53,458 research outputs found

    Variable Bandwidth Analog Channel Filters for Software Defined Radio

    Get PDF
    An important aspect of Software Defined Radio is the ability to define the bandwidth of the filter that selects the desired channel. This paper first explains the importance of channel filtering. Then the advantage of analog channel filtering with a variable bandwidth in a Software Defined Radio is demonstrated. This is done by comparing the requirements of the analog-to-digital converter with and without an analog filter with a variable bandwidth. Then, a technique for channel filtering is described, in which two passive filters are combined to obtain a variable bandwidth. Passive filters have the advantage of high linearity, low noise and inherent energy efficiency. Some limitations of the concept are discussed. Finally, conclusions are drawn and our ideas for further research are presented

    Tunable n-path notch filters for blocker suppression: modeling and verification

    Get PDF
    N-path switched-RC circuits can realize filters with very high linearity and compression point while they are tunable by a clock frequency. In this paper, both differential and single-ended N-path notch filters are modeled and analyzed. Closed-form equations provide design equations for the main filtering characteristics and nonidealities such as: harmonic mixing, switch resistance, mismatch and phase imbalance, clock rise and fall times, noise, and insertion loss. Both an eight-path single-ended and differential notch filter are implemented in 65-nm CMOS technology. The notch center frequency, which is determined by the switching frequency, is tunable from 0.1 to 1.2 GHz. In a 50- environment, the N-path filters provide power matching in the passband with an insertion loss of 1.4–2.8 dB. The rejection at the notch frequency is 21–24 dB,P1 db> + 2 dBm, and IIP3 > + 17 dBm

    High-Q variable bandwidth passive filters for Software Defined Radio

    Get PDF
    An important aspect of Software Defined Radio is the ability to define the bandwidth of the filter that selects the desired channel. This paper describes a technique for channel filtering, in which two passive filters are combined to obtain a variable bandwidth. Passive filters have the advantage of high linearity, low noise and inherent energy efficiency. After an explanation of the concept, the requirements on the subsequent analog-todigital conversion are compared with those in a system where (part of) the channel selection is performed digitally. Some drawbacks of the concept are discussed. Finally, conclusions are drawn and our ideas for further research are presented

    Current-Processing Current-Controlled Universal Biquad Filter

    Get PDF
    This paper presents a current-processing current-controlled universal biquad filter. The proposed filter employs only two current controlled current conveyor transconductance amplifiers (CCCCTAs) and two grounded capacitors. The proposed configuration can be used either as a single input three outputs (SITO) or as three inputs single output (TISO) filter. The circuit realizes all five different standard filter functions i.e. low-pass (LP), band-pass (BP), high-pass (HP), band-reject (BR) and all-pass (AP). The circuit enjoys electronic control of quality factor through the single bias current without disturbing pole frequency. Effects of non-idealities are also discussed. The circuit exhibits low active and passive sensitivity figures. The validity of proposed filter is verified through computer simulations using PSPICE

    Design of doubly-complementary IIR digital filters using a single complex allpass filter, with multirate applications

    Get PDF
    It is shown that a large class of real-coefficient doubly-complementary IIR transfer function pairs can be implemented by means of a single complex allpass filter. For a real input sequence, the real part of the output sequence corresponds to the output of one of the transfer functions G(z) (for example, lowpass), whereas the imaginary part of the output sequence corresponds to its "complementary" filter H(z)(for example, highpass). The resulting implementation is structurally lossless, and hence the implementations of G(z) and H(z) have very low passband sensitivity. Numerical design examples are included, and a typical numerical example shows that the new implementation with 4 bits per multiplier is considerably better than a direct form implementation with 9 bits per multiplier. Multirate filter bank applications (quadrature mirror filtering) are outlined

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    Current-mode Biquadratic Universal Filter Design with Two Terminal Unity Gain Cells

    Get PDF
    A grounded parallel lossy active inductor and two current-mode (CM) universal filters are presented in this paper. All the circuits use two voltage followers (VFs) and a current follower (CF). The parallel lossy active inductor includes a grounded capacitor which is attractive in integrated circuit (IC) technology. The CM universal filters have one input and standard three outputs such as band-pass (BP), low-pass (LP) and high-pass (HP) responses. All-pass and notch outputs can be obtained by adding extra one CF. Suggested structures in this paper can be constructed with commercially available active devices such as AD844s. Non-ideal gain and intrinsic X-terminal parasitic resistor effects are examined. Several computer simulations with SPICE program and experimental results by employing AD844s are drawn to verify theoretical ones

    Basics of RF electronics

    Full text link
    RF electronics deals with the generation, acquisition and manipulation of high-frequency signals. In particle accelerators signals of this kind are abundant, especially in the RF and beam diagnostics systems. In modern machines the complexity of the electronics assemblies dedicated to RF manipulation, beam diagnostics, and feedbacks is continuously increasing, following the demands for improvement of accelerator performance. However, these systems, and in particular their front-ends and back-ends, still rely on well-established basic hardware components and techniques, while down-converted and acquired signals are digitally processed exploiting the rapidly growing computational capability offered by the available technology. This lecture reviews the operational principles of the basic building blocks used for the treatment of high-frequency signals. Devices such as mixers, phase and amplitude detectors, modulators, filters, switches, directional couplers, oscillators, amplifiers, attenuators, and others are described in terms of equivalent circuits, scattering matrices, transfer functions; typical performance of commercially available models is presented. Owing to the breadth of the subject, this review is necessarily synthetic and non-exhaustive. Readers interested in the architecture of complete systems making use of the described components and devoted to generation and manipulation of the signals driving RF power plants and cavities may refer to the CAS lectures on Low-Level RF.Comment: 36 pages, contribution to the CAS - CERN Accelerator School: Specialised Course on RF for Accelerators; 8 - 17 Jun 2010, Ebeltoft, Denmar

    Tunable Versatile High Input Impedance Voltage-Mode Universal Biquadratic Filter Based on DDCCs

    Get PDF
    A high input impedance voltage-mode universal biquadratic filter with three input terminals and seven output terminals is presented. The proposed circuit uses three differential difference current conveyors (DDCCs), four resistors and two grounded capacitors. The proposed circuit can realize all the standard filter functions, namely, lowpass, bandpass, highpass, notch and allpass, simultaneously. The proposed circuit offers the features of high input impedance, using only grounded capacitors, and orthogonal controllability of resonance angular frequency and quality factor

    A new approach to the realization of low-sensitivity IIR digital filters

    Get PDF
    A new implementation of an IIR digital filter transfer function is presented that is structurally passive and, hence, has extremely low pass-band sensitivity. The structure is based on a simple parallel interconnection of two all-pass sections, with each section implemented in a structurally lossless manner. The structure shares a number of properties in common with wave lattice digital filters. Computer simulation results verifying the low-sensitivity feature are included, along with results on roundoff noise/dynamic range interaction. A large number of alternatives is available for the implementation of the all-pass sections, giving rise to the well-known wave lattice digital filters as a specific instance of the implementation
    • 

    corecore