attempt. There is a limit on the maximum number of attempts, 
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determined by the Route Request Retries attribute, as set in the Route Discovery 

Parameters. 

Local repair 

When a link break occurs in an active route, the node upstream of the break can attempt 

to repair the link locally if local repair is enabled on that node. During the local 

recovery, the node buffers the currently undeliverable packet and starts a route 
discovery for the destination node. Local repair attempts are often invisible to the 

originating node. 
6.4.2.2 Signalling Processes for DSR 

Route Discovery [27] 

The DSR model implements the complete set of route discovery mechanisms 

comprising of broadcasting route requests to find a route and receiving route replies 
with a specific route to the destination. 

Route Maintenance 

As DSR is designed for mobile networks, route maintenance is done to verify whether 
the next hop along the source route is reachable. The complete set of route maintenance 

mechanisms comprising of sending acknowledgement requests and receiving 

acknowledgements is implemented. 

Route Cache 

Each node maintains a route cache comprising of routing information in the network. 
The route cache is implemented as a "path cache" where the node maintains a set of 
paths to each destination. The node chooses the route with the least number of hops to 
the destination. 

Replying to Route Requests using Cached Routes 

A node can reply to a route request for which it is not the destination, by searching its 

own route cache for a route to the destination of the route request. 

Non-propagating route request 

DSR implements a "non-propagating" route request mechanism where the route request 
is broadcast only to the immediate neighbours of the node performing route discovery. 
This request is not re-broadcasted by the neighbours. If one of the neighbours is the 
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destination or has a route to the destination of the request, it would send a reply. If the 

node performing route discovery does not receive a reply within a certain period, it 

times out and sends out a "propagating" route request which is broadcasted to the entire 

network. 

Packet Salvaging 

When an intermediate node forwarding a packet detects that the next hop for the packet 
is broken, if the node has an alternative route to the destination of the packet, the node 

"salvages" the packet by sending it along this alternative route 

Automatic Route Shortening 

The route used by a packet may be automatically shortened if one or more of the 
intermediate nodes in the route become no longer necessary. This may happen when a 

node operating in promiscuous mode receives a packet in which it is not the next hop, 

but is named in the unexpended portion of the route. The node can then remove the 

nodes that are no longer needed before itself in the source route. 
6.4.2.3 Signalling Processes for OLSR 

MPR flooding mechanism [40] 

The OLSR model implements the MPR (Multi Point Relay) flooding mechanism to 
broadcast and flood Topology Control (TC) messages in the network. The algorithm is 

implemented as suggested in OLSR RFC 3626. This mechanism takes advantage of 

controlled flooding by allowing only selected nodes (MPR nodes) to flood the TC 

message. Each node selects an MPR to reach its two-hop neighbours. 

Neighbour sensing mechanism 

The OLSR model implements the neighbour sensing mechanism through periodic 
broadcast of Hello messages. These Hello messages are one-hop broadcasts (never 
forwarded) that carry neighbour type and neighbour quality information. The neighbour 
sensing mechanism provides information on up to two-hop neighbours. Generation and 
processing of the Hello messages are implemented as suggested in the OLSR RFC. 

Topology discovery/diffusion mechanism 

Periodic and triggered Topology Control (TC) messages implement the topology 
discovery/diffusion mechanism in the OLSR model. TC messages are generated by 
MPR nodes and carry information about MPR selector nodes. These messages are 
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diffused throughout the network using controlled flooding, thus helping to form a 

topology for each node with its reachable nodes and previous hop information. 

OLSR maintains several tables to store the link, neighbour, two-hop neighbour, and 

topology information. All table entries are associated with an expiry time. Some of the 

entries implement an active timer (scheduling an interrupt) and some use the lazy 

method (not scheduling a specific interrupt with each entry) to remove the old 
information. 

6.4.3 Simulation for the routing protocols 
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Figure 6.6. shows the simulation scenario contains 50 nodes randomly deployed in a 
350X35Om2 network. The Free Space Path Loss (FSPL) model was used in the 
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simulation to represent the path loss. The transmission power is Odßm (I mW) for all the 

nodes and the receiver sensitivity is -95dBm. Packets with a power less than this 

threshold are not sensed and decoded by the receiver. Hence, such packets are not 

detected by the receiver through its physical sensing mechanism. The packets whose 

received power is higher than this threshold are considered as valid packets. They are 

sensed by the MAC and are recorded as being received successfully unless the RER due 

to interference, background noise and/or collision with other valid packets is higher than 

a specified threshold. The maximum transmission range was 150m for each node and all 

the nodes are static although the power settings in this simulation enable a valid 

transmission distances in excess of 500 meters between transceivers. Any nodes 

separated more than 150m will not be able to communicate directly with each other 

even if the path loss is below the threshold. This function is achieved by using the 'The 

Dynamic Receiver Group configuration' object within OPNET as shown in Figure 6.7. 

This function computes receiver groups, which are the set of possible receivers with 

which a node can communicate. This configuration object specifics: 

" the criteria (channel match, distance threshold, and pathloss threshold) used to 

determine which receivers belong to a receiver group 

" when the groups are used 

" how often group membership is computed 

By restricting the set of possible receivers, the number of transmissions sent out by the 

nodes in the network can be reduced as well as the simulation runtimes. The decrease in 

simulation speed depends on the following factors: 

" Number of possible neighbours for each node with respect to the total number of 

receivers 

0 Number of re-computations during the simulation (refresh interval) 

R= Receiver Selection Parameters 
?' 

ID- Selection Parameters 

ý5c droh Channel Match Criteria Strict Match 
GoMro Distance Threshold (meters) 150 

Pathloss Threshold (dB) None 

Figure 6.7 MANET RX Group Config 

By setting up the maximum transmission range in the simulation, multi-hop routes with 
no more than three hops were observed in the following simulations. 
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In order for the OPNET software to calculate signalling bits as packet rate, it is 

necessary for the source and destination nodes to be assigned and data packets to be 

generated as traffic between these nodes. The MANET traffic generator as discussed in 

chapter 3 is used to generate various data rates. The packet inter-arrival time specified 

as uniform(2.0,2.5) generates packets at the source node every 2 to 2.5 seconds with a 

step size of 10"6s. The probability density function for a uniform distribution on the 

interval [a, b] is 

0 for x<a 
P(x) 

b_a 
fora_ x<_b 

0 for x>b (6.1) 

The actual parameters used for the traffic generation in this simulation are as follows. 

Hello message interval: each node broadcasts a Hello message to all its neighbours 

every hello interval seconds. In the simulation, all the nodes will send out a Hello 

message after every Hello message interval. A constant value for the hello interval 

would result in a large number of collisions between the Hello message protocols. It is 

therefore appropriate to establish a degree of probability in hello packet generation. To 

avoid synchronization of neighbours' Hello messages, as observed by Floyd and 
Jacobson [85], each message's transmission is jittered by using the uniform distribution 
function based on a defined Hello message interval. The transmission delay for a Hello 

message of l3bytes for the GRP protocol at 11 Mbps data rate is 9.45µs and theoretically 

a maximum number of 105769 Hello messages can be sent out each second. In this 
simulation, 50 Hello messages are generated every second by 50 nodes in the network 
which need a minimum time of 482µs. The parameter uniform (0.9,1.0) is therefore 

used for the Hello message interval to generate random values between 0.900000 and 
1.000000 to provide sufficient different transmission times for each Hello message to 

ensure the collision probability is significantly low to avoid the need for multiple hello 

packet transmissions. 

As stated earlier, the packet inter-arrival time is used for generating random outcomes 
for times between successive message packet generation. The packet inter-arrival time 
is defined in order to simulate the route request for reactive routing protocols such as 
AODV and DSR. In those protocols, a routing decision needs to be made for each 
generated data packet which requires the routing information to be regularly updated. A 
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timely update for the network topology and link connectivity is therefore needed 

through the periodic Hello message exchange. With high mobility of the nodes, Hello 

messages are required to be sent out more frequently in order to provide instant routing 
information, however in this simulation all nodes are static. A uniform (1.0,1.5) is 

initially used for the packet inter-arrival time based on the previous hello interval setting 

which is uniform (0.9,1.0). The uniform (0.5,1.0) and uniform (0.25,0.5) are also used 
to simulate an increase in the packet generation rate which subsequently affects the 

signalling overhead of the network. 

The following data parameters are also used in the simulation: 

" Packet Message size (bits): a constant 1024 bits is used for the packet size [86,87]. 

" Neighbour Expiry Time (seconds): constant 2s. If a Hello message is not received 
from a neighbour node within the neighbour expiry time, which is 2 seconds in this 

simulation, the node is not considered a neighbour anymore. 

" Number of Initial Floods: 3 times. Flooding messages may get lost due to channel 

collisions and the routing information carried within that message would then not 
be obtained by all the nodes in the work. For example, in a GRP network all nodes 

exchange position information with each other through the flooding messages. If 

the source node is not aware of the position of the destination node, a position 
request message needs to be sent out in order to update that information. Through 
initial testing, it was shown that information convergence could be established 
using a maximum of three initial floodings, after which all the nodes were able to 
share information with every node. Following this flooding, no position request 
message was sent out. 

" Physical Data rate: 11Mbps. A lower data rate could be used but this may result in 

collisions occurring due to the longer transmission time when sending packets. This 

would degrade the network performance. 

" The source and destination of each transmission are selected randomly. 

By using the parameters above for the traffic generation, the transmission delay for a 
data packet of 1024bits at 11 Mbps data rate is 931 µs which means the maximum 
number of packets which can be sent out within a one second period is 10742. 
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6.4.3.1 Discussion of the signalling process for on demand and proactive routing 

protocols 

AODV and DSR are both on demand protocols in which route information is discovered 

only as needed. The route is normally determined by route latency and a route with the 

shortest time (lowest latency) will be selected. 

In the DSR protocol, the entire path to the destination is supplied by the source in a 

packet header that utilizes an extension header following the standard IP header [27]. 

Route discovery is undertaken when a source needs a route to a destination. The source 

node broadcasts a Route Request message for the specified destination. Each 

intermediate node adds itself to the path in the message and forwards (broadcasts) the 

message towards the destination. The destination node unicasts the Route Reply 

message which contains the complete path built by intermediate nodes to the source. 
Intermediate nodes cache overheard routes to reduce the need for route discovery. A 

Route Reply may be returned to the source by the intermediate node if it already has a 

path stored. In a single query-reply cycle, the source node learns a route to each 

intermediate node in the route in addition to the destination node. Each intermediate 

node also learns the route to other nodes on the route. Promiscuous listening also helps 

nodes to learn the route to every node on the route. 

For the AODV protocol [26], the route discovery procedure is undertaken whenever a 

node needs a "next hop" to forward a packet to the destination. The source node then 

broadcasts a Route Request (RREQ) message for the specified destination. The 

intermediate node forwards (broadcasts) the message toward the destination and creates 
a next-hop entry for the reverse path to the source, to use when sending a reply. After 

the destination node receives the message, it unicasts a Route Reply (RREP) message to 

the source which contains the sequence number and hop-count field. Each intermediate 

node creates a next-hop entry for the destination as the RREP is received identified as a 
forward along "reverse path" hop. There is no source routing or promiscuous listening 

for AODV, as such AODV relies on a route discovery flood more often than the DSR 

protocol, and so generates more signalling overhead than DSR which benefits from 

cached overhead routes stored in intermediate nodes. 

Being a proactive protocol, OLSR inherits the stability of a link state algorithm and has 

the advantage of having routes available immediately when required due to its proactive 
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nature [40]. OLSR is optimized over the classical link state protocol and is tailored for 

mobile Ad-hoc networks. It discovers and maintains the routes to all destinations within 

the network so the routing information is immediately available when required. The 

protocol uses Hello and Topology Control (TC) messages to discover and then 

disseminate link state information throughout the mobile ad-hoc networks. Individual 

nodes use this topology information to compute the next hop destinations for all nodes 
in the network, using shortest hop forwarding paths. Topology information is exchanged 

with other nodes of the network regularly. Each node selects a set of its neighbour 

nodes as "multipoint relays" (MPR). In OLSR, only nodes, selected as such MPRs, are 

responsible for forwarding control traffic, intended for diffusion into the entire network. 
OLSR minimizes the overhead from flooding of control traffic by using MPRs to 

retransmit signalling messages. This technique significantly reduces the total number of 

retransmissions required to flood a signalling message to all nodes in the network. 

As a proactive routing protocol, geographic routing has the advantage of low signalling 

overhead when compared with other routing protocols. This is shown in the results 

presented in this section which examines the signalling overhead for some different 

protocols. The protocols considered are the Optimized Link State Routing Protocol 

(OLSR) based on Link State Routing (LSR), Ad-hoc On-Demand Distance Vector 

Routing (AODV), Dynamic Source Routing protocol (DSR), Geographic Routing 

protocol. 

The basic concepts of OLSR, AODV and DSR were discussed in details in early 

chapters, but are summarised here to aid the discussion. In Link State Routing, each 
node periodically floods the status of its links and rebroadcasts link state information 

received from its neighbours. Every node keeps track of link state information received 
from other nodes. This information is then used by each node to determine the next hop 

to each destination. 

A general characteristic comparison of those routing protocols is shown in Table 6.21 
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Characteristic DSR AODV OLSR GRP 

Routing Reactive Reactive Proactive Proactive 

Philosophy 

Type of Source Hop-by-hop Hop-by-hop Hop-by-hop routing 
Routing routing routing routing 

Frequency of As needed As needed Periodically Periodically 

Updates 

Worst case Full Full Pure link Full flooding 
flooding flooding state 

Multiple Yes No No No 

routes 

I aale oa i %-omparison of mobile Ad-hoc Routing Protocols 

6.4.4 Simulation Results Analysis 

A series of signalling rates for 5 routing protocols (ADOV, DSR, OLSR, GRP and 
EEE-GRP) were obtained through simulation. The results were compared and analysed 
in the following sections. 

6.4.4.1. Traffic Source Packet Inter-arrival time: uniform (1.0,1.5) 

As shown in the Figure 6.8 below, AODV has the highest signalling rate. Although 
AODV and DSR are both reactive routing protocols, DSR has much lower routing 
traffic overhead than AODV and has access to greater amount of routing information 
than AODV. As indicated in the previous section, DSR uses routing cache aggressively, 
and maintains multiple routes per destination. DSR uses route replies to all requests 
reaching and determining a route to a destination from a single request cycle. The 

source node learns many alternative routes to the destination, which is useful when the 

primary route fails. This saves the overhead of a new discovery flood which would 
otherwise be required. With the packet inter-arrival time equal to uniform(1.0,1.5), 
DSR achieved the lowest signalling overhead, even lower than the proactive routing 
protocols. 
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AODV uses one route per destination. It maintains at most one entry per destination in 

the routing table. The destination node only replies once to the request arriving first and 

ignores the rest. 

Bits/sec 
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Routing Traffic Sent (bits/sec) -Packet Inter -arrival Time - uniform (1.0,1.5) 
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Figure 6.8 Comparison of Signalling Traffic (bits/sec) for Different Routing Protocols 

The GRP protocol achieved the second lowest signalling overhead of all the routing 

protocols. There are 50 nodes in the network and each node generates a hello message 
following the uniform (0.9,1) distribution. The size of Hello message aller IP 

encapsulation is 55 bytes for this protocol as shown in Figure 6.9 below. 

fields 
(160 bds) 

options 
(320 bits) 

MPLS Shim Header -[-MP -LS Wo 

Figure 6.9 Packet Format for IP_dgram_V4 

Therefore the signalling overhead for GRP can be calculated using the formula below: 

Maximum Rate: 50 * (1/0.9)* 55 *8= 24444 bits/s (6.2) 

Minimum Rate: 50 * 1* 55 *8= 22000 bits/s (6.3) 
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Where the maximum rate for the GRP signalling overhead is obtained when the Hello 

message interval is equal to 0.9s and the minimum rate is obtained when the Hello 

message interval is equal to Is. The average rate is then calculated below: 

Average Rate: (24444+22000)/2 = 23222 bits/s (6.4) 

The EEE-GRP protocol which is developed based on GRP has much higher signalling 

overhead than GRP due to the larger size of the Hello message. The enhanced Hello 

message contains the neighbour information as described previously. Each neighbour 

node will add 13 bytes into the size of the Hello message for its location information. 

Below in Table 6.22 shows the number of neighbour nodes that are contained in the 

Hello messages for EEE-GRP routing protocol in this simulation with the transmission 

range of 150m for all the nodes. 

Cumulative Total Number of Neighbour Nodes in the 
Hello message 

1070 

Extra Hello message Size for All the Nodes (Bytes) 13910 

Average Number of Neighbour Nodes for Each Node 21 

Average Extra Hello message Size for Each Node (Bytes) 278 

Table 6.22 Number of Neighbour Node for Hello messages 

The simulation collected the number of neighbours for each node within I50m 

transmission range and determined the Hello message size based on that. The 

cumulative total number of neighbour nodes in the Hello messages for all the nodes is 

then obtained by summing of the number of neighbours for all the nodes. The extra 
Hello messages size for all the nodes is obtained by using the total size of Hello 

messages for all the nodes deducting the total size of simple Hello messages which is 55 

bytes for each node. Since there are 50 nodes in the network, the average number of 

neighbour nodes for each node and the average extra Hello message size for each node 

were then obtained by the total number divided by 50 nodes. 

Therefore the signalling overhead for EEE-GRP can be calculated using the formula 

below: 

Maximum Rate: (50 *55+13910)*8* (1/0.9) = 148089 bits/s (6.5) 

Minimum Rate: (50 *55+13910)*8* 1= 133280 bits/s (6.6) 
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Where the maximum rate for the EEE-GRP signalling overhead is obtained when the 

Hello message interval is equal to 0.9s and the minimum rate is obtained when the 

Hello message interval is equal to Is. The average rate is then calculated below: 

Average Rate: (148089+133280)/2 = 140685 hits/s (6.7) 

The results for average signalling overhead sent by the five established routing 

protocols (AODV, DSR, OLSR, GRP, EEE-GRP) with a packet inter-arrival time 

unitorm(1.0,1.5), are shown below in Figure 6.10. The average rates for signalling 

overhead were obtained by dividing the total routing traffic sent during the simulation 

time by the simulation time. AODV leads to a typical average signalling packet rate of 

400kbit/s. This relatively high signalling rate arises from the continuous flooding of the 

route request messages through the network. AODV relies on a route discovery flood 

more often than other routing protocols, and so generates more signalling overhead. As 

we can see from the results, the average rates for GRP and FFN-GRP routing protocols 

is slightly different from the theoretical results above. this is due to the uniform 

distribution function used for Hello message generation which means the Hello 

messages are not sent out constantly and variable rates are applied. 

Average Routing Traffic Sent (bits/s) 
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Figure 6.10 Comparison for Average Signalling Overhead Sent (bits/xet ) 
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routing decisions in addition to its own ID and position. In this simulation, the average 

routing traffic sent by EEE-GRP is 140,799bits/s while GRP has 23,628bits/s of that. 

There are certain criteria which affect the Hello message size within the EIa; -GRP 

protocol such as the maximum transmission range of each node, the density of the 

network and path loss model used in the network. 

To examine the effects of increased routing traffic on the signalling overhead, the 

packet inter-arrival time is reduced and results for these changes are presented below. 

6.4.4.2. Traffic Source Packet Inter-arrival time: uniform (0.5,1.0) 

Figure 6.1 1 below shows the results for routing traffic with a uniform (0.5,1.0) for the 

Traffic Source Packet Inter-arrival Time which increases the packet generation rate. 

Being proactive routing protocols, with a higher packet generation rate, AODV and 

DSR generate higher signalling overhead.. The result for GRP, EEE-GRP and OLSR 

remains almost the same as shown in the previous results. This arise because the total 

signalling messages sent out for GRP, EEE-GRP and OLSR are only affected by the 

Hello message intervals not the packet generation rate. Since the Hello message 

intervals were the same as used in previous simulation, the results for GRP, l LF, -GRP 

and OLSR also remain nearly the same. GRP achieved a lower signalling overhead than 

the other routing protocols. 
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Figure 6.11 Comparison of Signalling Overhead Sent (bits/sec) 
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The results for the average signalling overhead sent for all the routing protocols at 

packet inter-arrival time uniform(O. 5,1.0) are shown below in Figure 6.12. As we can 

see from the results, GRP, EEE-GRP and OLSR retained a similar signalling rate to the 

previous simulation whereas the other two reactive routing protocols had higher 

signalling rates. 
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Figure 6.12 Comparison for Average Signalling overhead Sent (bits/sec) 11 

6.4.4.3. Traffic Source Packet Inter-arrival time: uniform (0.25,0.5) 

The signalling rates for Traffic Source Packet Inter-arrival Time with uniform (0.25,0.5) 

which increases the packet generation rate are shown in Figure 6.13. As expected, the 

AODV still had the highest signalling rate. The signalling overhead for DSR increased 

with the increase in the packet generation rate. As proactive routing protocols, (ARP, 

EEE-GRP and OLSR maintained similar results as before with the same I lello message 

rates used for the earlier simulations. 
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Figure 6.13 Comparison for Signalling overhead Sent (bits/sec) 

The comparison for average routing traffic sent by all the routing protocols considered 

is shown below in Figure 6.14. The signalling overhead for DSR was the lowest when 

packet inter-arrival time is uniform (1.0,1.5). However, when a higher packet 

generation rate was used, the signalling overhead for DSR increased and exceeded that 

of GRP and OLSR. For the packet inter-arrival time with uniform(1.0,1.5), the average 
data rate can be obtained by using the following equation. 

1024*50* 1/((1.0 +1.5)/2) = 40,960 bitsec (6.8) 

Where the average packet rate is 1/((1.0+1.5)/2), each packet is 1024bits and there are 
50 nodes in the network, hence the average rate is 40,960 bits/sec at packet inter-arrival 

time with uniform(1.0,1.5). 

As the packet inter-arrival time reduces from uniform(l. 0,1.5) to uniform(0.25,0.5), 

more data packets are generated. The data rate increases from 40,960bits/sec to 
I36,533bits/sec. 

It can be seen that the routing signalling overhead for the AODV and DSR increases 

rapidly with the increase of the packet inter-arrival whereas the signalling overhead in 

GRP, EEE-GRP and OLSR changes little as shown in Figure 6.16. This is expected 
because of its nature of the reactive protocols used in AODV and DSR. Large overhead 
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is expected as more data packets are generated with reduced packet inter-arrival time 

resulting in increasing route discovery signalling. 
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Figure 6.14 Comparison for Average Signalling Overhead Sent (bits/sec) 

Though both AODV and DSR are reactive protocols, the routing overhead of AODV is 

much greater than that of DSR due to following reasons [88-91 ]. AODV is a timer 

based scheme which updates its cache irrespective of the route being valid or stale, if 

that route is not used for a certain period of time which is 3 seconds in this simulation. 

After this period, a route which is not used and refreshed will be marked as invalid and 

then be removed from the routing table. However, if a network is highly dynamic, a 

small value for this attribute is preferred to remove stale routes quickly. DSR is not 

timer based and it will update its route information in the cache on detection of a link 

breakage. AODV maintains only the next hop per destination. DSR maintains multiple 

routes per destination. DSR gathers more information whereas AODV has limited 

access to information and finally the overhead is high in AODV due to the absence of 

promiscuous listening. As DSR adopts this feature it can save multiple routes in its 

cache, which results in a low generation of overhead. 

6.4.4.4 Effects of variation of transmission range on signalling overhead for the 
EEE-GRP protocol 

As with the analysis done chapters 4 and 5 it is instructive to consider the effects of 

varying the transmission range on the average signalling overhead sent by EEE-GRP 

and results for this analysis are presented in this section. 
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Figure 6.15 Average Number of Neighbour per Node for EEE-GRP 
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Figure 6.15 above shows the average number of neighbours per node under dillcrent 

transmission range from 70 to 150m. With the decrease of transmission range, the 

average number of neighbour per node is also reduced. With a FSPL model, the average 

number of neighbours per node was 21 with transmission range of 150m while this 

figure dropped to 6.1 when the transmission range reduced to 70m. The reduction of the 

average number of neighbours per node didn't follow a square law as the coverage of' 

each node does. This is because the nodes which lie near the boundary of the network 

have fewer neighbour nodes than the nodes which lie in the centre of the network. When 

a Non-FSPL model is used, the average number of neighbours per node was 5.3 with a 

transmission range of 150m which is 75% lower than that with FSPI, model. This figure 

was down to 1.4 with a transmission range of 70m and some nodes have no neighbours 
in this case. 

The average signalling overhead sent by EEE-GRP under different transmission range 
from 70 to 150m is shown below in Figure 6.16. The size of Hello message for Fl- l- 

GRP is reduced when the transmission range decreases. The lower average signalling 

rates can be observed with smaller transmission range. When the transmission range 

reduced from 150m to 70m, the average signalling rate drops by 59.1% from 141khit/s 

to 58kbit/s with FSPL model. With NonFSPL model, the average signalling rate at 

107 

70 80 90 100 110 120 130 140 150 



150m transmission range is 5lkbit/s which is only 35.9% of found in with the FSI'I, 

model. The average signalling rate drops by 41.2% from 5I kbit/s at 150m range to 

30kbit/s at 70m range. As we can see from the results, the network performance Under a 

smaller transmission range can achieve a much lower signalling rate. I lowever, with the 

reduction of the transmission range, the number of neighbours of each node decreases 

which can limit or even prevent a route being found. During the simulation under an 

even smaller transmission range than 70m, some nodes were observed that had no 

neighbours within their coverage range and those nodes were isolated from the network. 

The hop count between the source and destination nodes also increases. The power 

consumption of the selected route is higher with a higher hop count, therefore, more 

relay nodes may be required and higher total energy consumption may be observed. An 

optimised transmission range may be discovered to provide the balance between hop 

count and energy consumption and this aim is studied in the later section. 
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Figure 6.16 Comparison of Average Signalling Overhead Sent by ll E-GRI' 

6.4.4.5. Simulation Results with Various Traffic Patterns 

In this section, different values for the traffic generation parameters have been used and 

simulated to study the performance of EEE-GRP for a 50-node network. Different data 

rates for the data traffic with different packet sizes and packet inter-arrival time were 
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simulated and analysed. In Figure 6.17, different packet sizes were used from Ik to 12k 

bits while the packet inter-arrival time remained uniform(1.0,1.5). Results showed that 

all the routing protocols maintained similar results for the signalling overhead under 

different packet sizes. As reactive routing protocols, AODV and DSR send out routing 

traffic for each generated data packet the signalling overhead for AODV and DSR is 

determined by the number of packets generated rather than the size of the packet. 

However if the packet size becomes too large there would be an increased probability of 

collision during transmission of the large packets. Packets which are larger than the 

maximum allowed data size need to go through a fragmentation process to split into 

several smaller packets. Proactive routing protocols like OLSR, GRP and EEE-GRP 

send out routing messages periodically independently of the data traffic. So that their 

signalling overhead remains similar under different packet sizes. 
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Figure 6.17 Comparison of Average Signalling Overhead Sent with Different Packet Size 

To examine the effect of higher packet generation rate rather than the use of larger 

packets, Figure 6.18 shows the results for signalling overhead with different packet 
inter-arrival time while the packet size remained a constant 1024 bits. The packet inter- 

arrival time changed from uniform(l. 0,1.1), uniform(0.75,0.85), uniform(0.5,0.6) to 

uniform(0.25,0.35) and more packets were generated accordingly. As reactive routing 

protocols, AODV and DSR send out more signalling overhead when more data packets 

are generated as can be seen by the increasing trend shown in Figure 6.20. For example, 

an inter-arrival time of uniform(0.25,0.35) generated 1.58 times more packets/sec than 

uniform(1.0,1.1) for AODV and 2.57 times for DSR. 
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OLSR, GRP and EEE-GRP send out signalling messages periodically and as a 

consequence the signalling overhead is little affected by increasing the packet inter- 

arrival time. 
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Figure 6.18 Comparison of Average Signalling Overhead Sent with Different Packet Inter-arrival 

Time 

6.4.4.5. Simulation Results with Different Node Density and Path Loss Models 

In order to further evaluate the performance of EEE-GRP, a series of simulation results 

were collected under different node densities. The physical size of the network remains 

the same as 350X35Om2. The total number of nodes in the analysis varies from 25,50, 

100 to 150. The same routing parameters as in the previous simulation were used. The 

packet inter-arrival time follows uniform(l. 0,1.5) and the maximum transmission range 

was 150m. A realistic non free space path loss model as described in earlier chapters 

was also used to compare with the results obtained with FSPL model. 
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Figure 6.19 Simulation Scenario with 25 Nodes 

Figure 6.19 shows a network with 25 randomly deployed nodes. The results with FSPI, 

and NonFSPL model are shown in Figure 6.20 and 6.21 respectively. For all protocols 
in the NonFSPL scenario, each node has fewer neighbour nodes than in the FSPI. 

scenario which influences the signalling overhead observed. 

The GRP protocol still gives the lowest signalling overhead in both scenarios and the 

while the overhead for AODV changed little and remained the highest. The routing 

traffic sent out by DSR increased when the path loss changed from FSPI, to Nonl Sl 1, 

because the number of neighbour nodes was reduced in the NonFSPI, scenario which 

means DSR obtained less routing information from neighbours when compared with 
FPSL scenario. As a result more signalling messages had to be sent out by DSR to 

obtain the relevant routing information. 
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The signalling overhead for OLSR also slightly increased due to reduced number of 

neighbour nodes within the transmission range in the NonFSPI, scenario. More MPRs 

were selected in this case which generated more signalling traffic. 
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Figure 6.20 Signalling Rate Comparison for 25 Nodes with FSPL Model 
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Figure 6.21 Signalling Rate Comparison for 25 Nodes with NonFSPI, Model 

In Figure 6.22, the number of nodes was doubled to 50 nodes. The number of 
neighbours for each node was generally increased in both FSPI. and NonlFSPI. 

scenarios. 
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Figure 6.22 Simulation Scenario with SO Nodes 

From the results shown in Figure 6.23 with FSPL model and Figure 6.24 with NonFSPL 

model, a similar trend to that observed in the previous simulation was observed. (; RI' 

and AODV are still the lowest and highest in signalling overhead. Routing traffic sent 

by DSR and OLSR increased accordingly in NonFSPL scenario while it dropped 

heavily for EEE-GRP. 
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Figure 6.23 Signalling Rate Comparison for 50 Nodes with FSPI, Model 
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Figure 6.24 Signalling Rate Comparison for 50 Nodes with NonFSPL, Model 

The total number of nodes was increased to 100 as shown in Figure 6.25. A Nonl SI I. 

model wasn't applied in this network due to the long simulation time required for 

AODV and DSR. We observed that AODV and DSR suffered from the high node 
density and their signalling overhead became higher than other routing protocols. 

114 

70 80 90 100 110 SCC 120 



mobile node-9 
" möbileTöde_83 

"" 
mobile_node_7310 " mobile_node_12 

mobile node_10 " mobile_node_8O 
mobile node 17 

__ mobile node 66 

mobile node-69 
0"®" Co 

-" ap mobile_node_34 " 
mobile-node-53 " mobile_node_55 

"" 
mobile-node-5 04mobile_node_56 mobile-node-21 

mobile node 16 " 
mobile _node_41 

j" "" 
"O 

mobile node 2410 mobile_node_20 
"" 

mobile-na 
--" *4mobile_node_76 

® pp, " 

mobile_node_49 
ýmobile_node 

_94 
" 

mobile node_54 mobile node-88 
mobile node_93 

"""" 
mobile_node_81 mobile-node-86 mobile-node-85 

mobile node_43 04mobile_node_62 "4mobile_node_28 
4"" 

"" " mobile node 27 
mobile node 79 -- mobile_node_91 

- 
to" "0"" 

mobile_node_23 mobile _node _25 
e" 

41114mobile_node_82 

mobile node1 mobile node-72 
mobile-node-60 

_-a "lmobile node 4 
mobile_node_680 a""- 

" mobile_node_31 mobile-node-50 04mobile node 45 
0 mobilede_18 -- 

" @4mobile-node-29 
iode_51 '" 

mobile node_33 mobile node-11 Mmobile_node_57 mobile nod 
I_13 

"l mobile_node_63 
0 

*1 

" rnobile_node_3 

node 0 mobile'node_78 mobile-node-15 
" 
4Nmobile_node_37 "" 

mobile node-95 mobile_node_77 mobile-node- 19 "i 

mobile node 89: 

Figure 6.25 Simulation Scenario with 100 Nodes 

As we can see from the results shown in Figure 6.26, DSR couldn't cope with dense 

network and its routing traffic became even higher than AODV. The signalling 

overhead of GRP is only affected by the number of nodes, so it increased proportionally 

with the higher node density. OLSR and EEE-GRP also showed a notable increase in 

routing traffic. However, lower signalling for EEE-GRP is expected with a NonI SPl, 

model while other routing protocols except GRP will have higher routing traffic. 
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Figure 6.26 Signalling Rate Comparison for 100 Nodes with FSPL Model 

Figure 6.27 shows the results of average routing traffic sent at different node density 

and transmission range for EEE-GRP. 
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With the increase of network density, the routing traffic sent in the network increased 

rapidly. The average routing traffic sent by the network is the highest among different 

node densities with a transmission range 140m because the size of Hello message is 

large due to the increased number of neighbours for each node. When NonFSPL is used 
instead of the FSPL model, the network sent out less routing traffic due to the smaller 

size of the Hello messages needed for fewer neighbour nodes. 

As shown in previous results, the signalling overhead became very high in a high 

density network. However, this problem could be resolved by optimizing the size of the 

Hello message through an intelligent neighbour node selection method. In such a 

scheme only a certain number of candidate nodes will be selected among a large number 

of neighbours using more specific criteria such as the location of the nodes, the quality 

of the link etc. 

6.5 Conclusion 

In this chapter, signalling processes for the proposed routing protocol are introduced. 

With the enhanced signalling system, the routing protocol is able to obtain more 
information to assist routing determination. The simulation results showed that the 

signalling overhead can be reduced significantly when the transmission range reduces 

which reduces the number of neighbours for each node. Simulation results also gave a 

comparison of the overhead required for the proposed protocol (EEE-GRP) with that of 

other established protocols under a variety of different network conditions. The 

proposed protocol is seen to require lower signalling overhead than AODV in all 
circumstances and compares favourably with other protocols under a variety of network 
conditions in particular in NonFSPL path loss scenarios. 
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Chapter 7 Conclusions and Future Work 

7.1 Conclusions 

Mobile Ad-hoc networks have attracted growing research interest over the last 10 years 

as they offer a flexible means of communication without the need for fixed 

infrastructure. This will have advantages for applications including communications for 

the emergency services, military communications, conferences, vehicular and ship to 

ship communication. 

Chapter 2 reviews the state of the art in mobile Ad-hoc networks and the underlying 

wireless technologies upon which they are based. A key feature of Ad-hoc networks is 

that individual nodes can act as relays to support multi-hop transmission between source 

and destination nodes which requires each node to have a routing capability. A 

summary of existing proactive, reactive, hierarchical and geographic protocols is 

presented. Geographic protocols have the advantage that they use knowledge of the 

location of the nodes to simplify the search for a route from source to destination. It is 

noted that there is growing interest in the use of geographic protocols because the cost 

of location identification using GPS technology is falling, so that it is now feasible to 
include this capability in wireless Ad-hoc network nodes. A number of geographic 

protocols have been proposed for Ad-hoc networks but these protocols use position 
information as the only metric and ignore link quality. They seek a path with the 

smallest number of hops or the shortest distance but do not take account of energy 

consumption. As wireless nodes, particularly mobile nodes, are battery operated, energy 

consumption is an important factor. The primary objective of this thesis, therefore, is to 
develop an energy efficient geographic routing protocol for mobile Ad-hoc networks. 

Chapter 3 introduces the OPNET Modeller simulation software tool that is used to 

simulate the Ad-hoc network. This tool is an event driven simulator that includes 802.11 

wireless models and also several of the most common routing protocols used for Ad-hoc 

networks. The software can also be adapted to include new features and functions 

specific to this project. The default path loss model in OPNET is the free space model. 
This has been adapted to include a random path loss model to provide a more accurate 

analysis of the power required to communicate between each node. The routing 
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protocols developed in this project have also been modelled using OPNET so that the 

performance can be analysed and compared to existing protocols. 

Chapter 4 describes a new, energy efficient geographic routing protocol (EE-GRP). This 

scheme seeks to find the lowest power route from source to destination. The principle of 

this protocol is that multiple short hops may require a lower transmission power than a 

single long hop. If every possible route were to be analysed, then the processing would 
be very complex, so this protocol reduces the number of routes analysed by using a 

`gain region' and a `relay region', identified using knowledge of the location of nodes 

obtained from GPS units in each node. If a node in the gain region is used as a relay 

node, then the transmission power from source to destination using this relay can be less 

than that of a direct link to the destination. The relay region can then be defined for 

relay node selection according to the distance requirement from the source and 
destination node. The node in the relay region is selected based on the lowest path loss 

from the source node. For longer links, multiple relay nodes can be located on a hop by 

hop basis. Each relay node requires power for processing and so the lowest power end 

to end route is a balance between the reduced transmission power and the increase in 

processing power for multiple hops. 

An OPNET model has been developed to simulate the performance of the EE-GRP 

protocol. The model uses a 350m x 350m size network with 240 randomly located 

nodes. The end to end transmission power for the selected route has been calculated 

and compared to the power that would be required for the route that would be selected 
by a conventional geographical routing protocol. The results show that, for a 
transmission range of 140m, the routes selected by the EE-GRP protocol require 33% of 
the transmission power required by the conventional geographical routing protocol. 

It is shown that the power saving scales with the transmission range because if the 

transmission range increases then the number of nodes in the gain region increases 

which increases the number of possible routes that are analysed. So for a transmission 

range of 170m the EE-GRP protocol only requires 9% of the transmission power 

required by the conventional geographical routing protocol. 

Moreover, a random battery level model is applied for each mobile node when the 
lifetime metric is used to evaluate the routing performance. This time the EE-GRP 
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shows its greater advantage in that the lifetime increases by a factor of 14 over the 

conventional geographic routing protocol. 

The disadvantage of the EE-GRP protocol is that it in order to maintain the hop count 

from the source to the destination the protocol can lead to a very small gain region, 

which limits the number of nodes available for choice as a relay node. This may not 

enable the lowest energy route to be found and sometimes fail to find a relay node. 

Chapter 5 describes an enhanced energy efficient geographic routing protocol (EEE- 

GRP) which sets a minimum forward distance for each hop which ensures that the relay 

region does not become too small based on an optimised hop count obtained from a hop 

count decision mechanism. In addition, based on the density of nodes in the network, 

the number of hops is calculated to give at least three nodes in the relay region. 

Results of network simulations using OPNET Modeller indicate that the energy 

consumption due to the transmission power for routes using the EEE-GRP protocol is 

slightly larger than the EE-GRP protocol for routes with a small number of hops (3-4 

hops). For routes with larger hop counts (5-8 hops), the EEE-GRP protocol again 

selects routes with a slightly higher energy consumption due to node transmission 

power, but it has the advantage that the selected routes have a smaller number of hops. 

This is important because the overall energy consumption comprises the transmission 

power and the processing power of each node in the route, and the processing power is 

typically an order of magnitude larger than the transmission power. So when the 

processing power of each node is included in the total energy calculation, then the 

overall energy consumption can be reduced by approximately 20% using the EEE-GRP 

protocol compared to the EE-GRP protocol. This leads to a corresponding increase in 

the time a route can function on a single battery charge. 

The new routing protocol proposed in this thesis requires a new signalling process to 
distribute the required information between the nodes in the network. Chapter 6 

analyses the signalling requirements for the proposed protocol. Each node initially 

floods the network on a beacon channel to broadcast a node identifier and the co- 

ordinate information. Simulation indicates that this information should be repeated 
three times to cope with possible collisions and ensure all nodes receive the information. 

Each node broadcasts a Hello message to its neighbour nodes at regular intervals. 't'his 

message includes battery level and link quality information. A key feature is that it 

sends information about itself and its neighbour nodes. Each node then builds a table of 
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one hop neighbours and two hop neighbours which is used to establish the optimum 

route. 

OPNET modeller has been used to analyse the amount of signalling data required for 

the new signalling process proposed in this thesis for EEE-GRP and this has been 

compared to the signalling required for other Ad-hoc routing protocols (AODV, DSR, 

OLSR, regular GRP). The results show that AODV requires the largest amount of 

signalling information and DSR and regular GRP the lowest (about 20 times lower). 

EEE-GRP requires approximately seven times more signalling data than DSR and 

regular GRP. This is because of the extra information required in the Hello message to 
find the most energy efficient route. If the traffic source packet inter-arrival time is 

reduced (e. g. more packets are generated), then the signalling for the reactive protocols 
increases, but the signalling for the proactive protocols, including EEE-GRP, stay 

constant. 

The average signalling overhead was studied under different network traffic load to 

evaluate the performance of the proposed protocol. Although the amount of signalling 

required to implement the EEE-GRP routing protocol is larger than some of the other 

protocols, the amount of energy used to provide this signalling is relatively small 
(approximately 10%) compared to the energy required for the data transmission in the 

same period during the simulation. The signalling messages used a constant 
transmission power while the transmission power for the data traffic can be further 

reduced according to the path loss information obtained from the signalling process. So 

the benefits gained from the reduced energy required for the traffic transmission 

outweighs the increase due to signalling. So overall the energy consumption of the 
EEE-GRP protocol is lower than other protocols. 

7.2 Original Contributions 

The original contributions presented in this thesis are as follows: 

1) A new geographical Ad-hoc network routing protocol has been developed which uses 
the concept of a gain region to minimise the energy consumption of the route from 

source to destination using relay nodes. The energy consumption using this protocol is 

shown to be 30% of a conventional geographical routing protocol. 

121 



2) An improvement to the proposed routing protocol has been designed to ensure the 

gain region does not become too small. The enhanced protocol reduces the number of 
hops and hence the overall energy consumption of the selected routes is reduced. 

3) A new model has been developed for the EE-GRP protocol using OPNET Modeller 

to simulate the network performance. 

4) A non-free space path loss model has been included in the simulation model with a 

random loss between each node in the network. 

5) A new signalling process has been proposed for use with the proposed new 

geographical Ad-hoc routing protocols. 

6) The energy consumption and lifetime of the route for the EEE-GRP protocol has 

been calculated and analysed and it is shown to be lower than that of other Ad-hoc 

network geographic routing protocols. 

7.3 Future Work 

Further work could be carried out in the following areas: 

1) A prototype network using the proposed routing protocol can be constructed and 

evaluated to check that the benefits predicted by the simulation can be realised in 

practice. 

2) The analysis described in chapter 6 compares the signalling performance of the new 

geographical routing protocol to the existing non-geographical protocols (DSR, AODV 

and OLSR). A similar comparison can be carried out for the data transmission 

performance. 

3) Wireless nodes cannot transmit and receive at the same time, so the throughput of 
multi-hop routes is affected by the number of hops in the route. The proposed EEE- 
GRP protocol can be extended to include the calculation of throughput as an additional 

metric for selecting the optimum route. 
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Appendix A: Creating a Wireless Network on OPNET 

A blank scenario can be created by choosing File>New from the menu as shown in 

Figure A. 1 and then follow the Startup Wizard. 

New 

Project zi 

6 K Cancel 

Figure A. l Startup Wizard 

After entering project name and scenario name, choose Create Empty Scenario from 

Initial Topology as shown in Figure A. 2. 

You can start with an empty network Initial Topology 
and create your network using objects 
from the object palette or import directly - -- from another data source. Import from ATM tm4 files 

Import from Circuit Switch Teo Has 
Import from VNE Server 
Import from XML 

I ýt a 
DA ]I 

Figure A. 2 Initial Topology 

Next step is to choose network scale. The size of network can be chose from world, 

enterprise, campus, office logical from maps as shown in Figure A. 3. 

The network size can be specified by defining X and Y span and the units as shown in 
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Figure A. 3 Choose Network Scale 



Size: 

X span: 500 

Y span: 1500 

l4WS: Metefa 

< gack you 

Figure A. 4 Specify Size 

In Figure A. 5, MANET or other model family can be included next from 'Select 

technologies'. 

Startup Wizard: Select Technologies ` ., 

Select the technologies you will use n Model Family In de? 
your network unK_urcnel omg_ i uoea... rio 

finks No 

links-advanced No 
Inks PPP No 
Load. Balancers No 

_ 

Luce"! No Merfrarne No 
MANET 
McData No 
MIPv6 adv No 

_ 
mobýe_4 No 

c gads flott >Q it J 

Figure A. 5 Select Technologies 

After review and choose finish as shown in Figure A. 6, a blank scenario is then created. 

Review the values you have chosen. Seale: Campus 
Use the 'Back' button to make changes. 

Size: 500 mx 500 m 

Map hio Maps (background first) 
None selected 

< ßadc Brush Qul 

Figure A. 6 Review of Startup Wizard 

A wireless network can be created manually by opening the 'Object Palette' as shown in 
Figure A. 7, the MANET nodes can be dragged and dropped into the project editor 
workspace. 
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J Fd Je 
)d Search by name: 

Drag model or subnet icon into workspace 

lode Models 
Application Config Fixed Node 
manet-Owy nian_ethemet_slip4 Fixed Node 

manet station Fed Node 
manet station Mobile Node 
Mobility Config Fixed Node 
Profile Config Fixed Node 

R(group Config Fixed Node 
Task Config Fixed Node 

wlan2 router Fixed Node 
wlan2_router Mobile Node 

wlan_ethemetrouter Fixed Node 

wlan ethem router Mobile Node 

wlan server Fixed Node 

xdan_server Mobile Node 

wlan_wkstn Fixed Node 

wlan wkstn Mobile Node 
Wireless Domain Models 
® Mobility Domain Wireless Domain 

Application Configuration 
MANET Gateway 
Wireless LAN Workstation 
Wireless LAN Workstation 

Profile Configuration 
Receiver Group Configuration 
Custom Application Task Defmton 

Wireless LAN and Ethernet IP Router 
Wireless LAN and Rhemet IP Router 
Wireless LAN Server 

Wireless LAN Server 
Wireless LAN Workstation 
Wireless LAN Workstation 

J 

Logical Subnet 

Satellite Subnet 

10 

Mobile Subnet 

Subnet 

lr-. - 
Create Custom Model... Cosa Help 

Figure A. 7 Object Palette 

The preferred method for automatically deploying wireless networks is through either 

'Rapid Configuration' or 'wireless network deployment' wizard. 

The `Rapid Configuration' function can be found from 'Topology' menu. The first step 

to set up the network is to choose a proper topology for the network from bus, mesh, 

ring, star, tree and unconnected net as shown in Figure A. 8. The unconnected net is 

selected here for wireless network since other topologies are only suitable for wired 

network. 

Rapid 

Configuration: Unconnected Net 

seed... Neid... Qancel 

Figure A. 8 Topology Selection for Rapid Configuration 

A seed can be randomly generated or manually entered as shown in Figure A. 9. By 

using different seeds, the distribution of the nodes also changes. 

Rapid Configuration: Seed Sele... 

Seed: 78917854 

Generate QK Gancel 

Figure A. 9 Seed selection 
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In Figure A. 10, the MANET node model and number of node will be selected and their 

type with either mobile or fixed. The placement will define the area where the nodes 

will be placed. A wireless network will be created after this configuration. 

Rapid Configuration: Unconnected 

Models 

Node model: manet_station j Number 50ý 

Node type: Mobile 

Placement - 
Top left - Size --- 

X: 36.5027 Width: 477.282 

Y_ 113.078 Hegt: 256.522 

Select Models... OK paned 

Figure A. 10 Models and Placement Configuration 

'Wireless Network Deployment' wizard is another option to build, configure, and 

deploy a wireless network segments in a quick and easy way. 

This wizard lets you create a wireless network by specifying parameters for technology. topology. 
and mobility. Use this wizard iteratively to deploy multiple network segments into the same project 
After defining your parameters, you can save them into a file in the last stage of this wizard. If you 
have a previously saved filed, you can use it now. 

Choose from the fofowing options: 
6 Use wizard to provide network specifications 
C Load specifications from a saved file 

Ci r_ sC, E-crftcaticn file 

Qurt E: "IIN! II Help 
Figure A. II Network Creation for Wireless Deployment Wizard 

Figure A.! I shows the network creation method for wireless deployment wizard. 
Selection of "Use wizard to provide network specifications" will confirm of use the 
wizard to configure a new network. 
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Network Location Technology Topology Node Configuration 
Creation Mobility Summary 

You can deploy the wireless network into the current subnet or into a new subnet for which you 
specify location coordinates. If your current subnet is not defined in units of meters, you must create 
a new subnet for the deployment. If your current subnet is defined in meters, you may use ether 
choice. 

( Create network in current subnet 
( Create network in new subnet 

- Location Specifications 

Coordinate Type X YY j 

rX 156.692813 
y 0.00 

Qua ý Back ý Nei I Help 

Figure A. 12 Location for Wireless Deployment Wizard 

In Figure A. 12, the location coordinates will be specified in which the new network will 
be deployed. The technology that will be used is defined in the next step as shown in 

Figure A. B. The WLAN (Ad-hoc) technology is selected and the parameters such as 

node transmission power, operation mode, data rate and ad-hoc routing protocol for 

each node are defined. 
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4 

Notwork Location Tochnology Topology Nodo Configuration 
Croation Mobility Summary 

Choose the technology you want to deploy and specify its parameters. These values will be applied 
to all applicable nodes during the network creation. 

1 cw u IVIV Y. WH I IwuvI IQ 

Choose technology WLAN (Ad-hoc) 

Node Transmission Powerte ýl 

Operational Mode 802.1lb 
Data Rate 11 Mbps 
Ad-hoc Routing Protocol ---- GRP 

Qua P Back II Neid I-I Help 

Figure A. 13 Technology for Wireless Deployment Wizard 

Figure A. 14 shows the topology configuration, a geographical overlay can be specified 

as follows. However, for an Ad-hoc network only the `None' overlay can be chose. 

" None-Define the area in square meters. 

" Cell (Hexagon)-Define the number of cells and the cell radius in kilometers. 

" Cell (Square)-Define the number of cells and the length of the squares in 

kilometers. 

"Mobile Node Placement Specifications" can be chose from random, grid or circular. If 

grid fashion is preferred, the number of rows and columns in the grid need to be 

provided. 
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Ct -, N, 110. Network Location Technology Topology Nodo Configuration 
Croation Mobility Summary 

Choose a geographic overlay and specify dimensions for your W LAN (Ad-hoc) network. Specify the 
node placement for the Mobile Nodes in your network. Note that the example displayed is not a true 
representation of your specifications but is only an example of the overlay and node placement. 

VGUylO'/11R. 01 VYGI10] JýJGI. IIIVaLI VI Ia 

Choose Geographical Overlay None J 

Area (square meters) 1610,11111 

0 

Mobile Node Placement Specifications 

Place nodes in Random fashion 

0 

Quit I Back II Neid Ii' Help 

Figure A. 14 Topology for Wireless Deployment Wizard 

The node model, count, and node name prefix are specified as shown in Figure A. 15. In 

this case, manet_station will be selected as the node model. The 'count' parameter 
defines the number of node that will be deployed in the network. The Node Name 

Prefix prepends a text string to a generated node name, assuring unique node names in 

this network. The 'access point' is not viable for Ad-hoc option. 
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Wireless Deployment Wizard - Topology 

Notwerk Location Technology Topology Nodo Configuration 
Croation Mobility Summary 

Select the number of nodes in your W LAN (Ad-hoc) network. You can also specify the node model 
For your Access Point(s) and Mobile Nodes. 

Access Point Mobile Node 

Node Model rlan_ethemet_router JI Imanet_station 

Count 0J2 

Node Name Prefix 
. 
Avccess Point Mobile 

Connect all . -cce, _ Points via renal interfaces% using a b. _r: bc_ne net. rt: 

Quit Back Neid J Help 

Access Point Mobile Node 

Node Model rlan_ethemet_router JI manet_station 

Count 0J2 

Node Name Prefix 
. 
Avccess Point Mobile 

Figure A. 15 Node Model Selection for Wireless Deployment Wizard 

Node mobility parameters for the wireless network can be specified as shown in Figure 

A. 16. More rows can be applied to support multiple mobility profiles. 

" Trajectory Information. `Random Waypoint (Auto Create)' is the default setting. 

A mobility profile or a trajectory file can also be applied. 

" Number of nodes. A number that up to the total number already specified for this 

network can be applied the trajectory information. 

" Speed defines the movement speed of the nodes in meters per second. 

" Area of Movement can be selected from 'within the network' for Ah-hoc 

network or 'within the cell' for an infrastructure network. 

" Altitude of the nodes. 
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4 we: 7 ft. 
1":: Li 

Network Location Technology Topology Nodo Configuration 
Creation Mobility Summary 

F 
You have chosen to deploy 20 Mobile Nodes in the network. You can optionally attach a trajectory 
or a random mobility profile to the Mobile Nodes using the table below. 

20 out of 20 nodes have been configured with mobility parameters 

Trajectory Information Numb... Speed (m/s) Area of Movement Altitude (m) 

Random Wavooint (Auto Create) 20 5.00 Within Network 0.00 

.I 

Add Row Delete Row 

L' 
Quit I Back II Next II Help 

Figure A. 16 Node Mobility for Wireless Deployment Wizard 

A MANET is then created after review the `Configuration Summary' showing the 

specifications previously defined. 
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Appendix B: Radio Transceiver Pipeline Stages 
Radio links provide a broadcast medium and each transmission can potentially affect 

multiple receivers throughout the network model. In addition, for a given transmission, 

the radio link to each receiver can exhibit different behaviour and timing. As a result, a 

separate pipeline must be executed for each eligible receiver. The Radio Transceiver 

Pipeline consists of fourteen stages as shown in the figure below. 

executed once per 

stage 8 can be executed zero or more times 

Executed once at simulation time 
0 (before any begsim interrupts) 
for each pair of transmitter and 
receiver channels to determine 
feasibility of communication; not 
executed on a per-transmission 
basis 

stapes 10-12 can be executed one or more times 

Figure B. 1. Radio Transceiver Pipeline Execution Sequence for One Transmission 

Stage 0 (receiver group) is invoked only once for each pair of transmitter and receiver 
channels in the network, to establish a static binding between each transmitter channel 
and the set of receiver channels that it is allowed to communicate with. The purpose of 
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stage 0 is to reduce computation to the minimum required set and filter out ineligible 

receiver channels. 

Stage I (transmission delay) is used to compute a result that is common to all 
destinations, and therefore can be executed just once per transmission. This stage is 

invoked to calculate the amount of time required for the entire packet to complete 

transmission. This result is the simulation time difference between the beginning of 
transmission of the first bit and the end of transmission of the last bit of the packet. 

Finally, each individual pipeline sequence might not fully complete, depending on the 

result of stage 2 (closure) which is specified by the "closure model" attribute of the 

radio transmitter, because this stage is responsible for determining if communication 
between the transmitter and receiver is possible on a dynamic basis. The purpose of this 

stage is to determine whether a particular receiver channel can be affected by a 

transmission. The ability of the transmission to reach the receiver channel is referred to 

as closure between the transmitter channel and the receiver channel. The goal of the 

closure stage is not to determine if a transmission is valid or appropriate for a particular 

channel, but only if the transmitted signal can physically attain the candidate receiver 
channel and affect it in any way; thus, this stage applies to interfering transmissions. 

Similarly, stage 3 (channel match) is specified by the "chanmatch model" attribute of 
the radio transmitter classifies a transmission as irrelevant with regard to its effect on a 
particular receiver channel, thereby preventing the pipeline sequence from reaching the 
final stages. One of three possible categories must be assigned to the packet, as defined 
below: 

" Valid. Packets in this category are considered compatible with the receiver 
channel and will possibly be accepted and forwarded to other modules in the 
receiving node, provided that they are not affected by an excessive number of 
errors. Classification as a valid packet usually depends at least on agreement 
between transmitter and receiver channels concerning the values of certain key 

attributes. 

" Noise. This classification is used to identify packets whose data content cannot 
be received, but that have an impact on the receiver channel's performance by 

generating interference. Packets are generally classified as noise as a result of 
incompatibilities between the transmitter and receiver channel configurations. 
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" Ignored. If a transmission is determined to have no effect whatsoever on a 

receiver channel's state or performance, then it should be identified using this 

classification. The Simulation Kernel will then discontinue the pipeline 

execution between the transmitter and receiver channels for this particular 
transmission (future transmissions between the channels are not prevented). 

Stage 4 is transmitter antenna gain. It characterizes the phenomenon of magnification or 

reduction of the transmitted signal energy in a manner which depends on the direction 

of the signal path. However, antennas that provide no gain to a transmitted signal in any 
direction are referred to as isotropic, because they have a perfectly symmetric behaviour 

with respect to all possible signal paths. 

The propagation delay stage is the sixth stage (stage 5) of the radio transceiver pipeline, 

and is specified by the "propdel model" attribute of the radio transmitter. The purpose of 

this stage is to calculate the amount of time required for the packet's signal to travel 

from the radio transmitter to the radio receiver. This result is dependent on the distance 

between the source and the destination. In addition, the propagation delay result is used 
in conjunction with the result of the transmission delay stage to compute the time at 

which the packet completes reception. 

The receiver antenna gain stage is the seventh stage of the radio transceiver pipeline. It 
is the earliest stage associated with the radio receiver rather than the transmitter, being 

specified by the receiver's "ragain model" attribute. The purpose of the receiver antenna 

gain stage is to compute the gain provided by the receiver's associated antenna, based on 
the direction of the vector leading from the receiver to the transmitter or no gain for the 
isotropic antenna. 

The receiver power stage is stage 7 which is specified by the "power model" attribute of 
the radio receiver. The purpose of this stage is to compute the received power of the 

arriving packet's signal (in watts). For packets that are classified as valid, the received 

power result is a key factor in determining the ability of the receiver to correctly capture 
the information in the packet. For packets that are classified as noise, received power 
still must usually be evaluated to support calculation of relative strengths of valid and 
noise packets. In general, the calculation of received power is based on factors such as 
the power of the transmitter, the distance separating the transmitter and the receiver, the 
transmission frequency, and transmitter and receiver antenna gains. 
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The interference noise stage is the ninth stage of the radio transceiver pipeline. The 

purpose of this stage is to account for the interactions between transmissions that arrive 

concurrently at the same receiver channel. The Simulation Kernel reserves a 

Transmission Data Attribute (TDA) for the purpose of storing the current level of noise 
from all interfering transmissions. This accumulator is maintained only for valid packets 

(as determined by the channel match stage) because there is generally no need to 

evaluate link quality for noise packets. The interference noise stage is expected to 

augment the value of this accumulator in each valid packet by the received power of the 

interfering packet. When a packet (valid or invalid) completes reception, the simulation 

Kernel automatically subtracts its received power from the noise accumulator of all 

valid packets that are still arriving at the channel. 

Stage 9 is the background noise which is executed immediately after return of the 

received power stage. The purpose of this stage is to represent the effect of all noise 

sources except for other concurrently arriving transmissions which are already 

accounted for by the interference noise stage. The expected result is the sum of the 

power (in watts) of other noise sources, measured at the receiver's location and in the 

receiver channel's band. Normally, the background noise value is later added to other 
noise sources to compute a total noise level in the signal-to-noise ratio stage. 

The purpose of SNR stage (stage 10) is to compute the current average power SNR 

result for the arriving packet. This calculation is usually based on values obtained 
during earlier stages, including received power, background noise, and interference 

noise. 

Stage I1 BER derives the probability of bit errors during the past interval of constant 
SNR. This is not the empirical rate of bit errors, but the expected rate, usually based on 
the SNR. In general, the bit error rate provided by this stage is also a function of the 
type of modulation used for the transmitted signal. 

The error allocation stage is the thirteenth stage of the radio transceiver pipeline. It 

estimates the number of bit errors in a packet segment where the bit error probability 
has been calculated and is constant. This segment might be the entire packet, if no 
changes in bit error probability occur over the course of the packet's reception. Bit error 
count estimation is usually based on the bit error probability (obtained from stage 11) 
and the length of the affected segment. 
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Stages 9 through 12 of the pipeline are invoked to evaluate a link's performance in 

response to changes in the signal condition. There is always at least one invocation of 

stages 10 through 12 to evaluate performance over the full duration of a valid packet. 
However, an additional invocation will occur for each of these stages (9-12) whenever 

an interfering packet arrives, to compute new signal conditions. 

The error correction stage is the final stage of the pipeline. It determines whether or not 
the arriving packet can be accepted and forwarded via the channel's corresponding 

output stream to one of the receiver's neighbouring modules in the destination node. 
This is usually dependent upon whether the packet has experienced collisions, the result 

computed in the error allocation stage, and the ability of the receiver to correct the 

errors affecting the packet. Based on the determination of this stage, the Kernel will 
either destroy the packet, or allow it to proceed into the destination node. 
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