4,464 research outputs found

    Improved Revenue Bounds for Posted-Price and Second-Price Mechanisms

    Full text link
    We study revenue maximization through sequential posted-price (SPP) mechanisms in single-dimensional settings with nn buyers and independent but not necessarily identical value distributions. We construct the SPP mechanisms by considering the best of two simple pricing rules: one that imitates the revenue optimal mchanism, namely the Myersonian mechanism, via the taxation principle and the other that posts a uniform price. Our pricing rules are rather generalizable and yield the first improvement over long-established approximation factors in several settings. We design factor-revealing mathematical programs that crisply capture the approximation factor of our SPP mechanism. In the single-unit setting, our SPP mechanism yields a better approximation factor than the state of the art prior to our work (Azar, Chiplunkar & Kaplan, 2018). In the multi-unit setting, our SPP mechanism yields the first improved approximation factor over the state of the art after over nine years (Yan, 2011 and Chakraborty et al., 2010). Our results on SPP mechanisms immediately imply improved performance guarantees for the equivalent free-order prophet inequality problem. In the position auction setting, our SPP mechanism yields the first higher-than 1−1/e1-1/e approximation factor. In eager second-price (ESP) auctions, our two simple pricing rules lead to the first improved approximation factor that is strictly greater than what is obtained by the SPP mechanism in the single-unit setting.Comment: Accepted to Operations Researc

    Budget Constrained Auctions with Heterogeneous Items

    Full text link
    In this paper, we present the first approximation algorithms for the problem of designing revenue optimal Bayesian incentive compatible auctions when there are multiple (heterogeneous) items and when bidders can have arbitrary demand and budget constraints. Our mechanisms are surprisingly simple: We show that a sequential all-pay mechanism is a 4 approximation to the revenue of the optimal ex-interim truthful mechanism with discrete correlated type space for each bidder. We also show that a sequential posted price mechanism is a O(1) approximation to the revenue of the optimal ex-post truthful mechanism when the type space of each bidder is a product distribution that satisfies the standard hazard rate condition. We further show a logarithmic approximation when the hazard rate condition is removed, and complete the picture by showing that achieving a sub-logarithmic approximation, even for regular distributions and one bidder, requires pricing bundles of items. Our results are based on formulating novel LP relaxations for these problems, and developing generic rounding schemes from first principles. We believe this approach will be useful in other Bayesian mechanism design contexts.Comment: Final version accepted to STOC '10. Incorporates significant reviewer comment

    Sequential Posted Price Mechanisms with Correlated Valuations

    Full text link
    We study the revenue performance of sequential posted price mechanisms and some natural extensions, for a general setting where the valuations of the buyers are drawn from a correlated distribution. Sequential posted price mechanisms are conceptually simple mechanisms that work by proposing a take-it-or-leave-it offer to each buyer. We apply sequential posted price mechanisms to single-parameter multi-unit settings in which each buyer demands only one item and the mechanism can assign the service to at most k of the buyers. For standard sequential posted price mechanisms, we prove that with the valuation distribution having finite support, no sequential posted price mechanism can extract a constant fraction of the optimal expected revenue, even with unlimited supply. We extend this result to the the case of a continuous valuation distribution when various standard assumptions hold simultaneously. In fact, it turns out that the best fraction of the optimal revenue that is extractable by a sequential posted price mechanism is proportional to ratio of the highest and lowest possible valuation. We prove that for two simple generalizations of these mechanisms, a better revenue performance can be achieved: if the sequential posted price mechanism has for each buyer the option of either proposing an offer or asking the buyer for its valuation, then a Omega(1/max{1,d}) fraction of the optimal revenue can be extracted, where d denotes the degree of dependence of the valuations, ranging from complete independence (d=0) to arbitrary dependence (d=n-1). Moreover, when we generalize the sequential posted price mechanisms further, such that the mechanism has the ability to make a take-it-or-leave-it offer to the i-th buyer that depends on the valuations of all buyers except i's, we prove that a constant fraction (2-sqrt{e})/4~0.088 of the optimal revenue can be always be extracted.Comment: 29 pages, To appear in WINE 201
    • …
    corecore