78,326 research outputs found

    Using the XCS classifier system for multi-objective reinforcement learning problems

    Get PDF
    We investigate the performance of a learning classifier system in some simple multi-objective, multi-step maze problems, using both random and biased action-selection policies for exploration. Results show that the choice of action-selection policy can significantly affect the performance of the system in such environments. Further, this effect is directly related to population size, and we relate this finding to recent theoretical studies of learning classifier systems in single-step problems. © 2006 Massachusetts Institute of Technology

    An Evolutionary Multi-Objective Optimization-Based Constructive Method for Learning Classifier Systems Adjusting to Non-Markov Environments

    Get PDF
    Learning Classifier Systems (LCSs) are rule-based systems that automatically build their rule set so as to get optimal policies through evolutionary processes. This paper considers an evolutionary multi-objective optimization-based constructive method for LCSs that adjust to non-Markov environments. Our goal is to construct a XCSMH (eXtended Classifier System - Memory Hierarchic) that can obtain not only optimal policies but also highly generalized rule sets. Results of numerical experiments show that the proposed method is superior to an existing method with respect to the generality of the obtained rule sets

    Selecting a multi-label classification method for an interactive system

    Get PDF
    International audienceInteractive classification-based systems engage users to coach learning algorithms to take into account their own individual preferences. However most of the recent interactive systems limit the users to a single-label classification, which may be not expressive enough in some organization tasks such as film classification, where a multi-label scheme is required. The objective of this paper is to compare the behaviors of 12 multi-label classification methods in an interactive framework where "good" predictions must be produced in a very short time from a very small set of multi-label training examples. Experimentations highlight important performance differences for 4 complementary evaluation measures (Log-Loss, Ranking-Loss, Learning and Prediction Times). The best results are obtained for Multi-label k Nearest Neighbours (ML-kNN), Ensemble of Classifier Chains (ECC) and Ensemble of Binary Relevance (EBR)

    Large Margin Multiclass Gaussian Classification with Differential Privacy

    Full text link
    As increasing amounts of sensitive personal information is aggregated into data repositories, it has become important to develop mechanisms for processing the data without revealing information about individual data instances. The differential privacy model provides a framework for the development and theoretical analysis of such mechanisms. In this paper, we propose an algorithm for learning a discriminatively trained multi-class Gaussian classifier that satisfies differential privacy using a large margin loss function with a perturbed regularization term. We present a theoretical upper bound on the excess risk of the classifier introduced by the perturbation.Comment: 14 page

    Towards Power-Efficient Design of Myoelectric Controller based on Evolutionary Computation

    Full text link
    Myoelectric pattern recognition is one of the important aspects in the design of the control strategy for various applications including upper-limb prostheses and bio-robotic hand movement systems. The current work has proposed an approach to design an energy-efficient EMG-based controller by considering a supervised learning framework using a kernelized SVM classifier for decoding the information of surface electromyography (sEMG) signals to infer the underlying muscle movements. In order to achieve the optimized performance of the EMG-based controller, our main strategy of classifier design is to reduce the false movements of the overall system (when the EMG-based controller is at the `Rest' position). To this end, unlike the traditional single training objective of soft margin kernelized SVM, we have formulated the training algorithm of the proposed supervised learning system as a general constrained multi-objective optimization problem. An elitist multi-objective evolutionary algorithm −- the non-dominated sorting genetic algorithm II (NSGA-II) has been used for the tuning of SVM hyperparameters. We have presented the experimental results by performing the experiments on a dataset consisting of the sEMG signals collected from eleven subjects at five different upper limb positions. It is evident from the presented result that the proposed approach provides much more flexibility to the designer in selecting the parameters of the classifier to optimize the energy efficiency of the EMG-based controller.Comment: Submitted to IEEE Journa
    • …
    corecore