16,931 research outputs found

    Facility layout problem: Bibliometric and benchmarking analysis

    Get PDF
    Facility layout problem is related to the location of departments in a facility area, with the aim of determining the most effective configuration. Researches based on different approaches have been published in the last six decades and, to prove the effectiveness of the results obtained, several instances have been developed. This paper presents a general overview on the extant literature on facility layout problems in order to identify the main research trends and propose future research questions. Firstly, in order to give the reader an overview of the literature, a bibliometric analysis is presented. Then, a clusterization of the papers referred to the main instances reported in literature was carried out in order to create a database that can be a useful tool in the benchmarking procedure for researchers that would approach this kind of problems

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    A novel multi-objective Interactive Coral Reefs Optimization algorithm for the Unequal Area Facility Layout Problem

    Get PDF
    The Unequal Area Facility Layout Problem (UA-FLP) has been widely analyzed in the literature using several heuristics and meta-heuristics to optimize some qualitative criteria, taking into account different restrictions and constraints. Nevertheless, the subjective opinion of the designer (Decision Maker, DM) has never been considered along with the quantitative criteria and restrictions. This work proposes a novel approach for the UA-FLP based on an Interactive Coral Reefs Optimization (ICRO) algorithm, which combines the simultaneous consideration of both quantitative and qualitative (DM opinion) features. The algorithm implementation is explained in detail, including the way of jointly considering quantitative and qualitative aspects in the fitness function of the problem. The experimental part of the paper illustrates the effect of including qualitative aspects in UA-FLP problems, considering three different hard UA-FLP instances. Empirical results show that the proposed approach is able to incorporate the DM preferences in the obtained layouts, without affecting much to the quantitative part of the solutions

    Dynamic Facility Layout for Cellular and Reconfigurable Manufacturing using Dynamic Programming and Multi-Objective Metaheuristics

    Get PDF
    The facility layout problem is one of the most classical yet influential problems in the planning of production systems. A well-designed layout minimizes the material handling costs (MHC), personnel flow distances, work in process, and improves the performance of these systems in terms of operating costs and time. Because of this importance, facility layout has a rich literature in industrial engineering and operations research. Facility layout problems (FLPs) are generally concerned with positioning a set of facilities to satisfy some criteria or objectives under certain constraints. Traditional FLPs try to put facilities with the high material flow as close as possible to minimize the MHC. In static facility layout problems (SFLP), the product demands and mixes are considered deterministic parameters with constant values. The material flow between facilities is fixed over the planning horizon. However, in today’s market, manufacturing systems are constantly facing changes in product demands and mixes. These changes make it necessary to change the layout from one period to the other to be adapted to the changes. Consequently, there is a need for dynamic approaches of FLP that aim to generate layouts with high adaptation concerning changes in product demand and mix. This thesis focuses on studying the layout problems, with an emphasis on the changing environment of manufacturing systems. Despite the fact that designing layouts within the dynamic environment context is more realistic, the SFLP is observed to have been remained worthy to be analyzed. Hence, a math-heuristic approach is developed to solve an SFLP. To this aim, first, the facilities are grouped into many possible vertical clusters, second, the best combination of the generated clusters to be in the final layout are selected by solving a linear programming model, and finally, the selected clusters are sequenced within the shop floor. Although the presented math-heuristic approach is effective in solving SFLP, applying approaches to cope with the changing manufacturing environment is required. One of the most well-known approaches to deal with the changing manufacturing environment is the dynamic facility layout problem (DFLP). DFLP suits reconfigurable manufacturing systems since their machinery and material handling devices are reconfigurable to encounter the new necessities for the variations of product mix and demand. In DFLP, the planning horizon is divided into some periods. The goal is to find a layout for each period to minimize the total MHC for all periods and the total rearrangement costs between the periods. Dynamic programming (DP) has been known as one of the effective methods to optimize DFLP. In the DP method, all the possible layouts for every single period are generated and given to DP as its state-space. However, by increasing the number of facilities, it is impossible to give all the possible layouts to DP and only a restricted number of layouts should be fed to DP. This leads to ignoring some layouts and losing the optimality; to deal with this difficulty, an improved DP approach is proposed. It uses a hybrid metaheuristic algorithm to select the initial layouts for DP that lead to the best solution of DP for DFLP. The proposed approach includes two phases. In the first phase, a large set of layouts are generated through a heuristic method. In the second phase, a genetic algorithm (GA) is applied to search for the best subset of layouts to be given to DP. DP, improved by starting with the most promising initial layouts, is applied to find the multi-period layout. Finally, a tabu search algorithm is utilized for further improvement of the solution obtained by improved DP. Computational experiments show that improved DP provides more efficient solutions than DP approaches in the literature. The improved DP can efficiently solve DFLP and find the best layout for each period considering both material handling and layout rearrangement costs. However, rearrangement costs may include some unpredictable costs concerning interruption in production or moving of facilities. Therefore, in some cases, managerial decisions tend to avoid any rearrangements. To this aim, a semi-robust approach is developed to optimize an FLP in a cellular manufacturing system (CMS). In this approach, the pick-up/drop-off (P/D) points of the cells are changed to adapt the layout with changes in product demand and mix. This approach suits more a cellular flexible manufacturing system or a conventional system. A multi-objective nonlinear mixed-integer programming model is proposed to simultaneously search for the optimum number of cells, optimum allocation of facilities to cells, optimum intra- and inter-cellular layout design, and the optimum locations of the P/D points of the cells in each period. A modified non-dominated sorting genetic algorithm (MNSGA-II) enhanced by an improved non-dominated sorting strategy and a modified dynamic crowding distance procedure is used to find Pareto-optimal solutions. The computational experiments are carried out to show the effectiveness of the proposed MNSGA-II against other popular metaheuristic algorithms

    2D multi-objective placement algorithm for free-form components

    Get PDF
    This article presents a generic method to solve 2D multi-objective placement problem for free-form components. The proposed method is a relaxed placement technique combined with an hybrid algorithm based on a genetic algorithm and a separation algorithm. The genetic algorithm is used as a global optimizer and is in charge of efficiently exploring the search space. The separation algorithm is used to legalize solutions proposed by the global optimizer, so that placement constraints are satisfied. A test case illustrates the application of the proposed method. Extensions for solving the 3D problem are given at the end of the article.Comment: ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, San Diego : United States (2009

    A novel Island Model based on Coral Reefs Optimization algorithm for solving the unequal area facility layout problem

    Get PDF
    This paper proposes a novel approach to address the Unequal Area Facility Layout Problem (UA-FLP), based on the combination of both an Island Model and a Coral Reefs Optimization (CRO) algorithm. Two different versions of this Island Model based on Coral Reefs Optimization Algorithm (IMCRO) are proposed and applied to the UA-FLP. The structure of flexible bays has been selected as effective encoding to represent the facility layouts within the algorithm. The two versions of the proposed approach have been tested in 22 UA-FLP cases, considering small, medium and large size categories. The empirical results obtained are compared with previous state of the art algorithms, in order to show the performance of the IMCRO. From this comparison, it can be extracted that both versions of the proposed IMCRO algorithm show an excellent performance, accurately solving the UA-FLP instances in all the size categories

    A Hybrid Coral Reefs Optimization – Variable Neighborhood Search Approach for the Unequal Area Facility Layout Problem

    Get PDF
    The Unequal Area Facility Layout Problem (UA-FLP) is a relevant optimization problem related to industrial design, that deals with obtaining the most effective allocation of facilities, that make up the rectangular manufacturing plant layout. The UA-FLP is known to be a hard optimization problem, where meta-heuristic approaches are a good option to obtain competitive solutions. Many of these computational approaches, however, usually fall into local optima, and suffer from lack of diversity in their population, mainly due to the huge search spaces and hard fitness landscapes produced by the traditional representation of UA-FLP. To solve these issues, in this paper we propose a novel hybrid meta-heuristic approach, which combines a Coral Reefs Optimization algorithm (CRO) with a Variable Neighborhood Search (VNS) and a new representation for the problem, called Relaxed Flexible Bay Structure (RFBS), which simplifies the encoding and makes its fitness landscape more affordable. Thus, the use of VNS allows more intensive exploitation of the searching space with an affordable computational cost, as well as the RFBS allows better management of the free space into the plant layout. This combined strategy has been tested over a set of UA-FLP instances of different sizes, which have been previously tackled in the literature with alternative meta-heuristics. The tests results show very good performance in all cases

    Multi-level evolutionary algorithms resource allocation utilizing model-based systems engineering

    Get PDF
    This research presents an innovative approach to solve the resource allocation problems using Multi-level Evolutionary Algorithms. Evolutionary Algorithms are used to solve resource allocation problems in different domains and their results are then incorporated into a higher level system solution using another Evolutionary Algorithm to solve base camp planning problems currently faced by the U.S. Department of Defense. Two models are introduced to solve two domain specific models: a logistics model and a power model. The logistic model evaluates routes for logistics vehicles on a daily basis with a goal of reducing fuel usage by delivery trucks. The evaluation includes distance traveled and other constraints such as available resource levels and priority of refilling. The Power model incorporates an open source electrical distribution simulator to evaluate the placement of structures and generators on a map to reduce fuel usage. These models are used as the fitness function for two separate Evolutionary Algorithms to find solutions that reduce fuel consumption within the individual domains. A multi-level Evolutionary Algorithm is then presented, where the two Evolutionary Algorithms share information with a higher level Evolutionary Algorithm that combines the results to account for problem complexity from the interfacing of these systems. The results of using these methods on 5 different base camp sizes show that the techniques provide a considerable reduction of fuel consumption. While the Evolutionary Algorithms show significant improvement over the current methods, the multi-level Evolutionary Algorithm shows better performance than using individual Evolutionary Algorithms, with the results showing a 19.25 % decrease in fuel consumption using the multi-level Evolutionary Algorithm --Abstract, page iii
    • …
    corecore