13,445 research outputs found

    Understanding and Diagnosing Visual Tracking Systems

    Full text link
    Several benchmark datasets for visual tracking research have been proposed in recent years. Despite their usefulness, whether they are sufficient for understanding and diagnosing the strengths and weaknesses of different trackers remains questionable. To address this issue, we propose a framework by breaking a tracker down into five constituent parts, namely, motion model, feature extractor, observation model, model updater, and ensemble post-processor. We then conduct ablative experiments on each component to study how it affects the overall result. Surprisingly, our findings are discrepant with some common beliefs in the visual tracking research community. We find that the feature extractor plays the most important role in a tracker. On the other hand, although the observation model is the focus of many studies, we find that it often brings no significant improvement. Moreover, the motion model and model updater contain many details that could affect the result. Also, the ensemble post-processor can improve the result substantially when the constituent trackers have high diversity. Based on our findings, we put together some very elementary building blocks to give a basic tracker which is competitive in performance to the state-of-the-art trackers. We believe our framework can provide a solid baseline when conducting controlled experiments for visual tracking research

    The Coordinate Particle Filter - A novel Particle Filter for High Dimensional Systems

    Full text link
    Parametric filters, such as the Extended Kalman Filter and the Unscented Kalman Filter, typically scale well with the dimensionality of the problem, but they are known to fail if the posterior state distribution cannot be closely approximated by a density of the assumed parametric form. For nonparametric filters, such as the Particle Filter, the converse holds. Such methods are able to approximate any posterior, but the computational requirements scale exponentially with the number of dimensions of the state space. In this paper, we present the Coordinate Particle Filter which alleviates this problem. We propose to compute the particle weights recursively, dimension by dimension. This allows us to explore one dimension at a time, and resample after each dimension if necessary. Experimental results on simulated as well as real data confirm that the proposed method has a substantial performance advantage over the Particle Filter in high-dimensional systems where not all dimensions are highly correlated. We demonstrate the benefits of the proposed method for the problem of multi-object and robotic manipulator tracking

    Riemann-Langevin Particle Filtering in Track-Before-Detect

    Get PDF
    Track-before-detect (TBD) is a powerful approach that consists in providing the tracker with sensor measurements directly without pre-detection. Due to the measurement model non-linearities, online state estimation in TBD is most commonly solved via particle filtering. Existing particle filters for TBD do not incorporate measurement information in their proposal distribution. The Langevin Monte Carlo (LMC) is a sampling method whose proposal is able to exploit all available knowledge of the posterior (that is, both prior and measurement information). This letter synthesizes recent advances in LMC-based filtering to describe the Riemann-Langevin particle filter and introduces its novel application to TBD. The benefits of our approach are illustrated in a challenging low-noise scenario.Comment: Minor grammatical update

    A Multi-Scan Labeled Random Finite Set Model for Multi-object State Estimation

    Full text link
    State space models in which the system state is a finite set--called the multi-object state--have generated considerable interest in recent years. Smoothing for state space models provides better estimation performance than filtering by using the full posterior rather than the filtering density. In multi-object state estimation, the Bayes multi-object filtering recursion admits an analytic solution known as the Generalized Labeled Multi-Bernoulli (GLMB) filter. In this work, we extend the analytic GLMB recursion to propagate the multi-object posterior. We also propose an implementation of this so-called multi-scan GLMB posterior recursion using a similar approach to the GLMB filter implementation
    corecore