6 research outputs found

    Characterizing the interplay between information and strength in Blotto games

    Get PDF
    In this paper, we investigate informational asymmetries in the Colonel Blotto game, a game-theoretic model of competitive resource allocation between two players over a set of battlefields. The battlefield valuations are subject to randomness. One of the two players knows the valuations with certainty. The other knows only a distribution on the battlefield realizations. However, the informed player has fewer resources to allocate. We characterize unique equilibrium payoffs in a two battlefield setup of the Colonel Blotto game. We then focus on a three battlefield setup in the General Lotto game, a popular variant of the Colonel Blotto game. We characterize the unique equilibrium payoffs and mixed equilibrium strategies. We quantify the value of information - the difference in equilibrium payoff between the asymmetric information game and complete information game. We find information strictly improves the informed player's performance guarantee. However, the magnitude of improvement varies with the informed player's strength as well as the game parameters. Our analysis highlights the interplay between strength and information in adversarial environments.Comment: 8 pages, 2 figures. Accepted for presentation at 58th Conference on Decision and Control (CDC), 201

    The Art of Concession in General Lotto Games

    Get PDF
    Success in adversarial environments often requires investment into additional resources in order to improve one’s competitive position. But, can intentionally decreasing one’s own competitiveness ever provide strategic benefits in such settings? In this paper, we focus on characterizing the role of “concessions” as a component of strategic decision making. Specifically, we investigate whether a player can gain an advantage by either conceding budgetary resources or conceding valuable prizes to an opponent. While one might na¨ıvely assume that the player cannot, our work demonstrates that – perhaps surprisingly – concessions do offer strategic benefits when made correctly. In the context of General Lotto games, we first show that neither budgetary concessions nor value concessions can be advantageous to either player in a 1-vs.-1 scenario. However, in settings where two players compete against a common adversary, we find opportunities for one of the two players to improve her payoff by conceding a prize to the adversary. We provide a set of sufficient conditions under which such concessions exist

    Strategically Revealing Intentions in General Lotto Games

    Get PDF
    Strategic decision-making in uncertain and adversarial environments is crucial for the security of modern systems and infrastructures. A salient feature of many optimal decision-making policies is a level of unpredictability, or randomness, which helps to keep an adversary uncertain about the system’s behavior. This paper seeks to explore decision-making policies on the other end of the spectrum – namely, whether there are benefits in revealing one’s strategic intentions to an opponent before engaging in competition.We study these scenarios in a well-studied model of competitive resource allocation problem known as General Lotto games. In the classic formulation, two competing players simultaneously allocate their assets to a set of battlefields, and the resulting payoffs are derived in a zero-sum fashion. Here, we consider a multi-step extension where one of the players has the option to publicly pre-commit assets in a binding fashion to battlefields before play begins. In response, the opponent decides which of these battlefields to secure (or abandon) by matching the pre-commitment with its own assets. They then engage in a General Lotto game over the remaining set of battlefields. Interestingly, this paper highlights many scenarios where strategically revealing intentions can actually significantly improve one’s payoff. This runs contrary to the conventional wisdom that randomness should be a central component of decision-making in adversarial environments

    Strategically Revealing Intentions in General Lotto Games

    Get PDF
    Strategic decision-making in uncertain and adversarial environments is crucial for the security of modern systems and infrastructures. A salient feature of many optimal decision-making policies is a level of unpredictability, or randomness, which helps to keep an adversary uncertain about the system’s behavior. This paper seeks to explore decision-making policies on the other end of the spectrum – namely, whether there are benefits in revealing one’s strategic intentions to an opponent before engaging in competition.We study these scenarios in a well-studied model of competitive resource allocation problem known as General Lotto games. In the classic formulation, two competing players simultaneously allocate their assets to a set of battlefields, and the resulting payoffs are derived in a zero-sum fashion. Here, we consider a multi-step extension where one of the players has the option to publicly pre-commit assets in a binding fashion to battlefields before play begins. In response, the opponent decides which of these battlefields to secure (or abandon) by matching the pre-commitment with its own assets. They then engage in a General Lotto game over the remaining set of battlefields. Interestingly, this paper highlights many scenarios where strategically revealing intentions can actually significantly improve one’s payoff. This runs contrary to the conventional wisdom that randomness should be a central component of decision-making in adversarial environments

    Multi-layer network formation via a Colonel Blotto game

    No full text

    Strategic and Stochastic Approaches to Modeling the Structure of Multi-Layer and Interdependent Networks

    Get PDF
    Examples of complex networks abound in both the natural world (e.g., ecological, social and economic systems), and in engineered applications (e.g., the Internet, the power grid, etc.). The topological structure of such networks plays a fundamental role in their functioning, dictating properties such as the speed of information diffusion, the influence of powerful or vulnerable nodes, and the ability of the nodes to take collective actions. There are two main schools of thought for investigating the structure of complex networks. Early research on this topic primarily adopted a stochastic perspective, postulating that the links between nodes are formed randomly. In an alternative perspective, it has been argued that optimization (rather than pure randomness) plays a key role in network formation. In such settings, edges are formed strategically (either by a designer or by the nodes themselves) in order to maximize certain utility functions. The classical literature on the structure of networks has predominantly focused on single layer networks where there is a single set of edges between nodes. However, there is an increasing realization that many real-world networks have either multi-layer or interdependent structure. While the former considers multiple layers of relationships between the same set of nodes, the latter deals with networks-of-networks consisting of interdependencies between different subnetworks. This thesis focuses on the analysis of the structure of multi-layer and interdependent networks via strategic and stochastic approaches. In the strategic multi-layer network formation setting, each layer represents a different type of relationship between the nodes and is designed to maximize some utility that depends on its own topology and those of the other layers. By viewing the designer of each layer as a player in a multi-layer network formation game, we show that hub-and-spoke networks that are commonly observed in transportation systems arise as a Nash equilibrium. Extending this analysis to interdependent networks where there are different sets of nodes, we introduce a network design game where the objective of the players is to design the interconnections between the nodes of two different networks, G1 and G2. In this game, each player is associated with a node in G1 and has functional dependencies on certain nodes in G2. Besides showing that finding a best response of a player is NP-hard and characterizing some useful properties of the best response actions of the players, we prove existence of pure Nash equilibria in this game under certain conditions. In order to obtain further insights into the structure of interdependent networks with an arbitrary number of subnetworks, we consider a model for random interdependent networks where each edge between two different subnetworks is formed with probability p. We investigate certain spectral and structural properties of such networks, with corresponding implications for certain variants of consensus dynamics on those networks. In particular, we study a property known as r-robustness, which is a strong indicator of the ability of a network, including interdependent networks, to tolerate structural perturbations and dynamical attacks
    corecore