52 research outputs found

    Deep ensemble learning of sparse regression models for brain disease diagnosis

    Get PDF
    Recent studies on brain imaging analysis witnessed the core roles of machine learning techniques in computer-assisted intervention for brain disease diagnosis. Of various machine-learning techniques, sparse regression models have proved their effectiveness in handling high-dimensional data but with a small number of training samples, especially in medical problems. In the meantime, deep learning methods have been making great successes by outperforming the state-of-the-art performances in various applications. In this paper, we propose a novel framework that combines the two conceptually different methods of sparse regression and deep learning for Alzheimer’s disease/mild cognitive impairment diagnosis and prognosis. Specifically, we first train multiple sparse regression models, each of which is trained with different values of a regularization control parameter. Thus, our multiple sparse regression models potentially select different feature subsets from the original feature set; thereby they have different powers to predict the response values, i.e., clinical label and clinical scores in our work. By regarding the response values from our sparse regression models as target-level representations, we then build a deep convolutional neural network for clinical decision making, which thus we call ‘ Deep Ensemble Sparse Regression Network.’ To our best knowledge, this is the first work that combines sparse regression models with deep neural network. In our experiments with the ADNI cohort, we validated the effectiveness of the proposed method by achieving the highest diagnostic accuracies in three classification tasks. We also rigorously analyzed our results and compared with the previous studies on the ADNI cohort in the literature

    A survey on classification algorithms of brain images in Alzheimer’s disease based on feature extraction techniques

    Get PDF
    Abstract: Alzheimer’s disease (AD) is one of the most serious neurological disorders for elderly people. AD affected patient experiences severe memory loss. One of the main reasons for memory loss in AD patients is atrophy in the hippocampus, amygdala, etc. Due to the enormous growth of AD patients and the paucity of proper diagnostic tools, detection and classification of AD are considered as a challenging research area. Before a Cognitively normal (CN) person develops symptoms of AD, he may pass through an intermediate stage, commonly known as Mild Cognitive Impairment (MCI). MCI is having two stages, namely StableMCI (SMCI) and Progressive MCI (PMCI). In SMCI, a patient remains stable, whereas, in the case of PMCI, a person gradually develops few symptoms of AD. Several research works are in progress on the detection and classification of AD based on changes in the brain. In this paper, we have analyzed few existing state-of-art works for AD detection and classification, based on different feature extraction approaches. We have summarized the existing research articles with detailed observations. We have also compared the performance and research issues in each of the feature extraction mechanisms and observed that the AD classification using the wavelet transform-based feature extraction approaches might achieve convincing results

    Imaging biomarkers extraction and classification for Prion disease

    Get PDF
    Prion diseases are a group of rare neurodegenerative conditions characterised by a high rate of progression and highly heterogeneous phenotypes. Whilst the most common form of prion disease occurs sporadically (sporadic Creutzfeldt-Jakob disease, sCJD), other forms are caused by inheritance of prion protein gene mutations or exposure to prions. To date, there are no accurate imaging biomarkers that can be used to predict the future diagnosis of a subject or to quantify the progression of symptoms over time. Besides, CJD is commonly mistaken for other forms of dementia. Due to the large heterogeneity of phenotypes of prion disease and the lack of a consistent spatial pattern of disease progression, the approaches used to study other types of neurodegenerative diseases are not satisfactory to capture the progression of the human form of prion disease. Using a tailored framework, I extracted quantitative imaging biomarkers for characterisation of patients with Prion diseases. Following the extraction of patient-specific imaging biomarkers from multiple images, I implemented a Gaussian Process approach to correlated symptoms with disease types and stages. The model was used on three different tasks: diagnosis, differential diagnosis and stratification, addressing an unmet need to automatically identify patients with or at risk of developing Prion disease. The work presented in this thesis has been extensively validated in a unique Prion disease cohort, comprising both the inherited and sporadic forms of the disease. The model has shown to be effective in the prediction of this illness. Furthermore, this approach may have used in other disorders with heterogeneous imaging features, being an added value for the understanding of neurodegenerative diseases. Lastly, given the rarity of this disease, I also addressed the issue of missing data and the limitations raised by it. Overall, this work presents progress towards modelling of Prion diseases and which computational methodologies are potentially suitable for its characterisation

    Machine Learning for Multiclass Classification and Prediction of Alzheimer\u27s Disease

    Get PDF
    Alzheimer\u27s disease (AD) is an irreversible neurodegenerative disorder and a common form of dementia. This research aims to develop machine learning algorithms that diagnose and predict the progression of AD from multimodal heterogonous biomarkers with a focus placed on the early diagnosis. To meet this goal, several machine learning-based methods with their unique characteristics for feature extraction and automated classification, prediction, and visualization have been developed to discern subtle progression trends and predict the trajectory of disease progression. The methodology envisioned aims to enhance both the multiclass classification accuracy and prediction outcomes by effectively modeling the interplay between the multimodal biomarkers, handle the missing data challenge, and adequately extract all the relevant features that will be fed into the machine learning framework, all in order to understand the subtle changes that happen in the different stages of the disease. This research will also investigate the notion of multitasking to discover how the two processes of multiclass classification and prediction relate to one another in terms of the features they share and whether they could learn from one another for optimizing multiclass classification and prediction accuracy. This research work also delves into predicting cognitive scores of specific tests over time, using multimodal longitudinal data. The intent is to augment our prospects for analyzing the interplay between the different multimodal features used in the input space to the predicted cognitive scores. Moreover, the power of modality fusion, kernelization, and tensorization have also been investigated to efficiently extract important features hidden in the lower-dimensional feature space without being distracted by those deemed as irrelevant. With the adage that a picture is worth a thousand words, this dissertation introduces a unique color-coded visualization system with a fully integrated machine learning model for the enhanced diagnosis and prognosis of Alzheimer\u27s disease. The incentive here is to show that through visualization, the challenges imposed by both the variability and interrelatedness of the multimodal features could be overcome. Ultimately, this form of visualization via machine learning informs on the challenges faced with multiclass classification and adds insight into the decision-making process for a diagnosis and prognosis

    Self-calibrated brain network estimation and joint non-convex multi-task learning for identification of early Alzheimer's disease

    Get PDF
    Detection of early stages of Alzheimer's disease (AD) (i.e., mild cognitive impairment (MCI)) is important to maximize the chances to delay or prevent progression to AD. Brain connectivity networks inferred from medical imaging data have been commonly used to distinguish MCI patients from normal controls (NC). However, existing methods still suffer from limited performance, and classification remains mainly based on single modality data. This paper proposes a new model to automatically diagnosing MCI (early MCI (EMCI) and late MCI (LMCI)) and its earlier stages (i.e., significant memory concern (SMC)) by combining low-rank self-calibrated functional brain networks and structural brain networks for joint multi-task learning. Specifically, we first develop a new functional brain network estimation method. We introduce data quality indicators for self-calibration, which can improve data quality while completing brain network estimation, and perform correlation analysis combined with low-rank structure. Second, functional and structural connected neuroimaging patterns are integrated into our multi-task learning model to select discriminative and informative features for fine MCI analysis. Different modalities are best suited to undertake distinct classification tasks, and similarities and differences among multiple tasks are best determined through joint learning to determine most discriminative features. The learning process is completed by non-convex regularizer, which effectively reduces the penalty bias of trace norm and approximates the original rank minimization problem. Finally, the most relevant disease features classified using a support vector machine (SVM) for MCI identification. Experimental results show that our method achieves promising performance with high classification accuracy and can effectively discriminate between different sub-stages of MCI

    Quantifying anatomical shape variations in neurological disorders

    Get PDF
    We develop a multivariate analysis of brain anatomy to identify the relevant shape deformation patterns and quantify the shape changes that explain corresponding variations in clinical neuropsychological measures. We use kernel Partial Least Squares (PLS) and formulate a regression model in the tangent space of the manifold of diffeomorphisms characterized by deformation momenta. The scalar deformation momenta completely encode the diffeomorphic changes in anatomical shape. In this model, the clinical measures are the response variables, while the anatomical variability is treated as the independent variable. To better understand the “shape—clinical response” relationship, we also control for demographic confounders, such as age, gender, and years of education in our regression model. We evaluate the proposed methodology on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database using baseline structural MR imaging data and neuropsychological evaluation test scores. We demonstrate the ability of our model to quantify the anatomical deformations in units of clinical response. Our results also demonstrate that the proposed method is generic and generates reliable shape deformations both in terms of the extracted patterns and the amount of shape changes. We found that while the hippocampus and amygdala emerge as mainly responsible for changes in test scores for global measures of dementia and memory function, they are not a determinant factor for executive function. Another critical finding was the appearance of thalamus and putamen as most important regions that relate to executive function. These resulting anatomical regions were consistent with very high confidence irrespective of the size of the population used in the study. This data-driven global analysis of brain anatomy was able to reach similar conclusions as other studies in Alzheimer’s Disease based on predefined ROIs, together with the identification of other new patterns of deformation. The proposed methodology thus holds promise for discovering new patterns of shape changes in the human brain that could add to our understanding of disease progression in neurological disorders

    Digital Oculomotor Biomarkers in Dementia

    Get PDF
    Dementia is an umbrella term that covers a number of neurodegenerative syndromes featuring gradual disturbance of various cognitive functions that are severe enough to interfere with tasks of daily life. The diagnosis of dementia occurs frequently when pathological changes have been developing for years, symptoms of cognitive impairment are evident and the quality of life of the patients has already been deteriorated significantly. Although brain imaging and fluid biomarkers allow the monitoring of disease progression in vivo, they are expensive, invasive and not necessarily diagnostic in isolation. Recent studies suggest that eye-tracking technology is an innovative tool that holds promise for accelerating early detection of the disease, as well as, supporting the development of strategies that minimise impairment during every day activities. However, the optimal methods for quantitative evaluation of oculomotor behaviour during complex and naturalistic tasks in dementia have yet to be determined. This thesis investigates the development of computational tools and techniques to analyse eye movements of dementia patients and healthy controls under naturalistic and less constrained scenarios to identify novel digital oculomotor biomarkers. Three key contributions are made. First, the evaluation of the role of environment during navigation in patients with typical Alzheimer disease and Posterior Cortical Atrophy compared to a control group using a combination of eye movement and egocentric video analysis. Secondly, the development of a novel method of extracting salient features directly from the raw eye-tracking data of a mixed sample of dementia patients during a novel instruction-less cognitive test to detect oculomotor biomarkers of dementia-related cognitive dysfunction. Third, the application of unsupervised anomaly detection techniques for visualisation of oculomotor anomalies during various cognitive tasks. The work presented in this thesis furthers our understanding of dementia-related oculomotor dysfunction and gives future research direction for the development of computerised cognitive tests and ecological interventions

    Machine Learning Methods for Structural Brain MRIs: Applications for Alzheimer’s Disease and Autism Spectrum Disorder

    Get PDF
    This thesis deals with the development of novel machine learning applications to automatically detect brain disorders based on magnetic resonance imaging (MRI) data, with a particular focus on Alzheimer’s disease and the autism spectrum disorder. Machine learning approaches are used extensively in neuroimaging studies of brain disorders to investigate abnormalities in various brain regions. However, there are many technical challenges in the analysis of neuroimaging data, for example, high dimensionality, the limited amount of data, and high variance in that data due to many confounding factors. These limitations make the development of appropriate computational approaches more challenging. To deal with these existing challenges, we target multiple machine learning approaches, including supervised and semi-supervised learning, domain adaptation, and dimensionality reduction methods.In the current study, we aim to construct effective biomarkers with sufficient sensitivity and specificity that can help physicians better understand the diseases and make improved diagnoses or treatment choices. The main contributions are 1) development of a novel biomarker for predicting Alzheimer’s disease in mild cognitive impairment patients by integrating structural MRI data and neuropsychological test results and 2) the development of a new computational approach for predicting disease severity in autistic patients in agglomerative data by automatically combining structural information obtained from different brain regions.In addition, we investigate various data-driven feature selection and classification methods for whole brain, voxel-based classification analysis of structural MRI and the use of semi-supervised learning approaches to predict Alzheimer’s disease. We also analyze the relationship between disease-related structural changes and cognitive states of patients with Alzheimer’s disease.The positive results of this effort provide insights into how to construct better biomarkers based on multisource data analysis of patient and healthy cohorts that may enable early diagnosis of brain disorders, detection of brain abnormalities and understanding effective processing in patient and healthy groups. Further, the methodologies and basic principles presented in this thesis are not only suited to the studied cases, but also are applicable to other similar problems
    corecore