9,736 research outputs found

    BriskStream: Scaling Data Stream Processing on Shared-Memory Multicore Architectures

    Full text link
    We introduce BriskStream, an in-memory data stream processing system (DSPSs) specifically designed for modern shared-memory multicore architectures. BriskStream's key contribution is an execution plan optimization paradigm, namely RLAS, which takes relative-location (i.e., NUMA distance) of each pair of producer-consumer operators into consideration. We propose a branch and bound based approach with three heuristics to resolve the resulting nontrivial optimization problem. The experimental evaluations demonstrate that BriskStream yields much higher throughput and better scalability than existing DSPSs on multi-core architectures when processing different types of workloads.Comment: To appear in SIGMOD'1

    Model-driven Scheduling for Distributed Stream Processing Systems

    Full text link
    Distributed Stream Processing frameworks are being commonly used with the evolution of Internet of Things(IoT). These frameworks are designed to adapt to the dynamic input message rate by scaling in/out.Apache Storm, originally developed by Twitter is a widely used stream processing engine while others includes Flink, Spark streaming. For running the streaming applications successfully there is need to know the optimal resource requirement, as over-estimation of resources adds extra cost.So we need some strategy to come up with the optimal resource requirement for a given streaming application. In this article, we propose a model-driven approach for scheduling streaming applications that effectively utilizes a priori knowledge of the applications to provide predictable scheduling behavior. Specifically, we use application performance models to offer reliable estimates of the resource allocation required. Further, this intuition also drives resource mapping, and helps narrow the estimated and actual dataflow performance and resource utilization. Together, this model-driven scheduling approach gives a predictable application performance and resource utilization behavior for executing a given DSPS application at a target input stream rate on distributed resources.Comment: 54 page

    DRS: Dynamic Resource Scheduling for Real-Time Analytics over Fast Streams

    Full text link
    In a data stream management system (DSMS), users register continuous queries, and receive result updates as data arrive and expire. We focus on applications with real-time constraints, in which the user must receive each result update within a given period after the update occurs. To handle fast data, the DSMS is commonly placed on top of a cloud infrastructure. Because stream properties such as arrival rates can fluctuate unpredictably, cloud resources must be dynamically provisioned and scheduled accordingly to ensure real-time response. It is quite essential, for the existing systems or future developments, to possess the ability of scheduling resources dynamically according to the current workload, in order to avoid wasting resources, or failing in delivering correct results on time. Motivated by this, we propose DRS, a novel dynamic resource scheduler for cloud-based DSMSs. DRS overcomes three fundamental challenges: (a) how to model the relationship between the provisioned resources and query response time (b) where to best place resources; and (c) how to measure system load with minimal overhead. In particular, DRS includes an accurate performance model based on the theory of \emph{Jackson open queueing networks} and is capable of handling \emph{arbitrary} operator topologies, possibly with loops, splits and joins. Extensive experiments with real data confirm that DRS achieves real-time response with close to optimal resource consumption.Comment: This is the our latest version with certain modificatio

    Tromino: Demand and DRF Aware Multi-Tenant Queue Manager for Apache Mesos Cluster

    Full text link
    Apache Mesos, a two-level resource scheduler, provides resource sharing across multiple users in a multi-tenant cluster environment. Computational resources (i.e., CPU, memory, disk, etc. ) are distributed according to the Dominant Resource Fairness (DRF) policy. Mesos frameworks (users) receive resources based on their current usage and are responsible for scheduling their tasks within the allocation. We have observed that multiple frameworks can cause fairness imbalance in a multiuser environment. For example, a greedy framework consuming more than its fair share of resources can deny resource fairness to others. The user with the least Dominant Share is considered first by the DRF module to get its resource allocation. However, the default DRF implementation, in Apache Mesos' Master allocation module, does not consider the overall resource demands of the tasks in the queue for each user/framework. This lack of awareness can result in users without any pending task receiving more resource offers while users with a queue of pending tasks starve due to their high dominant shares. We have developed a policy-driven queue manager, Tromino, for an Apache Mesos cluster where tasks for individual frameworks can be scheduled based on each framework's overall resource demands and current resource consumption. Dominant Share and demand awareness of Tromino and scheduling based on these attributes can reduce (1) the impact of unfairness due to a framework specific configuration, and (2) unfair waiting time due to higher resource demand in a pending task queue. In the best case, Tromino can significantly reduce the average waiting time of a framework by using the proposed Demand-DRF aware policy

    Peachy Parallel Assignments (EduHPC 2018)

    Get PDF
    Peachy Parallel Assignments are a resource for instructors teaching parallel and distributed programming. These are high-quality assignments, previously tested in class, that are readily adoptable. This collection of assignments includes implementing a subset of OpenMP using pthreads, creating an animated fractal, image processing using histogram equalization, simulating a storm of high-energy particles, and solving the wave equation in a variety of settings. All of these come with sample assignment sheets and the necessary starter code.Departamento de Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia Artificial, Lenguajes y Sistemas Informáticos)Facilitar la inclusión de ejercicios prácticos de programación paralela en cursos de Computación Paralela o de alto rendimiento (HPC)Comunicación en congreso: Descripción de ejercicios prácticos con acceso a material ya desarrollado y probado

    A Comparison of Big Data Frameworks on a Layered Dataflow Model

    Get PDF
    In the world of Big Data analytics, there is a series of tools aiming at simplifying programming applications to be executed on clusters. Although each tool claims to provide better programming, data and execution models, for which only informal (and often confusing) semantics is generally provided, all share a common underlying model, namely, the Dataflow model. The Dataflow model we propose shows how various tools share the same expressiveness at different levels of abstraction. The contribution of this work is twofold: first, we show that the proposed model is (at least) as general as existing batch and streaming frameworks (e.g., Spark, Flink, Storm), thus making it easier to understand high-level data-processing applications written in such frameworks. Second, we provide a layered model that can represent tools and applications following the Dataflow paradigm and we show how the analyzed tools fit in each level.Comment: 19 pages, 6 figures, 2 tables, In Proc. of the 9th Intl Symposium on High-Level Parallel Programming and Applications (HLPP), July 4-5 2016, Muenster, German
    corecore