705 research outputs found

    Enhancing Video Streaming Quality of DASH over Cloud/Edge Integrated Networks

    Get PDF
    With the advancement of mobile technologies and the popularity of mobile devices, mobile video streaming applications/services have increased considerably in recent years. Dynamic Adaptive Streaming over HTTP (DASH) or MPEG-DASH is one of the most widely used video streaming techniques over the Internet. It adapts video sending bit rate according to available network resources, however, in case of low bandwidth, DASH performs poorly, which will cause video quality degradation and video stalling. Mobile Edge Computing (MEC) or Multi-access Edge Computing, in connection with the backend cloud has been used to reduce latency and overcome some of the video quality degradation problems for mobile video streaming services. However, an end user might be suffering from video quality drop downs when s/he moves out from the coverage of one node to another or when the mobile network condition goes down. To tackle the degradation problems and assure enhanced video streaming quality, a novel follow-me Edge Node Prefetching (ENP) scheme was proposed and developed in the project, by prefetching video segments in advance in the upcoming node used by the end-user. A test bed was set up consisting of a backend cloud (OpenStack), two edge nodes (LXD Containers) and one mobile device, the ENP algorithm was implemented on the cloud server and client sides. Experiments were carried out for the DASH streaming service based on Dash.js from the DASH Industry Forum. Preliminary results show that the ENP scheme can maintain higher video quality and less service migration time when moving from one mobile node to another, when compared to existing approaches, i.e. live migration in Follow-me-Edge and the C-up schemes. The proposed scheme could be useful in smart city applications or providing seamless mobile video streaming services in Cloud/Edge integrated networks.Ibrahim Mohammedamee

    An ultra low-power hardware accelerator for automatic speech recognition

    Get PDF
    Automatic Speech Recognition (ASR) is becoming increasingly ubiquitous, especially in the mobile segment. Fast and accurate ASR comes at a high energy cost which is not affordable for the tiny power budget of mobile devices. Hardware acceleration can reduce power consumption of ASR systems, while delivering high-performance. In this paper, we present an accelerator for large-vocabulary, speaker-independent, continuous speech recognition. It focuses on the Viterbi search algorithm, that represents the main bottleneck in an ASR system. The proposed design includes innovative techniques to improve the memory subsystem, since memory is identified as the main bottleneck for performance and power in the design of these accelerators. We propose a prefetching scheme tailored to the needs of an ASR system that hides main memory latency for a large fraction of the memory accesses with a negligible impact on area. In addition, we introduce a novel bandwidth saving technique that removes 20% of the off-chip memory accesses issued during the Viterbi search. The proposed design outperforms software implementations running on the CPU by orders of magnitude and achieves 1.7x speedup over a highly optimized CUDA implementation running on a high-end Geforce GTX 980 GPU, while reducing by two orders of magnitude (287x) the energy required to convert the speech into text.Peer ReviewedPostprint (author's final draft

    A low-power, high-performance speech recognition accelerator

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Automatic Speech Recognition (ASR) is becoming increasingly ubiquitous, especially in the mobile segment. Fast and accurate ASR comes at high energy cost, not being affordable for the tiny power-budgeted mobile devices. Hardware acceleration reduces energy-consumption of ASR systems, while delivering high-performance. In this paper, we present an accelerator for largevocabulary, speaker-independent, continuous speech-recognition. It focuses on the Viterbi search algorithm representing the main bottleneck in an ASR system. The proposed design consists of innovative techniques to improve the memory subsystem, since memory is the main bottleneck for performance and power in these accelerators' design. It includes a prefetching scheme tailored to the needs of ASR systems that hides main memory latency for a large fraction of the memory accesses, negligibly impacting area. Additionally, we introduce a novel bandwidth-saving technique that removes off-chip memory accesses by 20 percent. Finally, we present a power saving technique that significantly reduces the leakage power of the accelerators scratchpad memories, providing between 8.5 and 29.2 percent reduction in entire power dissipation. Overall, the proposed design outperforms implementations running on the CPU by orders of magnitude, and achieves speedups between 1.7x and 5.9x for different speech decoders over a highly optimized CUDA implementation running on Geforce-GTX-980 GPU, while reducing the energy by 123-454x.Peer ReviewedPostprint (author's final draft

    funcX: A Federated Function Serving Fabric for Science

    Full text link
    Exploding data volumes and velocities, new computational methods and platforms, and ubiquitous connectivity demand new approaches to computation in the sciences. These new approaches must enable computation to be mobile, so that, for example, it can occur near data, be triggered by events (e.g., arrival of new data), be offloaded to specialized accelerators, or run remotely where resources are available. They also require new design approaches in which monolithic applications can be decomposed into smaller components, that may in turn be executed separately and on the most suitable resources. To address these needs we present funcX---a distributed function as a service (FaaS) platform that enables flexible, scalable, and high performance remote function execution. funcX's endpoint software can transform existing clouds, clusters, and supercomputers into function serving systems, while funcX's cloud-hosted service provides transparent, secure, and reliable function execution across a federated ecosystem of endpoints. We motivate the need for funcX with several scientific case studies, present our prototype design and implementation, show optimizations that deliver throughput in excess of 1 million functions per second, and demonstrate, via experiments on two supercomputers, that funcX can scale to more than more than 130000 concurrent workers.Comment: Accepted to ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC 2020). arXiv admin note: substantial text overlap with arXiv:1908.0490

    DSPatch: Dual Spatial Pattern Prefetcher

    Full text link
    High main memory latency continues to limit performance of modern high-performance out-of-order cores. While DRAM latency has remained nearly the same over many generations, DRAM bandwidth has grown significantly due to higher frequencies, newer architectures (DDR4, LPDDR4, GDDR5) and 3D-stacked memory packaging (HBM). Current state-of-the-art prefetchers do not do well in extracting higher performance when higher DRAM bandwidth is available. Prefetchers need the ability to dynamically adapt to available bandwidth, boosting prefetch count and prefetch coverage when headroom exists and throttling down to achieve high accuracy when the bandwidth utilization is close to peak. To this end, we present the Dual Spatial Pattern Prefetcher (DSPatch) that can be used as a standalone prefetcher or as a lightweight adjunct spatial prefetcher to the state-of-the-art delta-based Signature Pattern Prefetcher (SPP). DSPatch builds on a novel and intuitive use of modulated spatial bit-patterns. The key idea is to: (1) represent program accesses on a physical page as a bit-pattern anchored to the first "trigger" access, (2) learn two spatial access bit-patterns: one biased towards coverage and another biased towards accuracy, and (3) select one bit-pattern at run-time based on the DRAM bandwidth utilization to generate prefetches. Across a diverse set of workloads, using only 3.6KB of storage, DSPatch improves performance over an aggressive baseline with a PC-based stride prefetcher at the L1 cache and the SPP prefetcher at the L2 cache by 6% (9% in memory-intensive workloads and up to 26%). Moreover, the performance of DSPatch+SPP scales with increasing DRAM bandwidth, growing from 6% over SPP to 10% when DRAM bandwidth is doubled.Comment: This work is to appear in MICRO 201
    • …
    corecore