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Abstract

Examples of complex networks abound in both the natural world (e.g., ecological, social and
economic systems), and in engineered applications (e.g., the Internet, the power grid, etc.). The
topological structure of such networks plays a fundamental role in their functioning, dictating
properties such as the speed of information diffusion, the influence of powerful or vulnerable
nodes, and the ability of the nodes to take collective actions. There are two main schools of
thought for investigating the structure of complex networks. Early research on this topic pri-
marily adopted a stochastic perspective, postulating that the links between nodes are formed
randomly. In an alternative perspective, it has been argued that optimization (rather than pure
randomness) plays a key role in network formation. In such settings, edges are formed strate-
gically (either by a designer or by the nodes themselves) in order to maximize certain utility
functions. The classical literature on the structure of networks has predominantly focused on
single layer networks where there is a single set of edges between nodes. However, there is
an increasing realization that many real-world networks have either multi-layer or interdepen-
dent structure. While the former considers multiple layers of relationships between the same
set of nodes, the latter deals with networks-of-networks consisting of interdependencies between
different subnetworks. This thesis focuses on the analysis of the structure of multi-layer and
interdependent networks via strategic and stochastic approaches.

In the strategic multi-layer network formation setting, each layer represents a different type
of relationship between the nodes and is designed to maximize some utility that depends on its
own topology and those of the other layers. By viewing the designer of each layer as a player in a
multi-layer network formation game, we show that hub-and-spoke networks that are commonly
observed in transportation systems arise as a Nash equilibrium. Extending this analysis to inter-
dependent networks where there are different sets of nodes, we introduce a network design game
where the objective of the players is to design the interconnections between the nodes of two
different networks, G1 and G2. In this game, each player is associated with a node in G1 and has
functional dependencies on certain nodes in G2. Besides showing that finding a best response
of a player is NP-hard and characterizing some useful properties of the best response actions of
the players, we prove existence of pure Nash equilibria in this game under certain conditions.
In order to obtain further insights into the structure of interdependent networks with an arbitrary
number of subnetworks, we consider a model for random interdependent networks where each
edge between two different subnetworks is formed with probability p. We investigate certain
spectral and structural properties of such networks, with corresponding implications for certain
variants of consensus dynamics on those networks. In particular, we study a property known as
r-robustness, which is a strong indicator of the ability of a network, including interdependent
networks, to tolerate structural perturbations and dynamical attacks.
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Chapter 1

Introduction and Background

Due to rapid advances in communication technology, it is impossible to analyze behavior of
individuals in society without considering the “connection” or “mutual effect” of one person
to/on another. The property of being “interconnected” is not only limited to social systems. In
fact, the ever-increasing sophistication of today’s large-scale engineered systems requires the
development of new techniques to understand the implications of their interconnections. With
this paradigm shift, the concept of “networks” has started to attract even more attention over the
past decades.

In the most basic sense, a network is comprised of any set of objects, which are referred to as
nodes, and a set of links capturing possible connections between pairs of nodes. Depending on
the context, links can define different forms of connections and relationships, such as friendship
between individuals in a social network, roads in a transportation network, or data transmission
paths in a computer network. Similarly, in a distributed system, objects or nodes can model
different types of components, such as humans, robots, computers (agents) or in general any
dynamical system.

Over the last several decades, researchers have studied various aspects of distributed systems.
Some have focused on individual components, such as exploring how a robot works in a coop-
erative environment or how humans are influenced by society. There are also interesting studies
on the nature of the connections or interactions between components, e.g., the communication
protocols on the Internet or friendship dynamics among people. But there is a third aspect to the
analysis of these systems, and that is their structure or pattern of interconnections.

Various studies have shown that the topological structure of interconnection between the
components of a decentralized system plays a fundamental role in the system’s functioning. For
instance, [73] showed that the convergence rate to the rendezvous point in a multi-agent setting
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with consensus dynamics is directly related to the algebraic connectivity of the interconnection
network among the agents. The interconnection structure in a decentralized system also crucially
affects the robustness of the system against dynamical attacks or random failures [98, 97, 43, 86].
In light of this, our studies in this thesis contributes to the understanding of the structure of
large-scale and complex networks, an area usually referred to as “network design” or “network
formation” in the literature. In order to describe our contributions in more detail, we will first
need to introduce some terminology.

1.1 Definitions

In this section, we start by providing some essential graph theory terminology and then we will
discuss definitions related to the complexity of solving problems.

1.1.1 Graph Theory Terminology

An undirected network (or graph) is denoted by G = (N,E) where N = {v1, v2, . . . , vn} is
the set of nodes (or vertices) and E ⊆ {(vi, vj)|vi, vj ∈ N, vi 6= vj}. The set of all possible
graphs on N is denoted by GN . Two nodes are said to be neighbors if there is an edge between
them. The degree of a node vi ∈ N is the number of its neighbors in graph G, and is denoted
by degi(G). A leaf node is a node that has degree one, i.e., it has only one neighbor. A path
from node v1 to vk in graph G is a sequence of distinct nodes v1v2 · · · vk where there is an edge
between each pair of consecutive nodes of the sequence. The length of a path is the number of
edges in the sequence. We denote the shortest distance between nodes vi and vj in graph G by
dG(i, j). If there is no path from vi to vj , we take dG(i, j) = ∞. The diameter of the graph
G is maxvi,vj∈N,vi 6=vj dG(i, j). A cycle is a path of length two or more from a node to itself.
A graph G′ = (N ′, E ′) is called a subgraph of G = (N,E), denoted as G′ ⊆ G, if N ′ ⊆ N
and E ′ ⊆ E ∩ {N ′ × N ′}. A graph G′ is said to be induced by a set of nodes N ′ ⊆ N if
E ′ = E ∩ {N ′ × N ′}. A graph is connected if there is a path from every node to every other
node. A subgraph G′ = (N ′, E ′) of G is a component if G′ is connected and there are no edges
in G between nodes in N ′ and nodes in N \N ′.

A tree is a connected acyclic graph. For a connected graph G = (N,E), a connected acyclic
subgraph T = (N,ET ) of G is called a spanning tree of G. A spanning forest of a disconnected
graph is a collection of spanning trees of each of its components.

We denote the complete graph (i.e., the graph with an edge between every pair of different
nodes) byGc = (N,Ec). We useGe = (N, φ) to denote the empty graph. Finally, Gs = (N,Es)
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is a star graph, which is a tree graph with one node that is connected to all other nodes. The
complement of graph G = (N,E) is denoted by ∼ G = (N,∼ E), where ∼ E , Ec \ E. Two
graphs on the same set of nodes are said to be disjoint if their edge sets are disjoint. For an integer
k ∈ Z≥2, a graph G is k-partite if its vertex set can be partitioned into k sets V1, V2, . . . , Vk such
that there are no edges between nodes within any of those sets.

The adjacency matrix for the graph G = (V,E) is a matrix A ∈ {0, 1}n×n whose (i, j)
entry is 1 if (vi, vj) ∈ E, and zero otherwise. The Laplacian matrix for the graph is given by
L = D − A, where D is the degree matrix with D = diag(d1, d2, . . . , dn). The eigenvalues of
the Laplacian are real and nonnegative, and are denoted by 0 = λ1(L) ≤ λ2(L) ≤ . . . ≤ λn(L).

1.1.2 NP-hardness and Complexity

Let N>0 denote the set of positive integers. Consider two functions f(n) : N>0 → R and
g(n) : N>0 → R, where R is the set of real numbers. Then f(n) is said to be in

• O(g(n)) if and only if there exist positive constants c and n0 such that

0 ≤ f(n) ≤ c g(n) ∀n ≥ n0.

• Θ(g(n)) if and only if there exist positive constants c1, c2 and n0 such that

0 ≤ c1g(n) ≤ f(n) ≤ c2 g(n) ∀n ≥ n0.

• Ω(g(n)) if and only if there exist positive constants c and n0 such that

0 ≤ c g(n) ≤ f(n) ∀n ≥ n0.

• o(g(n)) if and only if for every positive constant c, there exists a constant n0 > 0 such that

0 ≤ f(n) < c g(n) ∀n ≥ n0.

Assume that the input to a problem has size n (measured by an appropriate encoding of the
input). If there is an algorithm that solves the problem in O(nk) time (for some positive constant
k), the problem is said to be in the complexity class P. A decision problem is a question to which
answer is either “yes” or “no”. A decision problem is said to be in the class NP if every “yes”
answer has an accompanying certificate that can be verified in polynomial-time. Consider two
decision problems A and B and assume that there exists a polynomial-time transformation from
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any instance b of problem B into some instance a of problem A such that the answer to b is “yes”
if and only if answer to a is “yes”. If such a transformation from B to A exists, it is called a
reduction and problem B is said to be polynomial-time reducible to problem A. A problem A
is NP-hard if for all problems B ∈ NP, B is polynomial-time reducible to A; in particular, A is
NP-hard if some other NP-hard problem B is polynomial-time reducible to A [19]. An NP-hard
problem that is also in the class NP is said to be NP-complete.

With the above definitions and terminology in hand, we will now review previous results on
network formation from stochastic and strategic points of view.

1.2 Random Network Formation

Endeavors to study the structure of large-scale networks were first initiated by formulating a
stochastic setting in which links are formed randomly. A fundamental work with this perspective
is the “small world” model proposed by Watts and Strogatz [93]. By randomly rewiring links
in a symmetric network, they generated a network that exhibits small world characteristics such
as a short average distance between any two pair of nodes and a high clustering coefficient. In
[6], Albert and Barabasi showed that if nodes form links through preferential attachment (i.e.,
the probability of forming a link between a new node and an existing node v is proportional to
deg(v)), then the produced network will have power law degree distribution. Similar ideas go
back to the 1950’s [71, 48, 17]. Another interesting model, which illustrates certain features
of social networks, was introduced by Jackson and Rogers [50]. In their model, a new node
forms links in two steps: first, randomly connecting to a set of nodes, and then searching locally
through the current structure of the network (e.g., friends of friends).

However, probably the most-prominent network formation model with a stochastic perspec-
tive is the Erdos-Renyi (ER) model in which, given a set of nodes, there is an edge between any
two nodes with a fixed probability [26]. Although ER networks are not typically representative
of real-world networks, due to the interesting properties that they demonstrate, they have become
one of the most common models for studying large scale networks [74, 10, 48, 26]. We will now
formally define the ER network formation model.

Definition 1. An Erdos-Renyi (ER) random network, denoted by G(n, p), is a graph on n nodes
where each possible edge between two distinct vertices is present independently with probability
p (which could be a function of n). Equivalently, an ER random network can be viewed as a
probability space (Ωn, Fn, Pn), where the sample space Ωn consists of all possible graphs on
n nodes, the σ-algebra Fn is the power set of Ωn, and the probability measure Pn assigns a
probability of p|E|(1− p)(

n
2)−|E| to each graph with |E| edges.
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Let P(·) denote the probability of an event. Given a property P and the probability of edge
formation p = p(n), we say that G(n, p) has the property P asymptotically almost surely (a.a.s.)
if P(G(n, p) ∈ P)→ 1 as n→∞. Similarly, we say that G(n, p) does not have the property P
a.a.s. if P(G(n, p) ∈ P)→ 0 as n→∞.

One of the fascinating features of ER networks is that they exhibit phase transition at certain
thresholds for the edge formation probability p. Below we provide one definition of a threshold
in random networks.

Definition 2. Consider a function t(n) = g(n)
n

with g(n) → ∞ as n → ∞, and a function
x = o(g(n)) which satisfies x → ∞ as n → ∞. Then t(n) is said to be a (sharp) threshold
function for a graph property P if

1. property P a.a.s. holds when p(n) = g(n)+x
n

, and

2. property P a.a.s. does not hold for p(n) = g(n)−x
n

.

Loosely speaking, “t(n) is a (sharp) threshold for the property P” means that if the edge
formation probability p is “larger” than threshold t(n), then property P a.a.s. holds; if p is
“smaller” than the threshold t(n), then P a.a.s. does not hold.

1.3 Strategic Network formation

While random networks are appealing from an analytical point of view, they do not necessarily
capture the driving principles beneath social, economic or engineered networks. In fact, in these
kinds of networks, agents have discretion about connections that they form with other individuals
and do not form their links purely by random. This led to the “strategic” approach for analyzing
and modeling of the structure complex networks, driven by the economics, computer science
and engineering communities, in which optimization plays the key role (rather than pure ran-
domness). In such settings, edges are formed (either by a designer or by the nodes themselves)
in order to maximize certain utility functions, resulting in networks that can be analyzed using
game-theoretic notions of equilibria and efficiency [4, 9, 12, 41, 55].

However, there are two crucial challenges in modeling network formation from a strategic
point of view. First an appropriate metric is needed to capture individuals’ or the central de-
signer’s incentives to form or remove a link. Thus, we need to explicitly model the benefit and
cost of forming edges. Another challenge is in predicting the formed networks that maximize
the given measure or utility function.
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The past few decades have generated a large volume of literature on the problem of network
formation and design for different types of utility functions. We will now review some of these
lines of work and then explain how our research fits within the context of existing literature.

1.3.1 Network Design

The selection of an optimal configuration or design of a network occurs in many different appli-
cation contexts including transportation, telecommunication and electric power systems. Opti-
mality of the designed network is measured by a utility function that depends on the nature of the
problem under investigation. An example is the so-called Facility Location problem where there
are a set of potential sites, a set of clients, and relevant profit and cost data. The goal is to find a
maximum-profit plan giving the number of facilities to open, their location and an allocation of
each client to an open facility. The solution to this problem can be captured as a bipartite graph.
The facility location problem is NP-hard [66].

There are other types of network design problems that have been widely studied in the liter-
ature. Perhaps the most common instance is the minimum spanning tree (MST) problem which
is to find a spanning tree of a weighted graph that has the least overall weight. Kruskal and Prim
are two greedy algorithms that solve MST in polynomial time [19]. The Steiner tree problem is
a problem in combinatorial optimization that is similar to the minimum spanning tree problem.
One of the versions of the problem that is most related to our work is: given a subset of vertices
R ⊆ V of graph G = (V,E) and a positive integer K ≤ |V | − 1, is there a subtree of G that
includes all the vertices of R and that contains no more than K edges? Steiner tree is one of
Karp’s 21 NP-complete problems [54].

In an important paper, Hu introduced the optimal communication spanning tree (OCST) prob-
lem defined below.

Problem 1. Given a set of nodes N and a set of requirements rij , i, j ∈ N , the goal of the
network designer is to find the spanning tree connecting the set of nodes in N such that the total
cost of communication is minimized over all spanning trees. The cost of communication for a
pair of nodes is rij multiplied by their geodesic distance in the tree. Summing over all

(
n
2

)
pair

of nodes gives the cost of the spanning tree. Thus the objective function has the form

u(T ) =
∑

i,j∈N,i6=j

rijdT (i, j). (1.1)

Hu in [45] showed that this problem is polynomially solvable for any set of rij .

The Network Design Problem (NDP) is another important problem in the network design
literature introduced by Johnson et al. in [53], and is defined as follows.
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Problem 2. Given an undirected graph G = (V,E), a weight function L : E → N, a budget
B ∈ N and a criterion C ∈ N, does there exist a subgraph G′ = (V,E ′) of G with overall
weight

∑
(i,j)∈E′ L(i, j) ≤ B and criterion value F (G′) ≤ C, where F (G′) denotes the sum of

the weights of the shortest paths in G′ between all vertex pairs?

Johnson shows that this problem is NP-complete by reduction from the Subset-Sum problem
which is NP-complete as well [34]. In a further investigation, Johnson showed that the special
instance of this problem (known as SNDP) with L(i, j) = 1 for all (i, j) ∈ E and B = |V | − 1
is also NP-complete.

The above problems are classical in the network design literature. An alternative formula-
tion that explicitly incorporates the costs of forming links has been pursued by the economic
community over the past two decades. We now explain this formulation.

Classical Distance-based Utility

A well-studied and natural utility function is the so-called distance-based utility introduced in
[46, 48] by Jackson and Wolinsky, where the objective is to purchase edges to minimize the
distances between all pairs of nodes in the network. In this model, there is a net benefit of
b(k) for each pair of nodes that are k hops away in the network, where b(·) is a decreasing
nonnegative function (i.e., nodes that are further away from each other provide smaller benefits
and b(∞) = 0). There is a cost c > 0 for each edge in the network. The outcome of the network
formation process is a graph G = (N,E) ∈ GN . A graph is evaluated according to the utility
function (or value function) u : GN → R given by

u(G) =
∑

i,j∈N :i 6=j

b(dG(i, j))− c|E|. (1.2)

In this formulation, there is an inherent trade-off faced by the designer: adding links to a larger
number of nodes incurs a larger benefit (by reducing the distances between nodes), but also a
larger cost invested in links. An efficient network is the network with the highest utility. In other
words, if G is an efficient network, then u(G) ≥ u(G′), ∀G′ ∈ GN .

The following result from [46, 48] shows that there are only a few different kinds of efficient
networks, depending on the relative values of the link costs and connection benefits: the empty
network (for high link costs), the star network (for medium link costs), and the fully connected
network (for low link costs).

Proposition 1 ([48]). In the distance-based utility model,
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• if c < b(1)− b(2), then the complete network is the unique efficient network;

• if b(1)− b(2) < c < b(1) + (n− 2)b(2)/2, then the star is the unique efficient network;

• if b(1) + (n− 2)b(2)/2 < c, then the empty network is the unique efficient network.

Remark 1. In the above proposition, whenever c is equal to one of the specified upper or lower
bounds, there will be more than one efficient network: if c = b(1) − b(2), then the complete
network and star network are both efficient, and if c = b(1) + (n − 2)b(2)/2, the star network
and the empty network are both efficient networks with zero utility. Furthermore, for the more
general case where b(·) is nonincreasing, the three networks given by the above result are still
optimal for the corresponding ranges of costs and benefits, although they may no longer be
unique.

Proposition 1 is about finding the network that maximizes the overall societal welfare given
in Equation (1.2), when there exists a central designer that decides about connections between
nodes. Similarly, [48] defines the distance based utility function from the nodes’ point of view
as

ui(G) =
∑

j∈N :i 6=j

b(dG(i, j))− c degG(i), (1.3)

where degG(i) denotes the degree of node i (i.e., the number of its incident edges). Jackson in
[48] assumes that consent of both of the endpoints is needed in order to form a link between them.
This seems to be a reasonable assumption in social settings as a relationship between individuals
must be in their mutual interest. The Nash equilibrium concept fails to capture the assumption
that agents have the capability to negotiate and thus cannot be employed here. Instead the notion
of pairwise stability was introduced in [48] and is fully defined in Section 2.4.

In another variation of the distance-based utility, Jackson and Rogers studied the Islands-
Connection Model [49]. In this model, there are clusters of geographically close nodes (called
islands) with a geographic structure to the cost. It is assumed that the price of intra-island edge
construction and inter-island edge construction are c and C respectively, where C > c > 0.
Furthermore, if the shortest path between two nodes is higher than some value D, then they do
not receive any benefit from each other. In this setting, the nodes are the network designers and
the overall utility to node i in network G is

ui(G) =
∑

i 6=j:dG(i,j)≤D

δdG(i,j) −
∑
j:ij∈G

cij,

where in the above 0 < δ < 1. Fabrikant et al. in [27] assumes that by expending enough effort,
nodes can have edges to any other node in the network. This assumption makes it possible to

8



use the concept of Nash equilibria, as in this configuration, nodes are assumed to be independent
in their decisions. By slightly changing the distance based utility function and defining b(k) =
n− k, [27] characterizes the price of anarchy in the network formation problem .

Comparing Different Network Design Models

As one can see, the OCST and SNDP problems are similar to the distance utility formulation of
Jackson et al. To clarify the differences between these problems, consider two graphs F1 and
F2. Assume that the solution network must be a subgraph of F1, and F2 denotes the set of pairs
of nodes that wish to communicate. If F1 is the complete graph, we are searching among all
possible networks and if F2 is the complete graph, then the distances between all pairs of nodes
appear in the utility function. In Jackson’s network formation problem, F1 and F2 are both the
complete graph. In SNDP, F1 is a given graph G and F2 is the complete graph. In OCST F1

is the complete graph, but F2 is a given graph G (in OCST, graph G is a weighted graph with
L(i, j) = rij).

1.4 Multi-Layer and Interdependent Networks

A common theme in the existing works on network formation is that they focus on the construc-
tion of a single set of edges between the nodes. However, many real-world networks have an
inherently multi-layer or interdependent structure. While the former considers multiple layers of
relationships between the same set of nodes, the latter deals with networks-of-networks consist-
ing of interdependencies between different subnetworks. Figure 1.1 demonstrates the difference
between these two structures. Examples of these networks abound in both the natural world
(e.g., ecological, social and economic systems), and in engineered applications. Friendship and
professional relationships in social networks, policy influence and knowledge exchange in orga-
nizational networks, and transportation networks between a group of cities (e.g., bus, train, flight,
etc.) are just a few instances of multi-layer networks [94, 85, 48, 82, 57]. Similarly, examples
of interdependent networks include coupled communication and energy infrastructure networks,
coupled cyber and physical networks, transportation networks, and different communities of in-
dividuals in social networks joined together by ‘weak ties’ [84, 77, 42, 7, 15]. The objective of
this thesis is to study multi-layer and interdependent networks from strategic and stochastic view
points.
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Figure 1.1: (a) An interdependent network with two subnetworks G1 = (V,E1) and G2 =
(W,E2). As we can see there are interdependencies between nodes in V and nodes in the set
W . (b) A multi-layer network with two layers H1 = (V,E1) and H2 = (V,E2). These layers are
constructed on the same set of nodes V and have different structures.

1.4.1 Contributions and Outline of Thesis

In Chapter 2, we focus on the strategic approach where the goal is to investigate the formation
of multi-layer networks among a common set of nodes. In this setting, each layer represents a
different type of relationship between the nodes and is designed to maximize some utility that
depends on the topology of that layer and those of the other layers. We generalize distance-based
network formation to the two-layer setting, where edges are constructed in one layer (with fixed
cost per edge) to minimize distances between nodes that are neighbors in another layer. We show
that designing an optimal network (referred to as the best response network) in this setting is NP-
hard. Despite the underlying complexity of the problem, we characterize certain properties of
the optimal networks. We exploit these properties to determine best responses to networks with
certain specific structures. Finally, we investigate satisfaction of the nodes (as the individuals)
with the decision of the central network designer via the concept of pairwise stability. Our results
illustrate that best response networks (which are socially optimal) are not necessarily pairwise
stable.

Using our notion of the best response network, in Chapter 3 we formulate a multi-layer
network formation game where each layer corresponds to a player that is optimally choosing
its edge set in response to the edge sets of the other players. We consider utility functions that
view the different layers as strategic substitutes. By applying our results about optimal networks,
we show that players with low edge costs drive players with high edge costs out of the game,
and that hub-and-spoke networks that are commonly observed in transportation systems arise as
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Nash equilibria in this game.

In Chapter 3, we also consider a variant on the multi-layer network formation game that is
based on the classical Colonel Blotto game. We study a scenario where there is a common set of
nodes and each player in the game designs a network by purchasing a set of edges between these
nodes. We assume that players have a limited budget with which to bid on each edge and the
utility of a given set of edges to a player is a function of the resulting network. We characterize
the ranges of player budgets for which the game admits pure Nash equilibria for utility functions
that depend on the component sizes and diameter of the formed networks.

Extending our strategic multi-layer network formation analysis to the case that there are
different sets of nodes, in Chapter 4 we introduce a network design game where the objective
of the players is to design the interconnections between the nodes of two different networks
G1 and G2 in order to maximize certain local utility functions. In this setting, each player is
associated with a node in G1 and has functional dependencies on certain nodes in G2. We use a
distance-based utility for the players in which the goal of each player is to purchase a set of edges
(incident to its associated node) such that the sum of the distances between its associated node
and the nodes it depends on in G2 is minimized. We consider a heterogeneous set of players (i.e.,
players have their own costs and benefits for constructing edges). We show that finding a best
response of a player in this game is NP-hard. Despite this, we characterize some properties of the
best response actions which are helpful in determining a Nash equilibrium for certain instances
of this game. In particular, we prove existence of pure Nash equilibria in this game when G2

contains a star subgraph, and provide an algorithm that outputs such an equilibrium for any set
of players.

Finally, in Chapter 5 we analyze a model for random interdependent networks which consist
of a group of subnetworks where each edge between two different subnetworks is formed with
probability p. We investigate certain spectral and structural properties of such networks, with
corresponding implications for certain variants of consensus dynamics on those networks. We
first provide a characterization of the isoperimetric constant in terms of the inter-network edge
formation probability p. We then analyze the algebraic connectivity of such networks, and pro-
vide an asymptotically tight rate of growth of this quantity for a certain range of inter-network
edge formation probabilities. Next, we give bounds on the smallest eigenvalue of the grounded
Laplacian matrix of random interdependent networks for the case where one of the subnetworks
is comprised entirely of leader nodes. We also study a property known as r-robustness, which is
a strong indicator of the ability of a network to tolerate structural perturbations and dynamical
attacks. Our results yield new insights into the structure and robustness properties of random
interdependent networks.
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Chapter 2

Strategic Multi-Layer Network Design

In this chapter, we begin a study of strategic multi-layer network formation by generalizing dis-
tance utility network formation to the case where one layer (or network) is formed by optimizing
the distances between nodes that are neighbors in another layer (or network). As a motivating
example, consider the problem in [60], where both the physical infrastructure network and the
traffic flow network between a group of cities are studied (Figure 2.1). Interpreting traffic flow
as the weight of connection between the endpoint cities, the objective is to design an optimal in-
frastructure network between cities with respect to the given traffic flow pattern. In the simplest

Figure 2.1: Traffic flow network Gλ and physical roads network Gφ among a group of cities [60]

case, this problem can be modeled as a network formation problem with a distance-based utility
function where only the distances between specific pairs of nodes matter (i.e., those pairs with
sufficiently high traffic flow between them). We address this class of problems by first defining
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a network G1 capturing an existing set of relationships between nodes, and then studying the
formation of an optimal second network G2 based on G1. We call the optimally designed net-
work G2 with respect to G1 the best response network to G1. Distance-based utilities have also
been used to study social networks (where each node is an individual and the edges indicate re-
lationships) [46, 48] and the Internet (where each node represents a router and the edges indicate
communication links) [27]. Our formulation generalizes the settings presented in those papers
by allowing only distances between certain pairs of nodes (e.g., individuals in the social network
or routers in the Internet) to matter when evaluating the utility of the network. For instance, in
the case of the Internet or other communication networks, the reference layer G1 represents the
virtual communication network indicating which pairs of nodes wish to exchange information,
and the designed layer G2 represents the physical communication network.

While the best response networks have been completely characterized in the case where G1

is the complete network [46, 48], we show that finding a best response network with respect to an
arbitrary graph G1 is NP-hard. We characterize some useful properties of the optimal networks
that arise in this setting. These properties enable us to find best response networks with respect
to certain specific reference networks.

Finally, we investigate satisfaction of the individual nodes with the decisions of the central
network designer in the best response network. For this purpose, we generalize the notion of
“pairwise stability” to the multi-layer setting. Pairwise stability is roughly defined as the situa-
tion in which, firstly no node wants to remove any of its incident edges, and secondly it is not
beneficial for any two nodes to add an edge between them (if there is no edge between them
already). We characterize conditions under which best response networks are pairwise stable.

2.1 Two Layer Distance-Based Utilities:
Best Response Network

In the traditional distance-based network formation problem described in Section 1.3.1, the ob-
jective is to minimize the distances between every possible pair of nodes. However, in many
settings, one is only interested in minimizing distances between certain pairs of nodes. For ex-
ample, consider a communications system where each node only wishes to exchange information
with a subset of the other nodes, and the task is to design a physical network to provide short paths
between those pairs of nodes. To handle these types of scenarios, in this section we generalize
the study of distance-based network formation to a multi-layer setting. Specifically, suppose that
we have a layer (or graph) G1 = (N,E1), where the edge set E1 specifies a type of relationship
between the nodes in N . Our objective is to design another layer (or graph) G = (N,E) on the
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same set of nodes, where the utility of the graph is given by

u(G|G1) =
∑

(vi,vj)∈E1

b(dG(i, j))− c|E|. (2.1)

Note that the summation is only over edges in set E1, capturing the fact that only distances
between those pairs of nodes matter in graph G; the traditional distance utility function in (1.2)
is obtained as a special case when G1 is the complete graph.

Assume G2 = (N,E2) is a network that maximizes (2.1); we say G2 is a best response (BR)
network to G1, or equivalently, an efficient network with respect to the utility function (2.1).

Remark 2. The utility function (2.1) does not necessarily have a unique maximizer; indeed,
in many cases, there are multiple best response networks with respect to a given network, as
demonstrated by Example 1 below.

When G1 is the complete network, the best response is trivially a subgraph of G1. However,
the following example demonstrates that the best response network to a general network G1 does
not necessarily have to be a subgraph of that network.

Example 1. Consider the ring graph G1 with 6 nodes shown in Figure 2.2a. Suppose b(1) =
c+ ε, for some small constant ε > 0. Then,

1. The utility (2.1) of G1 to itself is u(G1|G1) = 6(b(1)− c) = 6ε.

2. Any subgraph of G1 with 5 edges is a path graph. This has utility 5(b(1) − c) + b(5) =
5ε+ b(5).

3. Any subgraph of G1 with k edges, where k < 5, has utility k(b(1)− c) = kε.

Thus, when b(5) > ε, the best subgraph of G1 is the path graph with the utility given above.

Now, the star graph shown in Figure 2.2b has utility 2b(1) + 4b(2) − 5c. This is better than
the path graph if 4b(2)− 3b(1) > b(5), which holds, for example, when b(2) is sufficiently close
to b(1) and b(2) > b(5). Therefore, for utility functions that satisfy this property, no subgraph of
G1 can be a BR to G1.

For certain benefit functions a star is not a BR either. The graph G3 given in Figure 2.2c has
utility 4b(1) + 2b(3) − 5c. This is better than the path graph if 2b(3) − b(1) > b(5), and better
than the star if b(3) > 2b(2) − b(1). For instance if c = 1, b(1) = 1.01, b(2) = 0.85, b(3) =
0.8, b(4) = 0.2 and b(5) = 0.1, then the graph G3 is better than the star graph or any subgraph

14



of G1, i.e., u(G3|G1) > u(G|G1) where G ⊆ G1 or G = G2. In this example, one can verify
(e.g., using a brute-force search) that G3 is in fact a BR network to G1.

It is also instructive to consider the case where b(1) = b(2) = b(3) > max{c, b(4)}. In this
case, the graphs shown in Figure 2.2b and 2.2c are both best response networks to G1 and have
higher utility than any subgraph of G1.

v1

v2 v6

v3 v5

v4

(a) G1

v1

v2 v6

v3 v5

v4

(b) G2

v1

v2 v6

v3 v5

v4

(c) G3

Figure 2.2: Illustration of potential best response networks with respect to network G1.

The above example illustrates that BR networks to an arbitrary graph G1 are very sensitive
to the relative values of the benefit function b(·) and the cost c. Indeed, the shape of the entire
benefit function can play a role in determining the best response to general graphs, whereas only
the value of b(1) and b(2) matter when G1 is the complete graph (as shown in Proposition 1).

Proposition 1 showed that finding the optimal network in the classical distance-based utility
framework can be done in polynomial time. We will now formally characterize the complexity
of finding a best response network to a given graph with generalized distance utility function
given in equation 2.1. To do this, we first cast it as a decision problem (i.e., a question to which
the answer is yes or no) as follows.

Definition 3. Best Response Network (BRN) Problem.
INSTANCE: A network G1 = (N,E1), a nonincreasing benefit function b : {1, 2, · · · , n −
1,∞} → R≥0, an edge cost c ∈ R>0 and a lower bound on utility given by r ∈ R>0.
QUESTION: For the utility function u(·) given in equation (2.1), does there exist aG = (N,E) ∈
GN such that

u(G|G1) ≥ r? (2.2)

The following theorem is one of our main results in this chapter and shows that finding a BR
with respect to an arbitrary graph with arbitrary cost and nonincreasing benefit functions does
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not have a polynomial-time solution, unless the answer to the long-standing open question of
whether P = NP is affirmative.

Theorem 1. BRN is NP-hard.

We will develop the proof of Theorem 1 over the rest of this section. We will require some
intermediate properties of best response networks, given by the following results.

2.1.1 Some Properties of Best Response Networks

Lemma 1. If G2 = (N,E2) is a BR network to G1 = (N,E1), then the number of edges in G2 is
less than or equal to the number of edges in G1. If b(1) > b(2), then G1 and G2 have an equal
number of edges if and only if G2 = G1.

Proof. We use contradiction to prove the first part. Suppose that G2 is a BR and has more edges
than G1. Then

u(G2|G1) =
∑

(u,v)∈E1

b(dG2(u, v))− c|E2|

≤ |E1|b(1)− c|E2|
< |E1|b(1)− c|E1| = u(G1|G1),

which contradicts our assumption that G2 is a BR to G1. To prove the second part, note that if
G2 = G1 then the number of edges in G2 and G1 are equal. So we only need to show that when
b(1) > b(2), if the number of edges in G2 is equal to the number of edges in G1, then G2 = G1.
If G2 6= G1, then there exists a (u, v) ∈ E1 such that dG2(u, v) ≥ 2. Thus

u(G2|G1) =
∑

(u,v)∈E1

b(dG2(u, v))− c|E2|

< |E1|b(1)− c|E1| = u(G1|G1),

contradicting the assumption that G2 is a BR to G1.

The next lemma discusses the connectivity of BR networks.

Lemma 2. Suppose that G2 is a best response network to G1 and b(1) > c. Then any two nodes
that are connected by a path in G1 will also be connected by a path in G2. Specifically, if G1 is
connected, then G2 must be connected.
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Proof. Let u and v be two nodes that are neighbors in G1. By way of contradiction assume that
there is no path between u and v in the BR network G2 = (N,E2). For G′2 = (N,E ′2) with
E ′2 = E2 ∪ {(u, v)},

u(G′2|G1)− u(G2|G1) ≥ b(1)− c > 0,

contradicting the assumption that G2 is a BR network. Now consider the case that u and v are
connected through a path in G1. Then there must be a path from u to v in G2, since we showed
that any two nodes that are directly connected in G1 remain connected in G2.

Remark 3. When b(1) = c, the above proof can be applied to show that there exists a best re-
sponse network in which any two nodes that are connected by a path inG1 will also be connected
by a path in G2 (although this does not have to be true of every best response network).

For any integer t ≥ 1, a subgraph H = (N,EH) of G1 = (N,E1) is called a t-spanner if
dH(x, y) ≤ t for all (x, y) ∈ E1, i.e., the distance between each pair of nodes that are neighbors
in G1 is not more than t in H [14]. A subgraph T = (N,ET ) of the graph G1 that is both a
t-spanner and a tree is called a tree t-spanner. The following important lemma characterizes a
BR to graphs that have a 2-spanner.

Lemma 3. Suppose graph G1 = (N,E1) has a spanning forest1 F = (N,EF ) that is also a
2-spanner. Assume that b(1)− b(2) ≤ c ≤ b(1). Then F is a BR to G1.

Proof. Assume that G1 has m components where m ≥ 1. Since F is a spanning forest, |EF | =
|N | −m. Using the fact that dF (x, y) ≤ 2 for all (x, y) ∈ E1, we have

u(F |G1) = (|N | −m)(b(1)− c) + (|E1| − (|N | −m))b(2). (2.3)

Now assume thatH = (N,EH) is a best response network toG1 such that any two nodes that are
connected in G1 are also connected in H . The existence of such a BR network is guaranteed by
Lemma 2 and Remark 3. Thus |EH | ≥ |N |−m. Also by Lemma 1, we have |EH | ≤ |E1|. Since
at most |EH | pairs of neighbors in G1 can be directly connected in H , the remaining |E1| − |EH |
pairs of neighbors in G1 will be at least a distance of two away from each other in H . Thus we
have

u(H|G1) ≤ |EH |(b(1)− c) + (|E1| − |EH |)b(2) (2.4)
= (|N | −m)(b(1)− c) + (|EH | − (|N | −m))(b(1)− c) + (|E1| − |EH |)b(2)

≤ (|N | −m)(b(1)− c) + (|E1| − (|N | −m))b(2)

= u(F |G1).

Thus F is a BR to the network G1.
1Whenever G1 is a connected network, by a spanning forest of G1 we mean a spanning tree.

17



The next lemma provides lower and upper bounds on the utility of BR networks when b(1)−
b(2) ≤ c ≤ b(1).

Lemma 4. Suppose that b(1)− b(2) ≤ c ≤ b(1) and G2 = (N,E2) is a BR network with respect
to an arbitrary connected network G1 = (N,E1). Then

|E1|(b(1)− c) ≤ u(G2|G1) ≤ (|N | − 1)(b(1)− c) + (|E1| − |N |+ 1)b(2). (2.5)

Proof. The lower bound follows from the fact that u(G2|G1) ≥ u(G1|G1) = |E1|(b(1) − c),
by virtue of G2 being a BR network. For the upper bound, note that since b(1) ≥ c, G2 can be
assumed to be a connected graph (by Lemma 2 and Remark 3) and thus |E2| ≥ |N |−1. The rest
of the proof follows the same procedure as in the proof of Lemma 3 with m = 1.

Remark 4. The inequalities given in the above lemma are sharp. As we will show later, a BR to
a tree is the same tree if b(1) ≥ c. For a tree, the left and right hand sides of inequality (2.5) are
equal. Also, for a graph G1 with a tree 2-spanner T , we know that T is a BR to G1 by Lemma 3
with utility equal to the right hand side of inequality (2.5).

2.1.2 Proof of NP-Hardness of the BRN Problem

We now return to the BRN problem (Definition 3) and the claim of NP-hardness given in The-
orem 1. To prove this theorem, we will construct a reduction from the Tree t-spanner Problem
[14], defined below.

Definition 4. Tree t-Spanner (TtS) Problem.
INSTANCE: A connected graph G = (N,E) and a positive integer t.
QUESTION: Does G have a tree t-spanner, i.e., a subgraph T = (N,ET ) such that |ET | =
|N | − 1 and dT (x, y) ≤ t for all (x, y) ∈ E?

The TtS problem is in P for t = 2, but NP-complete for all t ≥ 4; the complexity of the
problem for t = 3 is still unknown [14]. We are now in place to prove Theorem 3.

Proof of Theorem 1. We will construct a reduction from the TtS problem to the BRN problem,
which will then imply that the BRN problem is NP-hard. Consider an instance of the TtS problem
with graph G = (N,E) and t = 4. Any spanning tree of G with |N | ≤ 5 is a tree 4-spanner
which is easy to find. Thus, we assume that |N | ≥ 6. Define the corresponding instance of the
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BRN problem as follows. The network G1 = (N,E1) is the same as the graph G, i.e., G1 = G.
The benefit function b(·) and edge-cost c are chosen to satisfy

b(1) > b(2) = b(3) = b(4) > b(5),

b(1)− b(2) < c < b(1).
(2.6)

For example c = 2, b(1) = 3, b(2) = b(3) = b(4) = 2 and b(k) = 0 ∀k ≥ 5 satisfies these
conditions. Finally set

r = (|N | − 1)(b(1)− c) + (|E1| − (|N | − 1))b(2). (2.7)

Clearly we can construct the above BRN instance in polynomial time. Now assume that the
answer to the instance of the TtS problem is “yes”, i.e., graph G has a tree 4-spanner T =
(N,ET ). This means that T is a subtree of G1 and dT (x, y) ≤ 4 for all (x, y) ∈ E1. Thus we
have that

u(T |G1) =
∑

(x,y)∈E1\ET

b(dT (x, y)) + (|N | − 1)(b(1)− c)

= (|E1| − (|N | − 1))b(2) + (|N | − 1)(b(1)− c)
= r.

Note that we used the fact that b(2) = b(3) = b(4) to go from the first line to the second line in
the above equation. Therefore, the answer to the defined instance of the BRN problem is also
“yes”.

To complete the proof, we have to show that if the answer to the constructed instance of the
BRN is “yes”, then the answer to the instance of the TtS is “yes”. In other words, we have to
show that if there exists a graph G2 = (N,E2) such that

u(G2|G1) =
∑

(x,y)∈E1

b(dG2(x, y))− c|E2| ≥ r,

where b(·) and c satisfy (2.6) and r is given by (2.7), then G1 has a tree 4-spanner. We claim that
any G2 with utility at least r must be a tree 4-spanner of G1.

Assume that G2 = (N,E2) is a graph with u(G2|G1) ≥ r. Since r is equal to the upper
bound of the utility of the BR (by Lemma 4), G2 must be a best response to G1. Since b(1) > c,
by Lemma 2 we know that G2 is a connected graph. Therefore, |E2| ≥ |N | − 1. First consider
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the case that |E2| > |N | − 1. Then similar to equation (2.4), we have that

u(G2|G1) ≤ |E2|(b(1)− c) + (|E1| − |E2|)b(2)

= (|N | − 1)(b(1)− c) + (|E2| − (|N | − 1))(b(1)− c) + (|E1| − |E2|)b(2)

< (|N | − 1)(b(1)− c) + (|E2| − (|N | − 1))b(2) + (|E1| − |E2|)b(2)

= (|N | − 1)(b(1)− c) + (|E1| − (|N | − 1))b(2) = r,

which is a contradiction. Thus consider the case that |E2| = |N | − 1, i.e., G2 is tree. Denoting
|E2 ∩ E1| = γ, we have

u(G2|G1) = γ(b(1)− c)− (|N | − 1− γ)c+
∑

(x,y)∈E1\E2

b(dG2(x, y)) (2.8)

≤ γ(b(1)− c)− (|N | − 1− γ)c+ (|E1| − γ)b(2)

= γ(b(1)− c) + (|N | − 1− γ)(b(2)− c) + (|E1| − (|N | − 1))b(2).

If γ < |N | − 1, since b(1)− c > b(2)− c, by equation (2.8) we have that

u(G2|G1) < γ(b(1)− c) + (|N | − 1− γ)(b(1)− c) + (|E1| − (|N | − 1))b(2) = r,

which is again a contradiction. Therefore, |E2 ∩ E1| = γ = |N | − 1. This means that G2 is a
subtree of G1. Now if there exists (u, v) ∈ E1 such that dG2(u, v) > 4, then we have

u(G2|G1) = (|N | − 1)(b(1)− c) +
∑

(x,y)∈E1\E2

b(dG2(x, y))

< (|N | − 1)(b(1)− c) + (|E1| − (|N | − 1))b(2)

= r,

where the last inequality follows from the fact that b(2) = b(3) = b(4) > b(d) for all d > 4.
Therefore, for all (u, v) ∈ E1, dG2(u, v) ≤ 4 which means that G2 must be a tree 4-spanner for
the graph G1. Thus the answer to the instance of the TtS problem is “yes”. This shows that the
NP-hard problem TtS (for t = 4) is polynomial-time reducible to BRN, and therefore BRN is
NP-hard.

Remark 5. Deriving approximation algorithms with provable performance guarantees is a natu-
ral approach to dealing with the inherent complexity of finding best response networks; a deeper
investigation of the connections between t-spanners and the best response network design prob-
lem might lead to such algorithms. This is left as a venue for future work.
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There are certain NP-hard optimization problems (e.g., minimum vertex cover) whose solu-
tions can be approximated to within a constant factor by simple greedy algorithms [19]. The
following example considers a natural greedy algorithm where edges are added or removed one
at a time, and shows that this algorithm can produce results that are arbitrarily far away from the
optimal network.

Example 2. Consider a greedy algorithm where at each step, we add or remove a link that
provides the highest increase in the utility until no further improvements can be made. The
following scenarios illustrate the pitfalls of such an algorithm.

Consider a reference network G1. Suppose we attempt to build a BR network by starting
with an empty network G and repeatedly adding edges. If b(1) < c, then adding any single
edge to G will result in negative utility, and thus the algorithm stops with the empty network.
Since there can exist nonempty BR networks when b(1) < c whose utility is unbounded in n
(e.g., see Proposition 1), the network produced by the above algorithm can be arbitrarily bad in
comparison to the true BR network.

Now suppose that we attempt to build a BR network by starting with the reference network
G1 and removing edges one at a time. Consider the graph G1 depicted in Figure 2.3a and define
c = 1, b(1) = n−1

n−2
, b(2) = 0.5, b(k) = 0 for 3 ≤ k ≤ n− 1.

Starting withG1, removing any of the edges increases the utility by b(2)−(b(1)−c). Thus any
edge is a candidate for removal. Consider removing the edge (v1, v2) which results in network
G2. Now no further improvements are possible by adding or removing a single edge. Next,
consider network G3 shown in the Figure 2.3c. As we will show in Proposition 3 in Section 2.3,
G3 is a best response network to G1. We have

lim
n→∞

u(G3|G1)

u(G2|G1)
= lim

n→∞

(n− 1)(b(1)− c) + (n− 2)b(2)

2(n− 2)(b(1)− c) + b(2)
=∞.

Note that same conclusion is reached even if we start with the complete graph, i.e., we can
remove the edges in such a way that we end up in network G2. Thus this greedy algorithm can
perform arbitrarily poorly in comparison to the optimal solution.

2.1.3 Comparison to Other Network Design Problems

Here, we compare the BRN problem to two canonical network design problems (defined in
Chapter 1) that also attempt to minimize distances between pairs of nodes: the Optimal Com-
munication Spanning Tree (OCST) problem introduced in [45], and the Simple Network Design
problem (SNDP) introduced in [53].
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Figure 2.3: Performance of a greedy algorithm. Graph G1 in (a) is the reference network. Graph
G2 in (b) is the output of the greedy algorithm discussed above. GraphG3 in (c) is a best response
to G1.

The relationships between the BRN, OCST and SNDP problems are as follows.

• The OCST and SNDP problems explicitly constrain the number of edges in the designed
network, whereas the BRN problem includes the cost of edges in the utility function.

• The SNDP problem requires the designed network to be a subgraph of another given net-
work, whereas the BRN and OCST problems place no such constraint.
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• The objective of the SNDP problem is to minimize the sum of distances between all pairs of
nodes, whereas the BRN and OCST problems allow the objective function to only depend
on distances between selected pairs of nodes (the OCST problem does this by setting rij =
0 for those pairs that do not wish to communicate).

Despite the apparent similarities between the BRN problem and the OCST problem, Theorem 1
shows that the BRN problem is NP-hard, even though the OCST problem can be solved in
polynomial-time. This increase in complexity is a byproduct of the additional flexibility af-
forded by the general nonincreasing benefit function in the BRN problem (as opposed to the
scaled distances in the utility function for the OCST problem), which allows it to capture the
tree-t-spanner problem as a special case.

2.1.4 Possible Extensions of the BRN Problem

There are various extensions for the BRN problem that can be considered. For instance, it is
possible to consider a set of weights wij for the benefits produced from connections between
different pairs of nodes (i, j) ∈ E1. Formally, we can generalize the utility function (2.1) as

uw(G|G1) =
∑

(vi,vj)∈E1

wijb(dG(i, j))− c|E|. (2.9)

We can also define a version of the problem with an edge-dependent cost, i.e., considering a
utility function with the form

uc(G|G1) =
∑

(vi,vj)∈E1

b(dG(i, j))− cij|E|. (2.10)

Theorem 1 immediately implies that the above versions of the BRN problem are also NP-hard.

Another interesting variant of the BRN problem is by allowing a fixed number of edges for
the network G = (N,E) in Definition 3, i.e., adding the condition |E| = k. Through a proof
similar to the proof of Theorem 1, we can show that this version of the BRN problem is also
NP-hard (by setting k = |N | − 1 in the proposed reduction from the 4-spanner problem).

In the next section, we will characterize further properties of BR networks; these will allow us
to find BR networks with respect to certain specific classes of graphs, which in turn will allow us
to formulate and study a multi-layer network formation setting with multiple network designers.
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2.2 Further Properties of Best Response Networks

We start with the following useful result describing the relationship between the components of
BR networks and the reference network.

Lemma 5. Let G2 be a BR network to G1, and suppose that G2 is not connected. Let G2i =
(Ni, E2i), i = 1, . . . , k, be the components of G2. Let G1i = (Ni, E1i), i = 1, 2, . . . , k, be the
subgraphs induced by vertex sets Ni on G1. Then network G2i must be a BR network to G1i for
i = 1, 2, . . . , k.

Proof. Consider the utility of network G2 with respect to G1. Since there are no edges be-
tween the components in G2, for any (u, v) ∈ E1 with u and v in different components of G2,
dG2(u, v) = ∞. Thus

∑
(u,v)∈E1

b(dG2(u, v)) =
∑k

i=1

∑
(u,v)∈E1i

b(dG2i
(u, v)), and the utility

function can be written as

u(G2|G1) =
∑

(u,v)∈E1

b(dG2(u, v))− c|E2|

=
k∑
i=1

 ∑
(u,v)∈E1i

b(dG2i
(u, v))− c|E2i|


= u(G21|G11) + · · ·+ u(G2k|G1k).

Now, if G2i is not a BR to G1i for some i ∈ {1, 2, . . . , k}, replace it with a BR. This will increase
the utility, contradicting the fact that G2 is a BR.

The following lemma considers the case when there are isolated nodes in G1.

Lemma 6. Let G1 = (N,E1) and suppose v ∈ N is an isolated node. Then v is isolated in any
BR to G1.

Proof. Let G2 = (N,E2) be a BR network with respect to G1, and suppose by way of contradic-
tion that v is not isolated in G2. If v is a leaf node in G2 (i.e., it has a single neighbor), then the
edge incident to v is not used in any of the shortest paths between nodes in N \ {v}. Removing
that edge increases the utility of G2 by c, contradicting the fact that it is a BR.

Now suppose that v has two or more neighbors in G2, and denote those neighbors by the set
J = {vj1 , vj2 , . . . , vjl} ⊆ N \ {v} with l ≥ 2. Construct a new network G3 = (N,E3) with

E3 = (E2 \ {(v, vj1), (v, vj2), . . . , (v, vjl)}) ∪ {(vj1 , vj2), (vj1 , vj3), . . . , (vj1 , vjl)}, (2.11)
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i.e., we remove the l edges from v to its neighbors and add edges from vj1 ∈ J to the other nodes
in J . This results in a net removal of at least one edge from the graph. Suppose that the shortest
path between some pair of nodes in N \ {v} passed through v in G2; the shortest path now
passes through vj1 in G3, and is at least as short as the original shortest path. Thus u(G3|G1) >
u(G2|G1) which contradicts the assumption that G2 is a BR network to G1. Therefore, v must
be an isolated node in G2.

The properties described above are independent of the relative values of the benefit function
and edge costs. The following set of results provide more details of the BR networks for certain
ranges of benefits and costs.

Lemma 7. Let G1 = (N,E1) be an arbitrary graph.

1. If b(1)− c > b(2), then the unique BR network to G1 is G2 = G1.

2. If b(1) < c, then G1 is not a BR network to G1, unless G1 is the empty network.

3. Define

α , max
2≤|S|,S⊆N

|EG1(S, S)|
|S| − 1

− 1, (2.12)

where EG1(S, S) denotes the set of edges in G1 that have both of their endpoints in the set
S, i.e., EG1(S, S) = E1 ∩ (S × S). If c > b(1) + αb(2), then the unique BR network with
respect to G1 is the empty network.

Proof. In order to prove the first property, assume by way of contradiction that G2 is a BR
network and G2 6= G1. Since b(1) > b(2), by Lemma 1, we know that the number of edges in G2

is less than in G1. So there are vertices u and v such that (u, v) ∈ E1 and dG2(u, v) > 1. Adding
the edge (u, v) to E2 increases the utility by at least b(1) − c − b(2) > 0 which contradicts the
assumption that G2 6= G1 is a BR network. Therefore, the BR network must be equal to G1.

For the second property note that if G2 = G1 6= φ, then u(G2|G1) = |E1|(b(1) − c) < 0
due to the assumption that b(1) < c. Thus it must be the case that G2 6= G1, or G1 is the empty
network.

Finally in order to prove the third property, consider an arbitrary graph G1 = (N,E1) with
n nodes. By way of contradiction assume that G2 6= φ is a BR network with respect to G1. Let
G21 = (N1, E21) be a component of network G2 with 1 < |N1| ≤ n. By Lemma 5, we know
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that G21 must be a BR to the subgraph induced by the node set N1 on G1, which we denote by
G11 = (N1, E11). Thus

u(G21|G11) ≤ |E21|(b(1)− c) + (|E11| − |E21|)b(2)

= |E21|(b(1)− c+ αb(2)) + (|E11| − |E21|(1 + α))b(2)

= |E21|(b(1)− c+ αb(2)) + |E21|
(
|E11|
|E21|

− (1 + α)

)
b(2). (2.13)

Due to the assumption that c > b(1) + αb(2), the first term in (2.13) is negative. Also, we have
that

|E11|
|E21|

≤ |E11|
|N1| − 1

=
|EG1(N1, N1)|
|N1| − 1

≤ max
2≤|S|,S⊆N

|EG1(S, S)|
|S| − 1

= α + 1.

The first inequality above follows from the fact that G21 is a component and thus has at least
|N1|−1 edges. Thus the second term in equation (2.13) is nonpositive. Therefore, u(G21|G11) <
0 which is a contradiction. As a result G21 (and thereby G2) must be the empty network.

The parameter α is a measure of the edge density of the underlying graph, and thus the
threshold to have the empty network as the best response network increases as the underlying
graph becomes more dense. The following example illustrates the implication of α for various
graphs.

Example 3. In the following, we define |N | = n.

• Assume that G1 = (N,E1) is the complete graph. Then |EG1(S, S)| =
(|S|

2

)
for any

(non-singleton) S ⊆ N and thus α = n−2
2

in equation (2.12). This means that the BR
to the complete graph is the empty graph for c > b(1) + n−2

2
b(2), yielding part (iii) of

Proposition 1 (obtained in [48]) as a special case of Lemma 7.

• Suppose that G1 = (N,E1) is a tree. Since any induced subgraph of a tree is a forest
(it is a tree when the subgraph is connected), we have |EG1(S, S)| ≤ |S| − 1 for any
non-singleton S ⊆ N . Thus

|EG1(S, S)|
|S| − 1

− 1 ≤ 0 ∀S ⊆ N, |S| ≥ 2.

This means that α = 0 (which happens for any S that induces a connected subgraph on
G1). Therefore, we can conclude that the BR network to a tree is the empty network when
c > b(1).
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• Consider a cycle graph G1 = (N,E1) with n nodes.2 Any induced subgraph of G1 on a
non-singleton node set S ⊂ N is an acyclic graph and thus |EG1(S, S)| ≤ |S| − 1. For
S = N , we have |EG1(N,N)| = n. Thus α = 1

n−1
, and the BR network to G1 is the empty

network for c > b(1) + 1
n−1

b(2).

Remark 6. Note that when b(2) = 0, Lemma 7 indicates that for b(1) > c, G1 is a unique BR
to itself (for any network G1), and when b(1) < c, the empty network is a unique best response
(both G1 and the empty network are best responses with utility 0 when b(1) = c). Thus, in the
rest of this section, we will assume that b(2) > 0.

In the next lemma, we consider the case that we have nodes with degree one in the graph.

Lemma 8. Let G1 = (N,E1), and suppose v ∈ N is a leaf node. Define the induced subgraph
of G1 under the node set N \ {v} as G11 = (N \ {v}, E11) (i.e., the graph obtained by removing
node v and its incident edge). Then a BR to G1 can be obtained by first finding a BR to G11

and then adding v as an isolated node if b(1) ≤ c, or adding v together with a single edge to its
neighbor in G1 if b(1) ≥ c.

Proof. Let the neighbor of v in G1 be denoted by u, and assume that network H = (N,EH) is a
BR to network G1. We reason as we did in the proof of Lemma 6, with a few additional details.

Consider the case that b(1) ≤ c. Suppose that node v is not isolated in H , and let J =
{vj1 , vj2 , . . . , vjl} ⊆ N \ {v} be the neighbors of v in H . If l = 1 (i.e., v has a single neighbor in
H), the edge (v, vj1) is not used in any of the shortest paths between nodes inN \{v}. Removing
that edge saves a cost of c, and loses at most a benefit of b(1) (due to the loss of the path from v
to u in H). Since b(1) ≤ c, the resulting graph has utility at least as large as H .

Now suppose l > 1. Construct the new network H1 = (N,EH1) with edge set

EH1 , (EH \ {(v, vj1), (v, vj2), . . . , (v, vjl)}) ∪ {(vj1 , vj2), (vj1 , vj3), . . . , (vj1 , vjl)}. (2.14)

In other words, we remove all of the incident edges from v inH and add edges from each node in
J \{vj1} to vj1 . This saves at least one edge, and dH1(x, y) ≤ dH(x, y) for all (x, y) ∈ E1. Thus,
the only drop in utility in graph H1 arises from the loss of the path from node v to u. Again,
since b(1) ≤ c, the graph H1 has utility at least equal to the utility of the network H and thus
H1 is also a best response. The above two cases show that when b(1) ≤ c, there exists a best
response where the leaf node v is isolated.

Now consider the case where b(1) ≥ c. Then by Lemma 2 and Remark 3, there exists
a BR network H = (N,EH) containing a path from v to u. If v is a leaf node in H , it is

2A cycle graph with n nodes consists of only one cycle of length n.
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straightforward to show that there exists a BR network H ′ where v is connected to u. Thus
suppose v is connected to the node set J = {vj1 , vj2 , . . . , vjl} ⊆ N \ {v} in H , with l ≥ 2.
Construct a new graph H2 = (N,EH2), where EH2 , EH1 ∪ {(v, u)} with EH1 as defined in
(2.14). Arguing as above, the utility of H2 is at least as high as the utility of H , and thus H2

is a BR to G1. Since the edge (v, u) cannot be in the shortest path between any pair of nodes
in N \ {v}, we see that the subgraph of H2 induced by N \ {v} must be a best response to the
corresponding subgraph of G1. This proves the result.

The above lemma provides the following method to simplify the task of finding a best re-
sponse network. Given a graph G1, we recursively remove nodes of degree 1 until we are left
with a graph where all nodes have degree two or larger (this is known as peeling the graph, and
the resulting subgraph is known as a 2-core [68]). A best response to the 2-core can then be
found using whatever means necessary, and then the removed nodes can be recursively added
back as isolated nodes (if b(1) ≤ c), or with the single edge that was removed (if b(1) ≥ c). This
process is illustrated in the following example.

Example 4. Consider the network G1 shown in Figure 2.4a. Suppose that

b(1) = 1.01, b(2) = 0.85, b(3) = 0.8, b(4) = 0.2, b(5) = 0.1

b(k) = 0 ∀k ≥ 6

c = 1.

The are 2300 possible candidates for best response to G1. By Lemma 1, we can decrease the
number of candidates to 33554432. However, finding a BR by brute-force search will still take
hours.

We use Lemma 8 to simplify the search for a best response network to G1. The first step is to
remove all of the leaf nodes (colored black) from G1; this brings us to a new network containing
only the gray and white nodes. Recursively removing leaf nodes, we reach the cycle network
containing the white nodes; this is the 2-core of graph G1. A best response to this cycle for the
above edge cost and benefit function was found in Example 1 to be the network in Figure 2.2c.
Now since b(1) > c, we can add the leaf nodes that we removed in each step, leading to the BR
network G2 shown in Figure 2.4b.

2.3 Best Responses to Specific Networks

We will now apply the above results to characterize best responses to acyclic networks and net-
works with a star subgraph. The latter models, for example, sensor or communication networks
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(a) Network G1

(b) Network G2

Figure 2.4: Finding a best response network to G1 using Lemma 8. The leaf nodes (starting with
the black nodes) are recursively removed fromG1 until only the cycle containing the white nodes
remains. A best response to the cycle is then found and the other nodes are recursively added
back to obtain the best response network G2.

where one or more base stations or fusion centers wish to communicate with all nodes, while the
other nodes only need to communicate locally amongst themselves.

Proposition 2. Let G1 = (N,E1) be a forest.

• If b(1) < c, the empty network is the unique BR to G1.

• If b(1) > c, then G2 = G1 is a BR network to G1.

• If b(1) = c, the empty network and G2 = G1 are both BR networks to G1.

• For b(1) > max{b(2), c}, the unique BR to G1 is G2 = G1.
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Proof. When b(1) < c, we use part 3 of Lemma 7. Following the same argument as in Example 3
for trees, we have α = 0 for G1. Thus the unique BR network to a forest is the empty network
when b(1) < c.

For b(1)− b(2) > c, the unique best response to any network is the same network by the first
part of Lemma 7. For b(1) − b(2) ≤ c ≤ b(1), note that G1 is a 2-spanner forest of itself, and
thus G1 is a BR to itself by Lemma 3, proving the second statement. Since this BR has a utility
of zero when b(1) = c, the empty network is also a BR for this value of c, proving the third
statement.

Finally, we prove the uniqueness of the BR when b(1) > max{b(2), c}. IfG1 has r connected
components, then |E1| = |N | − r. By Lemma 2, we must have |E2| ≥ |N | − r. By Lemma
1, we know that |E2| ≤ |E1| = |N | − r. Thus |E2| = |E1| and since b(1) > b(2), we have
G2 = G1.

Proposition 3. Let G1 = (N,E1) be a graph that has a star subgraph centered at node v ∈ N .

• If b(1)− b(2) > c, then G1 is the unique BR to G1.

• If b(1)− b(2) ≤ c ≤ b(1), then the star network centered at node v is a BR network to G1.

• If b(1) ≤ c, one of the following networks is a BR to G1:

1. A star network on N with center at node v.

2. A network where one component is a star and all other components are isolated
nodes.

3. The empty network.

Proof. The first statement is a direct result of Lemma 7.

In order to prove the second statement we use Lemma 3. Let Gs be the star network centered
at node v. Since Gs is a 2-spanner tree of G1, it is a BR to G1.

Next, we prove the third statement. Define Gs as the star network centered at node v. By
equation (2.1), we have

u(Gs|G1) = (|N | − 1)(b(1)− c) + (|E1| − (|N | − 1))b(2). (2.15)

Now assume that G2 = (N,E2) is a BR network. Using the same argument as in equation (2.4),
we have

u(G2|G1) ≤ |E2|(b(1)− c) + (|E1| − |E2|)b(2). (2.16)

30



Using equations (2.15) and (2.16) we obtain

u(Gs|G1)− u(G2|G1) ≥ (|E2| − (|N | − 1))(b(2)− b(1) + c). (2.17)

According to the assumption of the Proposition, c − b(1) ≥ 0 and thus the right hand side of
equation (2.17) is nonnegative for all |E2| ≥ |N | − 1. Therefore, the utility of Gs with respect to
G1 is as high as any other connected network.

Thus assume thatG2 is a non-empty disconnected network. Suppose that it has γ components
G2k = (Nk, E2k) for k ∈ {1, 2, · · · , γ}. Denote by G1k = (Nk, E1k), k ∈ {1, 2, · · · , γ}, the
subgraphs induced byNk onG1. Without loss of generality, let v ∈ N1. Then, sinceG11 contains
a star subgraph (centered on v), andG21 is a BR toG11 (by Lemma 5) and connected, we can take
it to be a star by the above argument. Next, we aim to show that there exists a BR (constructed
based on G2) such that all of the components are isolated nodes except G21.

Suppose that some component of G2 (not containing v) has more than one node and take
this component to be G22 without loss of generality. We know that G22 is a BR to G12 based on
Lemma 5. Arguing as in equation (2.4), we have

u(G22|G12) ≤ |E22|(b(1)− c) + (|E12| − |E22|)b(2). (2.18)

If G22 has zero utility, we can replace it by the empty network and subsequently, we have the
result. Thus assume by way of contradiction that it has some positive utility. Therefore, the right
hand side of equation (2.18) is positive. Since G22 is a connected network, |E22| ≥ |N2| − 1.
Hence

|E12| − |E22|
|E22|

≤ |E12| − (|N2| − 1)

|N2| − 1
≤
(|N2|

2

)
− (|N2| − 1)

|N2| − 1
< |N2| − 1. (2.19)

Using the assumption that the right hand side of inequality (2.18) is positive and by inequality
(2.19), we have that

0 < |E22|(b(1)− c) + (|E12| − |E22|)b(2)

= |E22|
(

(b(1)− c) +
|E12| − |E22|
|E22|

b(2)

)
< |E22| (b(1)− c+ (|N2| − 1)b(2)) .

Now consider a graph Ĝ2 obtained by removing all edges of G22 and connecting all of its nodes

31



to node v. Since b(1)− c+ (|N2| − 1)b(2) > 0 we have,

u(Ĝ2|G1) ≥
∑
i 6=2

u(G2i|G1i) + |N2|(b(1)− c) + |E12|b(2)

>
∑
i 6=2

u(G2i|G1i) + |N2|(b(1)− c) + |E12|b(2)− (b(1)− c+ (|N2| − 1)b(2))

=
∑
i 6=2

u(G2i|G1i) + (|N2| − 1)(b(1)− c) + (|E12| − (|N2| − 1))b(2), (2.20)

where the first inequality follows from the fact that the induced subgraph of N1 ∪N2 on Ĝ2 is a
connected network and we neglect the benefit (if any) from indirect connections between nodes
in N1 \ {v} and N2. The second term in the first inequality captures the direct benefits and costs
of the |N2| edges from nodes in N2 to v, and the third term captures the benefits due to each pair
of nodes in N2 having a distance of 2 from each other in Ĝ2 (via v). Next, note that

u(G22|G12) ≤ |E22|(b(1)− c) + (|E12| − |E22|)b(2)

= (|N2| − 1)(b(1)− c) + (|E22| − (|N2| − 1))(b(1)− c) + (|E12| − |E22|)b(2)

≤ (|N2| − 1)(b(1)− c) + (|E22| − (|N2| − 1))b(2) + (|E12| − |E22|)b(2)

= (|N2| − 1)(b(1)− c) + (|E12| − (|N2| − 1))b(2). (2.21)

Substituting inequality (2.21) in inequality (2.20), we have that

u(Ĝ2|G1) >
∑
i 6=2

u(G2i|G1i) + (|N2| − 1)(b(1)− c) + (|E12| − (|N2| − 1))b(2)

≥
∑
i 6=2

u(G2i|G1i) + u(G22|G12) = u(G2|G1).

However this is a contradiction to the assumption thatG2 is a BR toG1. Thus all of the nonempty
components ofG2 (exceptG21) must have zero utility and therefore, we can replace each of them
by the empty network.

2.4 Pairwise Stability

The objective of this section is to study the satisfaction of the individual nodes in the network
with the decision of the central designer (that chooses the best response network). Specifically,
let G1 = (N,E1) be a given graph, and let U denote the set of all possible utility functions
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u(G2|G1) for graph G2 based on G1. For each vi ∈ N , define the allocation rule ui(G2, G1, u) :
GN ×GN ×U → R specifying the amount of utility that we allocate to player i from the overall
utility generated by the formed networkG2. For simplicity, we will use the notation ui(G2) when
G1 and u are fixed.

For a given best response graph G2 and individual utility functions ui, it may be the case that
a certain node can improve its own utility by removing one or more of its incident edges in G2,
or by adding additional edges from itself to other nodes. As in [48], we assume any node can
remove any of its incident edges unilaterally, but that adding an edge to another node requires
the consent of that node. This motivates the following definition of pairwise stability of a given
network [48]. In this definition, when (vi, vj) /∈ G, G+ ij denotes the graph obtained by adding
an edge between vi and vj in G. Similarly, G− ij represents the graph obtained by deleting the
edge (vi, vj) when (vi, vj) ∈ G.

Definition 5 ([48]). A graph G = (N,E) is said to be pairwise stable if

• ∀(vi, vj) ∈ E, ui(G) ≥ ui(G− ij) and uj(G) ≥ uj(G− ij), and

• ∀(vi, vj) /∈ E, if ui(G+ ij) > ui(G) then uj(G+ ij) < uj(G).

The graph is pairwise unstable if it is not pairwise stable.

In words, pairwise stability of a network corresponds to the situation where no node has any
incentive to change any (one) of its connections in the network. This is a modification of the
notion of a Nash equilibrium in network formation, capturing the concept of negotiation and
agreement between the endpoints prior to forming the edge. Various versions of this notion have
been studied in the network formation literature [46, 9, 47, 4, 44].

We now investigate the pairwise stability properties of best response networks that we char-
acterized in the previous section. Consider the allocation rule

ui(G2|G1) =
1

2

∑
(vi,vj)∈E1

b(dG2(vi, vj))−
c

2
degi(G2), (2.22)

where degi(G) is the degree of node vi in graph G. Note that the total utility (2.1) satisfies
u(G2|G1) =

∑
i∈N ui(G2|G1) and thus this allocation rule is budget balanced [39].

It is not hard to show that for any vi, vj ∈ N where G2 = (N,E2), if (vi, vj) /∈ E2, then it
would not be beneficial for at least one of the nodes vi or vj to add the edge (vi, vj) to the network
G2. By way of contradiction assume that ui(G2 + ij) ≥ ui(G2) and uj(G2 + ij) ≥ uj(G2) with
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one of the inequalities strict. Then, ui(G2 + ij)+uj(G2 + ij) > ui(G2)+uj(G2). However, this
means that u(G2 + ij|G1) > u(G2|G1) which contradicts the assumption that G2 is the optimal
network. This immediately implies that if the empty network is the best response to a graph, it is
pairwise stable. For a general graph, to conclude that the best response network G2 is pairwise
stable, we also need to show that removing any of the edges from network G2 is not beneficial
for any of its endpoints. However, this is not true in general. As an example, consider Figure
2.2c, where the edge (v1, v4) in G3 is only useful for connecting nodes other than its endpoints.
This networkG3 is not stable, since both nodes v1 and v4 could improve their utility by removing
this edge.

The following result provides a condition under which the best response network obtained
from solving the optimization problem (2.1) is pairwise stable with respect to the allocation rule
(2.22).

Proposition 4. If G2 = G1 is a best response network with respect to the network G1, then G2 is
pairwise stable.

Proof. As argued above, adding an edge is not beneficial to any node. Thus it suffices to show
that removing any of the edges is unrewarding for both of its endpoints. Since G2 = G1, edge
(vi, vj) is only useful for the connection between nodes i and j. So if it is beneficial for one of the
endpoints i or j to sever the link (vi, vj), it is also beneficial for the other endpoint. Consequently,
removing the edge (vi, vj) increases the utility of G2. This contradicts the fact that G2 = G1 is a
best response to G1.

Remark 7. Note that the above result encompasses cases where G1 is an arbitrary network and
b(1)− c > b(2) (by Lemma 7), and where G1 is a forest (by Proposition 2).

2.5 Summary

In this chapter, we started by strictly generalizing the distance-based utility function to design a
network based on another network. We called the outcome of this network design procedure the
“Best Response Network”. We showed that the problem of finding a best response network with
respect to an arbitrary network is NP-hard. Nevertheless, we characterized certain properties of
best response networks, and found the optimal networks for certain cases of the reference graphs.
Through an example, we showed that a natural greedy algorithm can produce solutions that are
arbitrarily far from the optimal solution. In the last section of this chapter, we studied satisfaction
of the nodes as the individuals with the decision of the central designer. We used the notion of
pairwise stability to investigate whether nodes wish to make any changes in their incident edges.
We provided an example to show that best response networks are not necessarily pairwise stable.
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Chapter 3

Multi-Layer Network Formation Game

Using the notion of the best response network that we developed in the previous chapter, here we
consider a scenario with multiple network designers, each of whom is building a different layer of
the network. An example of this is when multiple transportation companies build their individual
service networks among a group of cities, and each company prefers to provide service between
pairs of cities that are not already covered by other companies. We capture these scenarios by
defining a non-cooperative multi-layer network formation game where each player corresponds
to a specific layer of the network. We develop a notion of distance-based multi-layer network
formation based on strategic substitutes, where the presence of an edge in one layer makes it less
desirable to have that edge in another layer. Despite the complexity of calculating best response
networks, we characterize the Nash equilibrium networks that arise in this setting. In particular,
we show that players with low costs for building edges drive out players that have relatively high
costs, and that our framework gives rise to the “hub-and-spoke” networks commonly seen in
various transportation systems [82].

As an alternative multi-layer network formation setting, we consider the case where the play-
ers have finite budgets and directly compete with each other to purchase edges from a common
set. An example of this would be when multiple telecommunications companies allocate their
budgets to improve their services between pairs of cities, with the company that spends the most
on a given edge winning the business on that edge. To model these situations, we introduce a
network formation game based on the classical Colonel Blotto game [37, 90, 81]. We consider
utilities for players that depend on the component sizes and diameter of the formed networks,
and characterize the range of player budgets for which the game admits pure Nash equilibria.
The developed game also has applications to attack and defense problems in networks [41, 43].
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3.1 A Multi-Layer Network Formation Game with Strategic
Substitutes

We start by defining an m-player game where each player corresponds to one of the layers.

Definition 6. A Multi-Layer Network Formation Game has a set of m players denoted by P =
{P1, P2, . . . , Pm}. The strategy space for each of the players is defined to be GN where N =
{v1, v2, . . . , vn}, i.e., the set of all graphs on node set N . For each i ∈ {1, 2, . . . ,m}, let Gi =
(N,Ei) ∈ GN denote the action of player Pi. The utility of player Pi is given by a function
Ai : GN × GN × · · · × GN → R, where the jth argument is the action of the jth player for
1 ≤ j ≤ m.

We will use G−i to denote the vector of actions of all players except player Pi, and use
Ai(Gi, G−i) to denote the utility of player Pi with respect to the given vector (G1, G2, . . . , Gm).
Based on the definition of the game, we say that a vector of networks (G1, G2, . . . , Gm) is a Nash
equilibrium if and only if Gi ∈ arg maxGAi(G,G−i) for all i ∈ {1, 2, . . . ,m}. In this case, Gi

is said to be a BR network to G−i with respect to the utility function Ai.

The characteristics of the game and the optimal strategies for each player will depend on
the form of the utility functions Ai. Here, as a starting point for studying such games, we will
focus on distance-based utilities (thereby building on our results from Chapter 2). The reference
networks for the distance-based utility function for each player will depend on the networks
constructed by the other players. In the remainder of this section, we will explore functions that
view different layers of the network as strategic substitutes, where the presence of a link in one
layer makes it less desirable for that link to appear in another layer; this captures the notion that
the different network layers are attempting to fill gaps in connectivity left by the other layers.1 As
a motivating example, consider competing transportation companies offering services between
a common set of cities. Suppose that for economical reasons, each company would prefer to
design its transportation network to provide short routes between those cities that are not directly
serviced by any other company. In other words, each company designs its network with respect
to the complement of the transportation networks provided by all other companies. If we impose
further structure on such games by assuming distance-based utility functions, we obtain the game
defined below. In the following definition, for a set of graphs Gj = (N,Ej), j = 1, 2, . . . ,m, on
a common set of nodes, we use the notation ∪mj=1Gj to indicate the graph G = (N,∪mj=1Ej), and
∩mj=1Gj to indicate the graph G = (N,∩mj=1Ej).

1One can also consider a strategic complements version of this class of games where each player wishes to
provide short paths between those pairs of nodes that share an edge in each of the other layers. The analysis of such
games is relatively straightforward and thus we only focus on strategic substitutes.
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Definition 7. The game in Definition 6 is said to be a Multi-Layer Network Formation Game
with Strategic Substitutes and Distance-Utilities if the utility functions are of the form

Ai(G1, . . . , Gm) = ui(Gi| ∼ (∪mj=1,j 6=iGj)) (3.1)

=
∑

(x,y)/∈∪mk=1,k 6=iEk

bi(dGi(x, y))− ci|Ei|,

where the function ui is defined in (2.1); the benefit functions bi(·) are nonnegative, nonincreasing
and satisfy bi(∞) = 0, and all costs ci are positive. The benefit functions and costs can be
different for the different players.

It is clear from the definition of the game that (G1, G2, . . . , Gm) is a Nash equilibrium if and
only if for all 1 ≤ i ≤ m, Gi is a BR network with respect to ∼ (∪mj=1,j 6=iGj) for the utility
function (2.1). Although we showed in Theorem 1 that finding a BR network with respect to
this utility function is NP-hard in general, we now show that certain insights can nevertheless be
obtained in the multiplayer setting (regardless of the number of nodes and players). To develop
our results, we partition the set of players P into three sets: high-cost players SH = {Pi ∈
P |ci > bi(1)}, medium-cost players SM = {Pi ∈ P |bi(1) ≥ ci ≥ bi(1) − bi(2)} and low-cost
players SL = {Pi ∈ P |bi(1) − bi(2) > ci}. We start by considering the case where the game
contains low-cost players.

3.1.1 Games Containing Low-Cost Players

Proposition 5. Suppose |SL| ≥ 1. Then in every Nash equilibrium, every player in SH chooses
the empty network. Furthermore, any vector of disjoint networks (G1, G2, . . . , Gm) forms a Nash
equilibrium when {Gk|Pk ∈ SM} is a set of disjoint forests and ∪i∈SLGi = ∼ ∪i∈SMGi.

Proof. Let (G1, G2, . . . , Gm) be any vector of networks in Nash equilibrium. Since there exists
at least one player Pi whose edge cost satisfies ci < bi(1) − bi(2), the Nash equilibrium vector
must satisfy ∪mj=1Gj = Gc, whereGc is the complete network. To see this, suppose that the union
of the graphs is not the complete network; then there exists some edge (u, v) that does not appear
in any network, and thus appears in the complement of the graph ∪mj=1,j 6=iGj . By Lemma 7, the
BR to ∼ ∪mj=1,j 6=iGj with respect to player Pi’s utility function is ∼ ∪mj=1,j 6=iGj , and thus the
edge (u, v) appears in graph Gi, contradicting the fact that it does not appear in the union of all
the graphs.

Next, note that since ∪mj=1Gj = Gc, for any player Pk ∈ P , the graph Gk = (N,Ek) is a BR
to the graphGc\{∪mj=1,j 6=kGj} ⊆ Gk. By Lemma 1, a BR to a graph cannot be a strict superset of
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that graph, and thus we have thatGk is a best response to itself with respect to the utility function
of player Pk. Now if Pk ∈ SH , we know from Lemma 7 that Gk must be the empty network,
completing the first part of the proof. For the second part, note that for any vector of networks
satisfying the given properties, Proposition 2 and Lemma 7 indicate that a best response to Gk is
indeed Gk for Pk ∈ SM ∪ SL, completing the proof.

The above result shows that the presence of a player with low edge costs (relative to its own
benefit function) guarantees the existence of a Nash equilibrium in the game, and furthermore,
such low-cost players drive players with sufficiently high edge costs out of the game; the propo-
sition provides the threshold for costs at which this occurs (namely bi(1) < ci). Players with
medium edge costs, on the other hand, can obtain certain nonempty networks in equilibrium, and
the players with low edge costs split all of the remaining edges amongst themselves.

We now study the situation where there are no low-cost players in the game (i.e., SL = ∅).
We start by considering games that contain only high-cost players.

3.1.2 Games Containing Only High-Cost Players

Suppose P = SH (i.e., SL = SM = ∅). For each player Pi ∈ P , define the index ki as

ki , min

{
t ∈ N | ci < bi(1) +

t− 2

2
bi(2)

}
.

Since ci > bi(1), we have ki ≥ 3 for all Pi ∈ P . If ki > n, by Lemma 7, the empty network is a
BR of player Pi to any set of networks G−i (since α in (2.12) satisfies α ≤ n−2

2
for any reference

graph). Thus without loss of generality, assume that all players have 3 ≤ ki ≤ n and players
are sorted according to their ki, i.e., k1 ≤ k2 ≤ · · · ≤ km ≤ n. We will now partition the set of
players P into different sets.

Define the index i1 as

i1 , max {i ∈ {1, 2, . . . ,m} | ki ≤ n− i+ 1} .

Next, define

i2 , max {i ∈ {1, 2, . . . , i1 − 1} | ki ≤ i1 − i+ 1} ,
i3 , max {i ∈ {1, 2, . . . , i2 − 1} | ki ≤ i2 − i+ 1} ,

... (3.2)

ir , max {i ∈ {1, 2, . . . , ir−1 − 1} | ki ≤ ir−1 − i+ 1} ,
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where ir satisfies ir < k1 (so that no further sets of this form can be defined).

The above indices satisfy 1 ≤ ir < ir−1 < · · · < i1 ≤ m. Partition the set of players and
nodes as follows

Hr = {P1, . . . , Pir}, Vr = {v1, . . . , vir}
Hr−1 = {Pir+1, . . . , Pir−1}, Vr−1 = {vir+1, . . . , vir−1}

... (3.3)
H1 = {Pi2+1, . . . , Pi1}, V1 = {vi2+1, . . . , vi1}.

Also define H0 = {Pi1+1, Pi1+2, . . . , Pm} and V0 = {vi1+1, vi1+2, . . . , vn}.

Proposition 6. For each player Pj ∈ Hl (for 1 ≤ l ≤ r), define the network Gj to be the star
network centered on node vj with peripheral nodes ∪l−1

t=0Vt, where Hl and Vt are defined as in
equation (3.3). For each player Pj ∈ H0, define Gj to be the empty network. Then the set of
networks (G1, G2, . . . , Gm) forms a Nash equilibrium.

To prove Proposition 6, we will first need the following intermediate result.

Lemma 9. Let b(1) < c. Consider network G = (N,E) with components Gi = (Ni, Ei) for
1 ≤ i ≤ r (N = ∪ri=1Ni and E = ∪ri=1Ei). Assume that every induced subgraph of G has a
2-spanner forest. Then every BR of network G is composed of a BR to each component of G.

Proof. Let F = (∪ri=1Ni, EF ) be a BR to G. Suppose by way of contradiction that F contains
a non-empty component F1 = (W,R) with nodes from p different Ni where p ≥ 2. Let GF1 =
(W,EF1) denote the induced subgraph of W on G and T be a 2-spanner forest of GF1 . The
spanner forest T has q components where q ≥ p. Also note that |R| ≥ |W |− 1 > |W |− q. Then
we have

u(F1|GF1) ≤ |R|(b(1)− c) + (|EF1 | − |R|)b(2) (3.4)
= (|R| − (|W | − q))(b(1)− c) + (|W | − q)(b(1)− c) + (|EF1| − |R|)b(2)

< (|R| − (|W | − q))b(2) + (|W | − q)(b(1)− c) + (|EF1| − |R|)b(2)

= (|W | − q)(b(1)− c) + (|EF1| − (|W | − q))b(2)

= u(T |GF1),

where the first inequality comes from the fact that at most |R| pairs of nodes that are neighbors
in GF1 have direct connections in F1 and the remaining pairs of nodes are at a distance of at least
2 in F1. The second inequality is due to b(1)− c < b(2).
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Inequality (3.4) means that by replacing F1 with T , we can increase the utility of network F
which is a contradiction to the assumption that F is a BR to G. Therefore, no component of F
contains nodes from multiple components inG and thus by Lemma 6, the subgraph of F induced
by Ni must be a BR to Gi for 1 ≤ i ≤ r, yielding the result.

We are now in place to prove Proposition 6.

Proof of Proposition 6. Consider player Pj where 1 ≤ j ≤ m. If j > i1 (i.e., Pj ∈ H0), then
G =∼ ∪mt=1,t 6=jGt consists of disjoint complete graphs on node sets Vr, Vr−1, . . . , V0. Since

kj ≥ ki1+1 > n− i1
kj ≥ ki2+1 > i1 − i2

...
kj ≥ kir+1 > ir−1 − ir
kj ≥ k1 > ir,

a best response of player Pj to any of these complete networks is the empty network (by Propo-
sition 1 or Lemma 7). Every induced subgraph of G has a star network on its non-empty compo-
nents (which means it has a 2-spanner forest). Thus using Lemma 9, the empty network Gj is a
BR to the network of the other players.

Next, we prove that for player Pj ∈ Hl where 1 ≤ l ≤ r − 1, the network Gj is a BR to the
other players’ networks. From the definition of the sets Hl in (3.3), we have that il+1 < j ≤ il.
Note that G =∼ ∪mt=1,t 6=jGt, consists of disjoint complete graphs on node sets Vl+1, . . . , Vr. It
also has a component C = (∪lt=0Vt, EC) of size n− il+1. The structure of the network C can be
described as a set of complete networks of size n− i1 + 1, i1− i2 + 1, . . . , il−1− il + 1, il − il+1

where all of them have the common node vj . These complete networks are on node sets V0 ∪
{vj}, V1 ∪ {vj}, . . . , Vl−1 ∪ {vj}, Vl. Network G satisfies the condition of Lemma 9 and thus a
BR to G can be obtained by finding a BR network to each component. Since

kj ≥ kil+2+1 > il+1 − il+2

...
kj ≥ kir+1 > ir−1 − ir
kj ≥ k1 > ir,

the best response of player Pj to each of the complete networks on node sets Vl+1, . . . , Vr in G
is the empty network.
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Network C has a star subgraph centered at node vj and hence by Proposition 3, there exists
a BR network S = (∪lt=0Vt, ES) that is a star network centered at node vj with potentially some
isolated nodes. Now assume that in the network S, there are edges from vj to a nonempty strict
subset of nodes Rq ⊂ Vq for some 0 ≤ q ≤ l, and the set of nodes in Vq \ Rq are isolated.
Note that edges between node vj and the set of nodesRq are only useful for connections between
nodes in Rq ∪ {vj} and produces a utility of

|Rq|
(
bj(1)− cj +

|Rq| − 1

2
bj(2)

)
≥ 0, (3.5)

where the inequality follows from the fact that this graph has utility at least as large as that of
the empty network. Now construct a new network S ′ = (∪lt=0Vt, ES′) by connecting a node
u ∈ Vq \ Rq to vj , i.e., ES′ = ES ∪ {(vj, u)}. Then we have that u(S ′|C) − u(S|C) = bj(1) −
cj+|Rq|bj(2) which must be a positive value by inequality (3.5). This contradicts the assumption
that S is a BR to C. Therefore, for each 0 ≤ t ≤ l, node vj is either connected to all of the nodes
in Vt or to none of them. Since

kj ≤ ki1 ≤ n− i1 + 1

kj ≤ ki2 ≤ i1 − i2 + 1

...
kj ≤ kil ≤ il−1 − il + 1,

a BR to all of the complete networks on nodes Vt∪{vj} in C is the star network for 0 ≤ t ≤ l−1.
However, since kj ≥ kil+1+1 > il − il+1, the BR to the complete network on the set of nodes Vl
is the empty network and thus all of the nodes in Vl \ {vj} must be isolated nodes.

Therefore, we can conclude that a star network centered on the node vj with peripheral nodes
{vil+1, . . . , vn} = ∪l−1

t=0Vt, and all other nodes being isolated is a BR to the network of the other
players; this is precisely the network Gj given in the statement of the proposition.

Finally, we have to show that players Pj , 1 ≤ j ≤ ir (i.e., Pj ∈ Hr) are in Nash equilibrium.
Similar to the above, for player Pj , G =∼ ∪mt=1,t6=jGt consists of complete networks of size
n− i1 + 1, i1− i2 + 1, . . . , ir−1− ir + 1, ir with the common node vj . These complete networks
are on node sets V0 ∪ {vj}, V1 ∪ {vj}, . . . , Vr−1 ∪ {vj}, Vr. By an argument similar to the above,
since kj ≥ k1 > ir and

kj ≤ ki1 ≤ n− i1 + 1

kj ≤ ki2 ≤ i1 − i2 + 1

...
kj ≤ kir ≤ ir−1 − ir + 1,
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a star network centered on vj with peripheral nodes {vir+1, . . . , vn} = ∪r−1
t=0Vt (i.e., Gj) is a BR

to the network of the other players.

Therefore, for each player Pj ∈ P , Gj is a BR to G =∼ ∪mt=1,t6=jGt and thus the given
networks are in Nash equilibrium.

The following example illustrates the structure of the Nash equilibrium specified by the above
proposition.

Example 5. Suppose that there are 11 nodes and 9 high-cost players with ki = 3 for 1 ≤ i ≤ 5,
k6 = 4, k7 = 5 and k8, k9 ≥ 5. From the equations in (3.2), we get i1 = 7, i2 = 5, i3 = 3 and
i4 = 1. Figure 3.1 shows partition of the set of players into 5 sets based on the index values.
Given these partitions, Figure 3.2 demonstrates the networks of players P1, P2, P4 and P6 in the

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

V4 V3 V2 V1 V0

Figure 3.1: A multi-layer network formation game considered in Example 5 with 9 high-cost
players and 11 nodes. Nodes are partitioned into 5 sets as shown in this figure, based on the
characteristics of the players. Each node in each of the sets V1, V2, V3, V4 will be chosen by a
different player as the center of a star subgraph in the Nash equilibrium.

Nash equilibrium defined in Proposition 6. Player P3 has a similar network to player P2 (except
that the star of her network is centered on v3). Players P5 and P7 have similar networks to that
of P4 and P6, respectively (the only difference being that player P5 has a star centered on v5, and
P7 has a star centered on v7). Players P8 and P9 each have the empty network.

Despite the stylized nature of the multi-layer network formation game in Definition 7, it is
of interest to note that the “hub-and-spoke” networks that arise in the above Nash equilibrium
are predominant in real-world transportation systems (airline networks, in particular) [82, 1, 57].
While previous work has shown that such networks are optimal in the single-layer setting (e.g.,
Proposition 1 [48]), our analysis shows that these structures also arise when players selfishly
optimize their individual networks in competitive environments. We will now consider games
with a mix of medium-cost and high-cost players, and show that such structures also arise as a
Nash equilibrium in that setting.
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v1

v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

V4 V3 V2 V1 V0

(a) G1

v1

v2

v3 v4 v5 v6 v7 v8 v9 v10 v11

V4 V3 V2 V1 V0

(b) G2

v1 v2 v3

v4

v5 v6 v7 v8 v9 v10 v11

V4 V3 V2 V1 V0

(c) G4

v1 v2 v3 v4 v5

v6

v7 v8 v9 v10 v11

V4 V3 V2 V1 V0

(d) G6

Figure 3.2: The Nash equilibrium networks of players P1, P2, P4 and P6 in Example 5 are shown
in 3.2a, 3.2b, 3.2c and 3.2d, respectively. The networks of players P3, P5 and P7 are not shown;
they have stars centered on v3, v5 and v7, respectively, with the same peripheral nodes as P2, P4

and P6, respectively. Players P8 and P9 choose the empty network.
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3.1.3 Games With Medium and High-Cost Players

Proposition 7. Suppose that SL = ∅, and assume without loss of generality that the first µ
players in P are medium-cost players, with 1 ≤ µ ≤ n. For j ∈ {1, 2, . . . , µ}, define the network
Gj to be the star network centered on node vj with peripheral nodes {vj+1, vj+2, . . . , vn}. For the
set of high-cost players SH , let (Gµ+1, Gµ+2, . . . , Gm) be the Nash equilibrium networks on node
set {vµ+1, vµ+2, . . . , vn} defined in Proposition 6. Then the set of networks (G1, G2, . . . , Gm) is
a Nash equilibrium.

Proof. In the proof, we will use the fact that each network Gj , 1 ≤ j ≤ m, only contains edges
from node vj to nodes with index larger than j. For each player Pj , let Gj,ref ,

⋃m
i=1,i 6=j Gj be

the union of the networks of the other players.

Consider a medium-cost player Pj , where j ∈ {1, 2, . . . , µ}. Since all players with index
smaller than j are medium-cost players, for each node vi with i < j, Gj,ref contains an edge
from node vi to vk for all k > i. Furthermore, Gj,ref contains no edge from vk to vj for any
k > j. Thus, in the network ∼ Gj,ref , nodes v1, v2, . . . , vj−1 are isolated, and there is an edge
from vj to each node vk with k > j. By Lemma 6, the isolated nodes in ∼ Gj,ref remain isolated
in the BR; applying Proposition 3, a star network centered at vj with edges to {vj+1, . . . , vn} is
a BR with respect to ∼ Gj,ref . Thus, Gj is a BR to ∼ Gj,ref .

Now consider a high-cost player Pj , where j ∈ {µ + 1, µ + 2, . . . ,m}. Arguing as above,
nodes v1, v2, . . . , vµ are isolated in the network ∼ Gj,ref . Thus by Lemma 6, those nodes remain
isolated in the BR to ∼ Gj,ref . Since this is true for all high-cost players, we can remove the
nodes v1, v2, . . . , vµ from consideration, and focus on showing that the subgraph of Gj induced
by the node set {vµ+1, vµ+2, . . . , vn} is a BR to the graphs (Gµ+1, Gµ+2, . . . , Gm) on that node
set. This is true by construction, and thus the given set of networks is a Nash equilibrium.

Example 6. Consider a game with 13 nodes, 2 medium-cost players (P1 and P2) and 9 high-cost
players (P3, · · · , P11). Assume that the 9 high-cost players are the same as the high-cost players
in Example 5. Based on Proposition 7, each of the medium-cost players P1 and P2 will have
a star network centered on node v1 and v2, with peripheral nodes V \ {v1} and V \ {v1, v2},
respectively. These networks are shown in Figure 3.3b and 3.3c, respectively. The networks of
the remaining players (which have high costs) have the same structure as in Example 5 with two
extra isolated nodes, v1 and v2. Once again, we see that hub-and-spoke networks arise as a Nash
equilibrium in this setting.

The following corollary immediately follows from Propositions 5, 6 and 7.

Corollary 1. The multi-layer network formation game with strategic substitutes and distance-
utilities has a pure Nash equilibrium for any set of players.
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13

M V4 V3 V2 V1 V0

(a) Partition of the nodes.

v1

v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13

(b) G1

v1

v2

v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13

(c) G2

Figure 3.3: Figure 3.3a demonstrates the partition of the set of nodes into 6 sets. The first set
(denotedM ) contains nodes that will form the centers of the star networks chosen by the medium
cost players P1 and P2. These star networks are depicted in Figures 3.3b and 3.3c. The networks
of the remaining high-cost players have the same structure as the networks shown in Figures 3.2a
to 3.2d, with v1 and v2 as isolated nodes.

3.2 Colonel Blotto Network Formation Game

The Multi-Layer Network Formation Game defined in the last section assumed that each player in
the game constructs a separate layer of the network, based on the layers constructed by the other
players. There is no hard constraint that prevents multiple players from having the same edge
in their layers, although the Strategic Substitute utility function disincentivizes such behavior.
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In this section, we consider an alternate setting for competitive network formation where two
players are each given a budget and compete with each other to purchase edges from a common
set. As an example, consider once again the example of two competing transportation companies.
Each company has a fixed budget to spend on service between some or all pairs of cities. Under
an idealized allocation rule, the company that spends more on a given edge wins that edge, and
the utility to a company is a function of all of the edges that it wins. Similar examples can be
formulated for telecommunication companies bidding on spectrum or communication links, and
wireless networks where a transmitter and jammer are competing to send or disrupt information,
respectively, with fixed power budgets [96].

Games of this form are traditionally known as Colonel Blotto games; here we will extend
such games to the network formation setting and characterize the types of equilibria that occur
for different utility functions and budgets of the players. We start by reviewing the classical
version of this game.

3.2.1 The Colonel Blotto Game

The classical Colonel Blotto (CB) game is defined as follows [37, 90].

Definition 8. There are two players P1 and P2 with S1 and S2 units of resources, respectively.
There are n battlefields, and the players choose their actions simultaneously. The strategy space
of player Pl, l ∈ {1, 2} is given by

X l = {(xl1, xl2, . . . , xln) ∈ Rn
≥0|

n∑
i=1

xli = Sl}.

The amount of resources allocated by player Pl to field i is xli. There is a zero sum game between
the players in each field i where the player with the higher amount of allocated resources to that
field receives a payoff of +1 and the loser receives−1; both players receive 0 when they allocate
equal resources to a field (although other tie-breaking rules can also be considered). The total
payoff to each of the players is given by u1 =

∑n
i=1 sgn(x1

i − x2
i ) and u2 = −u1.

Using connections to simultaneous first-price all-pay auctions, [81] showed that this game has
no pure Nash equilibrium when 1

n
< S2

S1
≤ 1, but does have an equilibrium in mixed strategies.

Other variants of this game such as having more than two players, different types of functions
for scoring over battles, and fields with different values have also been addressed in the literature
[37, 90]. Here, we introduce the Colonel Blotto game into the competitive network formation
setting, and characterize the set of equilibria that can occur.
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3.2.2 The Colonel Blotto Network Formation Game

Definition 9. The CB Network Formation Game consists of two players P1 and P2, and a set
of nodes N = {v1, v2, . . . , vn}. These players play a CB game where the set of battlefields are
the
(
n
2

)
edges between these nodes. Player Pl, l ∈ {1, 2}, has a positive budget Sl, and strategy

space

X l = {(xl12, x
l
13, . . . , x

l
n−1,n) ∈ R(n2)

≥0 |
∑

i,j∈N,i6=j

xlij = Sl}, (3.6)

where entry xlij indicates the allocation by player Pl to edge (vi, vj). Each pair of strategies
(x1, x2) ∈ X1×X2 induces graphs G1(x1, x2) and G2(x1, x2), where Gl(x

1, x2) is formed from
edges in which player l has the highest allocation for l ∈ {1, 2}2. There is a utility function
ul : GN × GN → R for l ∈ {1, 2} that determines the utility of each player based on the
formed networks. The pair of strategies (x1, x2) is said to be a pure Nash equilibrium if and only
if x1 ∈ argmaxx∈X1 u1(G1(x, x2), G2(x, x2)) and x2 ∈ argmaxx∈X2 u2(G1(x1, x), G2(x1, x)).
For simplicity, we denote Gl(x

1, x2) by just Gl in the rest of this section.

Remark 8. The chosen strategy xl ∈ X l of player Pl in equation (3.6) can equivalently be viewed
as a weighted graph3 Fl, where each player has allocated a nonzero amount of investment on
each of the links and zero investment on the links of its complement network. We refer to the
strategies of the players as their chosen network or investment vector.

Note that the above game is a version of the CB game where the battlefields exhibit strate-
gic complementarities (i.e., the value of a given battlefield, or edge, depends on the set of all
battlefields won by that player). While CB games with complementarities have been studied
previously (e.g., [90]), the difference in our setting is that the complementarities arise from net-
work characteristics (such as distance and connectedness), which lends additional structure to
the problem.

In the rest of this section, we will assume without loss of generality that player P1 has a
budget S1 = 1, and S2 ≤ 1. The following facts will be useful for characterizing the equilibria
of the game for various utility functions.

Lemma 10. Consider the CB Network Formation Game with budgets S1 = 1 and S2 ≤ S1, and
node set N = {1, 2, . . . , n}.

2Similar to the classical CB game in definition 8, we assume that if the players allocate equal amount of resources
to an edge, none of them wins that edge.

3A weighted graph associates a real number (which must be nonnegative in the CB game) to every edge in the
graph.
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1. If S2 <
2

n(n−1)
, there is an investment vector allowing player P1 to win all edges, regardless

of the strategy of player P2.

2. If 2
n(n−1)

≤ S2 ≤ 2
n

, there is an investment vector for player P1 such that player P2 cannot
win a component of size n.

3. If 2(m−1)
n(n−1)

< S2 ≤ 1 where 2 ≤ m ≤ n, then for any given investment vector of player P1,
player P2 can win a star network with at least m nodes.

Proof. The first case is trivial as it suffices for player P1 to allocate 2
n(n−1)

on all of the edges.

For the second case, note that P2 needs at least n − 1 edges to win a component of size n.
If player P1 allocates 2

n(n−1)
on each edge, player P2 can never win a component of size n since

that would require a total investment larger than 2
n

.

Finally, in the last case, let Sji denote a star network of size m centered at node vi with m− 1
peripheral nodes chosen from the set N \ {i} (the index j will be used to enumerate such star
networks). It is clear that for any vi ∈ N , there exists

(
n−1
m−1

)
of these star networks. Denote the

sum of the investments of player 1 on the edges of the star network Sji by bji . Then we have

n∑
i=1

(n−1
m−1)∑
j=1

bji = 2

(
n− 2

m− 2

)
.

This is due to the fact that each edge (vk, vt) is counted 2
(
n−2
m−2

)
times, where

(
n−2
m−2

)
is the number

of possible star networks on node vk that contains the edge (vk, vt) (and similarly for node vt).
Therefore, there must exist a node vi with bji such that

bji ≤
2
(
n−2
m−2

)
n
(
n−1
m−1

) =
2(m− 1)

n(n− 1)
.

By allocating his or her resources appropriately, player P2 can win all of the edges in the star
network Sji .

Remark 9. Note that when S2 < 1, for any given investment vector of player P2, player P1 can
win all edges of the network by simply matching P2’s investment everywhere, and then spreading
the excess budget evenly over all edges. When S2 = 1, no player can win all edges because
that would require a total investment larger than 1. However, for any given investment vector of
player P2, player P1 can win

(
n
2

)
− 1 edges as follows: choose an edge where P2 has a nonzero

investment r, match P2’s investment on all other edges and then distribute an additional r evenly
over all those edges. The same is true for P2 by symmetry. These arguments are independent of
the utility function and are standard in the study of CB games [37].
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We now study the CB network formation game for two natural utility functions.

3.2.3 Colonel Blotto Network Formation with Respect to Largest Compo-
nent

In this section we will define the utility ul of each player to be an increasing function of the
size of the largest component in their formed network, capturing the notion that players wish
their network to provide paths between as many nodes as possible. For instance, having a larger
component is advantageous for a telecommunications company that provides service among a
group of cities. This has also been a measure of robustness in the network attack and defense
literature, where the defender aims at maximizing the size of his component in the presence of
adversaries [9, 41]. The following proposition characterizes Nash equilibria in terms of the range
of resources available to player 2.

Proposition 8. Assume that 2(m−1)
n(n−1)

< S2 ≤ 1 where 2 ≤ m ≤ n. Let Gl ∈ GN for l ∈ {1, 2}
denote the network formed by player Pl as the outcome of the game. Define the utility functions
of the players in the CB network formation game as

u1(G1, G2) = g1(C(G1)), u2(G1, G2) = g2(C(G2)),

where g1(·) and g2(·) are increasing functions and C(G) denotes the size of the largest compo-
nent in graph G. Then for any Nash equilibrium pair of actions x1 ∈ X1 and x2 ∈ X2, we have
that C(G1) = n and C(G2) ≥ m.

Proof. By Remark 9, it is clear that the formed network by player 1 must be a connected network.
Furthermore, when 2(m−1)

n(n−1)
< S2 ≤ 1, Lemma 10 indicates that for any given strategy chosen

by player P1, player P2 can always choose his strategy such that his outcome network has a
component of size at least m.

Note that there are many equilibria of the form described in the above proposition, as in any
complete graph on n nodes, there are bn

2
c disjoint spanning trees [75]. For any range of resources

available for player P2, any two of these trees form an equilibrium when each player allocates
his budget entirely to the edges on his tree.

By Lemma 10, we know that for S2 ≤ 2
n(n−1)

, there exist strategies for player P1 such that
player P2 cannot win a single edge. Thus in the case of S2 ≤ 2

n(n−1)
, there are instances of Nash

equilibria in which player 2 forms the empty network.
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3.2.4 Colonel Blotto Network Formation with Respect to Diameter

Proposition 8 considered the case where each player only cares about the size of the largest
component in his or her network; however, the diameter of the network is often also of interest
in network formation and design [46, 91]. Here, we study the CB network formation game when
the utility of each player is decreasing in the diameter of the network.

Proposition 9. Let Gl ∈ GN for l ∈ {1, 2} denote the network formed by player Pl as the
outcome of the game under strategies x1 ∈ X1 and x2 ∈ X2. Define the utility functions of the
players in the CB network formation game as

u1(G1, G2) = h1(D(G1)), u2(G1, G2) = h2(D(G2)),

where h1(·) and h2(·) are decreasing functions and D(G) denotes the diameter of graph G.
Then the pair of actions x1 ∈ X1 and x2 ∈ X2 are in Nash equilibrium if and only if one of the
following two conditions holds.

1. S2 = S1 and both G1 and G2 have a diameter of 2.

2. S2 ≤ 2
n

and G1 = Gc and G2 = Ge.

Proof. We first argue that there is no (pure) Nash equilibrium when 2
n
< S2 < 1. By Lemma 10,

for any given strategy x1 ∈ X1, player P2 can choose a strategy x2 ∈ X2 such that he obtains
a star, which has diameter 2. However for any given strategy x2 ∈ X2, player P1 can choose
x1 ∈ X1 such that she wins all edges and obtains a diameter of 1 (as argued in Remark 9). Thus
there is no pure Nash equilibrium for this range of S2.

Suppose S2 = 1. Note from Remark 9 that no player can win all edges, and thus no player
can achieve a diameter less than 2. However, for any given investment by one player, the other
has a strategy that wins all but one of the edges, thereby winning a network of diameter 2. Thus
all Nash equilibria under S2 = S1 = 1 satisfy the property that both players win a network of
diameter 2.

Now suppose that S2 ≤ 2
n

. In this case, by Lemma 10, for any given investment of player
P2, there always exists a strategy for player P1 to win all edges and obtain a diameter of 1. Thus
any Nash equilibrium must have player P1 winning all edges and P2 winning none. When player
P1 invests 2

n(n−1)
on all edges, player P2 can never obtain a connected network, and thus any

investment vector x2 ∈ X2 with less than 2
n(n−1)

on each edge yields a Nash equilibrium.
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Based on Proposition 9 for S1 = S2, players are in Nash equilibrium if and only if their
formed networks each have a diameter of 2. By definition, the networks G1 and G2 formed in
the CB network formation game are edge-disjoint. It is easy to check that for n = 5, the cycle
graph 1-2-3-4-5-1 and its complement both have diameter of 2. We now show that there exist
such graphs for any n ≥ 5. We will use the following notation.

Definition 10. Let Gi = (Ni, Ei), 1 ≤ i ≤ T , be a set of graphs. Then G = (N,E) =
[G1, G2, . . . , GT ] is a graph such that N = ∪Ti=1Ni and E = ∪Ti=1Ei.

Proposition 10. Suppose that we have |N | = 2k nodes for k ≥ 3. Let graph G1 consist of
nodes {v1, v2, . . . , vk}, G2 consist of nodes {vk+1, vk+2, . . . , v2k}, and G3 consist of all nodes
{v1, v2, . . . , v2k}. Define the edge sets of G1, G2 and G3 as follows (depicted in Figure 3.4):

1. G1 is the path v1v2v3 · · · vk.

2. G2 is the path vk+1vk+2 · · · v2k.

3. G3 is the cycle v1vk+1v2vk+2 · · · v2k−1vkv2kv1.

Define graphs F1 = [Ḡ1, Ḡ2, G3] and F2 = F̄1. Then both F1 and F2 have a diameter of 2.
When |N | = 2k + 1 for some k ≥ 3, it suffices to connect the node (2k + 1) to all nodes
{k + 1, k + 2, . . . , 2k} in graph F1.

Proof. The proof of this proposition is straightforward but tedious, and thus we provide only a
sketch of the proof. For k = 3 the proof can be verified by examining the graph directly, and thus
suppose k ≥ 4. In graph F1, consider node v1. This node is directly connected to nodes in the set
{v3, v4, . . . , vk, vk+1, v2k}. It has a path of length 2 to nodes in the set {v2, vk+3, vk+4, . . . , v2k−1}
via node vk+1. Finally, it has a path of length 2 to vk+2 via node v2k. Next consider node v2. This
node is directly connected to nodes in the set {v4, v5, . . . , vk, vk+1, vk+2}. It has a path of length 2
to node v3 via node vk+2. Finally, it has a path of length 2 to nodes in the set {vk+3, . . . , v2k} via
vk+1. This reasoning can be repeated for all nodes in the network to show that F1 has a diameter
of 2, and similarly that F2 has a diameter of 2.

Remark 10. Note that the graphs provided above are not unique in having the property that
both the graph and its complement have a diameter of 2. For example, consider the Erdos-Renyi
graph G(n, p) on n nodes, where each of the possible

(
n
2

)
edges is independently present with

probability p ∈ [0, 1]. When p is constant in (0, 1), it is well known that asymptotically (in n)
almost surely the graphG(n, p) will have diameter 2 [24]. Noting that the complement ofG(n, p)
is an Erdos-Renyi graph G(n, 1− p), we see that an Erdos-Renyi graph and its complement will
both have diameter 2 with probability tending to 1 as n→∞.
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Figure 3.4: An example of Nash equilirbium in CB network formation game with utility based
on diameter.

3.3 Summary

In this chapter, we formulated a multi-layer network formation game where each player builds
a different layer of the network, simultaneously. We started with the case that the layers are
viewed as strategic substitutes, i.e., if there is a link between two nodes in the network of one
of the players, it is less desirable for that link to appear in the network of other players. We
showed that the Nash equilibria of the game exhibit certain natural characteristics. Specifically,
the presence of low-cost players pushes high-cost players out of the game, and hub-and-spoke
networks arise in the Nash equilibrium when there are no low-cost players.

Finally, we looked at the situation where there cannot be any overlap between the links of
the network of players. We assumed that players have a fixed budget to spend on constructing
edges. We modeled this situation as a Colonel Blotto game. We characterized the ranges of
player budgets for which the game admits pure Nash equilibria for utility functions that depend
on the component sizes and diameter of the formed networks.
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Chapter 4

The Strategic Formation of
Interconnections Between Networks

While we focused on multi-layer networks in the previous chapters, we now turn our attention to
studying the structure of interdependent networks and considering the game-theoretic formation
of edges between two given networks G1 = (V1, E1) and G2 = (V2, E2) on two different sets
of nodes V1 and V2. We assume that there are dependencies between nodes in V1 and V2, i.e.,
some of the nodes in V1 require connections to (or information from) some of the nodes in V2 in
order to function. These dependencies are captured by a bipartite network GI = (V1 ∪ V2, EI)
where EI ⊆ V1 × V2, and an edge (vi, vj) ∈ EI indicates that vi ∈ V1 is dependent on vj ∈ V2.
We consider a distributed network formation framework where each node in V1 is a player and
builds a set of edges between itself and nodes in V2 in order to maximize a distance-based utility
function. As a motivating abstraction, consider a cyber-physical system where G1 is a power
network (with the nodes representing substations) and G2 is a sensor network [72, 77]. Suppose
that neighboring nodes in each network are capable of exchanging information with each other.
Each substation in the power network requires the information gathered by certain nodes in the
sensor network; these dependencies are captured by the network GI . The substation operators
wish to construct connections to the sensor network in such a way that they minimize the num-
ber of hops required to gather data from their interdependent nodes (where the number of hops is
measured with respect to the connections within G1 and G2 and the edges constructed between
the networks). This leads to an interconnection network design game (INDG) with distance util-
ities where the utility of each player (operator) depends on its own set of edges as well as the set
of edges constructed by other players. Distance-based utilities have been also used to study com-
puter networks (where nodes represent the computers and edges are the communication links)
[27, 89]. In this case, network GI models the virtual dependencies among the computers in clus-
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ter G1 and cluster G2, indicating the set of pairs of nodes that wish to exchange information.
The designed interconnection network represents the physical communication network between
the two clusters. Another application of the INDG with distance utilities arises in studying in-
terconnections between the transportation networks of two countries. We will elaborate on this
example in Section 4.1.

We start our analysis by investigating the complexity of solving this problem and show that
it is NP-hard to find a best response for each player. Despite the NP-hardness of the problem,
we characterize some useful properties of the best response which consequently enable us to
determine a Nash equilibrium instance for certain cases of the game. Specifically, we study
the existence of Nash equilibria in an INDG with distance utilities when network G2 has a star
subgraph (similar to the “hub-and-spoke” structure seen in various transportation networks [82,
1]) and there is full interdependency between nodes in G1 and G2. We show that this setting
possesses a Nash equilibrium for any set of players with arbitrary benefit functions and edge
costs. We partition the set of players into two sets consisting of high and low edge cost players
and show that in any Nash equilibrium, all of the high-cost players that have a low-cost player in
their vicinity “free ride” and choose not to construct any interconnections to G2.

Below, we have formally defined the problem.

4.1 Interconnection Network Design Game

Assume that we are given two arbitrary networks G1 = (V1, E1) and G2 = (V2, E2). In this
chapter, we consider a setting in which each node in V1 constructs a set of edges to nodes in V2

such that some utility function is maximized. This leads to a game with the nodes of G1 as the
players.

Definition 11. Consider two arbitrary networks G1 = (V1, E1) and G2 = (V2, E2) with V1 =
{x1, · · · , xn} and V2 = {y1, · · · , ym}. An instance of the interconnection network design game
(INDG) G = (P, (Si)Pi∈P , (Ψi)Pi∈P , G1, G2) has a set of n players P = {P1, P2, · · · , Pn} where
player Pi is associated with node xi ∈ V1 for 1 ≤ i ≤ n. The strategy space of player Pi is
Si = 2{xi}×V2 , i.e., all possible subsets of edges from xi to nodes in V2. The action of player
Pi is an element of Si and is denoted by Wi, i.e., Wi is a set of edges from xi to a certain
subset of V2. By an abuse of notation, we take B = ∪nj=1Wj to indicate the bipartite graph
B = (V1∪V2,∪nj=1Wj). The utility of player Pi is given by a function Ψi : S1×S2×· · ·×Sn → R,
where the jth argument1 is the action of the jth player for 1 ≤ j ≤ n.

1The utility function Ψi is also a function of G1 and G2 which will be omitted from the argument list as long as
it is clear from the context.
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The characteristics of the game and the optimal strategies for each player will depend on the
form of the utility functions Ψi. We consider a modified version of the distance utility function in
(1.3.1) as the payoff to the players. Specifically, we assume that there are dependencies between
nodes in the graphs G1 and G2 which is represented by a bipartite network GI = (V1 ∪ V2, EI)
with two partitions V1 and V2 and EI ⊆ V1 × V2. Let Ii ⊆ V2, 1 ≤ i ≤ n denote the set of
neighbors of xi ∈ V1 in the network GI . Then the objective of player Pi is to find the optimal
set of edges to construct to V2 such that distance between its associated node xi and the set of
nodes in Ii is minimized. In addition to the technological applications that we mentioned before,
the INDG can be utilized to model problems in transportation. For instance consider a modified
version of the problem studied in [60] where we are given the traffic flow between cities of two
different countries C1 and C2. Each of these countries has a domestic transportation service
which connects its cities and is modeled by networks G1 and G2. A city in C1 and a city in C2

are said to be interdependent if the traffic flow between them is higher than some threshold, and
this interdependency is represented by an edge between them in the network GI . The players of
the game correspond to transportation service planners at each node in C1, who are faced with
the problem of finding the optimal set of routes to establish from their associated city to cities
of the country C2 such that distance between the interdependent cities is minimized. It is clear
that the structure of the interconnection between cities inside the countries C1 and C2 (modeled
as G1 and G2) directly affects the optimal decisions made by the players.

Definition 12. An instance

G = (P, (Si)Pi∈P , (ui)Pi∈P , G1, G2, GI)

of the game in Definition 11 is said to be an interconnection network design game with distance
utilities if the utility function of player Pi, 1 ≤ i ≤ n with action Wi ∈ Si has the form

Ψi(W1, · · · ,Wn) = ui(∪nj=1Wj|G1, G2, GI)

=
∑
y∈Ii

bi(dG(xi, y))− ci|Wi|, (4.1)

where G = (V1 ∪ V2, E1 ∪ E2 ∪ (∪nj=1Wj)).

As we can see in the utility function ui(·), only the distances between node xi and the set
of nodes Ii matter. Furthermore, each player has to pay only for his/her constructed edges. The
benefit functions bi(·) are nonnegative, nonincreasing and satisfy bi(∞) = 0, and all costs ci are
positive, and can be different across players.

We will use W−i to denote the vector of actions of all players except player Pi, and use
Ψi(Wi,W−i) to denote the utility of player Pi with respect to the given vector (W1,W2, . . . ,Wn).
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Based on the definition of the game, we say that a vector of actions (W1,W2, . . . ,Wn) is a Nash
equilibrium if and only if Wi ∈ arg maxW∈Si Ψi(W,W−i) for all i ∈ {1, 2, . . . , n}. In this case,
Wi is said to be a best response action to W−i with respect to the utility function Ψi. For the rest
of this chapter, whenever we say INDG, by default we mean an interconnection network design
game with distance utilities.

4.2 Characteristics of the Best Responses

In this section, we characterize some important properties of the best response actions for the
players. We start by determining the complexity of finding a best response action for the players
in the INDG.

4.2.1 Complexity

We define the (decision) problem faced by each player in the INDG as follows.

Definition 13. Best Response Interconnection (BRI).
INSTANCE: Given an instance

G = (P, (Si)Pi∈P , (ui)Pi∈P , G1, G2, GI),

of INDG, a player Pj ∈ P , a joint strategy by all other players W−j = ∪i 6=jWi and a threshold
r ∈ R>0.

QUESTION: Does there exist an action Wj ∈ Sj for the player Pj such that

uj(Wj ∪W−j|G1, G2, GI) =
∑
y∈Ij

bj(dG(xj, y))− cj|Wj| ≥ r,

where G = (V1 ∪ V2, E1 ∪ E2 ∪Wj ∪W−j)?

We now provide the following theorem showing that finding a best response for the players,
given arbitrary networksG1, G2, GI , and arbitrary non-increasing benefit functions bi(·) and edge
costs ci > 0 for the players, is impossible in polynomial-time (unless P = NP).

Theorem 2. The Best Response Interconnection problem is NP-hard.
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To prove this theorem, we provide a reduction from the NP-complete Dominating Set Prob-
lem [19]. A dominating set of the network Gd = (Vd, Ed) is a subset S ⊆ Vd such that for all
u ∈ Vd \ S, u has a neighbor in the set S.

Definition 14. Dominating Set Problem.
INSTANCE: Network Gd = (Vd, Ed) and positive integer k ≤ |Vd|.
QUESTION: Does the network Gd have a dominating set S with |S| ≤ k?

Below, we have provided the proof of the Theorem 2.

Proof of Theorem 2. Given an instance of the dominating set problem withGd = (Vd, Ed) and k,
define an instance of the BRI problem withG1 = (V1, E1), G2 = (V2, E2) andGI = (V1∪V2, EI)
as follows

V1 = {x1}, E1 = φ (4.2)
V2 = Vd, E2 = Ed

EI = V1 × V2

b1(3) < b1(1)− c1 < b1(2)

r = k(b1(1)− c1) + (|V2| − k)b1(2).

In the above instance of the BRI, there is only one player P1 associated with the node x1. Hence,
the BRI problem is to determine whether P1 has an action W1 such that u1(W1|G1, G2, GI) ≥ r.

Clearly, construction of the above instance of the BRI problem can be done in polynomial
time. In the rest of the proof, we show that the answer to the above instance of the BRI problem
is “yes” if and only if the answer to the instance of the Dominating Set Problem is “yes”.

Assume that the graph G2 = Gd has a dominating set S ⊂ V2 with |S| ≤ k and thus
the answer to the given instance of the Dominating set problem is “yes”. Then by defining
W1 = {(x1, v)|v ∈ S}, the distance between node x1 and any node in V2 is at most 2. Since
|W1| ≤ k, we have

u1(W1|G1, G2, GI) = |W1|(b1(1)− c1) + (|V2| − |W1|)b1(2)

= |W1|(b1(1)− c1) + (|V2| − k)b1(2) + (k − |W1|)b1(2)

≥ |W1|(b1(1)− c1) + (|V2| − k)b1(2) + (k − |W1|)(b1(1)− c1)

= r.

Therefore, the answer to the constructed instance of the BRI problem in (4.2) is “yes” as well.
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Next suppose that the answer to the defined instance of BRI in (4.2) is “yes”, i.e., there exists
a W1 ∈ S1 such that u1(W1|G1, G2, GI) ≥ r. Since b1(1)− c1 > b1(3), if there is a node v ∈ V2

such that dG(x1, v) ≥ 3, we can add the edge (x1, v) to W1 and increase the utility of P1. Thus
without loss of generality we can take the distance between node x1 and any node in V2 to be at
most 2 under the constructed edge set W1.

Consider the set of nodes S ⊆ V2 that are incident to at least one edge in W1, i.e., S =
{v ∈ V2|(x1, v) ∈ W1}. All of the nodes in V2 \ S are connected to at least one of the nodes
in S due to the assumption that the distance between any node in V2 and node x1 is at most
2. Thus S is a dominating set of the network G2. On the other hand, the assumption that
u1(W1|G1, G2, GI) ≥ r yields

0 ≤ u1(W1|G1, G2, GI)− r
≤ |W1|(b1(1)− c1) + (|V2| − |W1|)b1(2)− r
= (|W1| − k)(b1(1)− c1) + (k − |W1|)b1(2)

= (|W1| − k)(b1(1)− c1 − b1(2)).

Since b1(1)− c1 < b1(2), we must have that |W1| ≤ k. Hence, |S| = |W1| ≤ k. This means that
network G2 has a dominating set of size less than k and thus the answer to the given instance of
the Dominating Set Problem is “yes”.

Given that BRI is a NP-hard problem, finding a Nash equilibrium instance of the INDG with
distance utilities is nontrivial in general. In the next section, we provide a set of properties of best
response actions which are helpful in characterizing the best responses of the players in certain
cases.

4.2.2 Properties of the Best Response

Lemma 11. Let Wj be a best response to W−j in the INDG

G = (P, (Si)Pi∈P , (ui)Pi∈P , G1, G2, GI).

Then we have that

1. |Wj| ≤ |Ij|.

2. If bj(1) > bj(2), then |Wj| = |Ij| if and only if Wj = {(xj, y)|y ∈ Ij}.
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Proof. LetG = (V1∪V2, E1∪E2∪Wj∪W−j). We use contradiction to prove the first statement.
Assume that |Wj| > |Ij|, then

uj(Wj ∪W−j|G1, G2, GI) =
∑
y∈Ij

bj(dG(xj, y))− cj|Wj|

≤ |Ij|bj(1)− cj|Wj|
< |Ij|(bj(1)− cj)
= uj(W

′
j ∪W−j|G1, G2, GI),

where in the above W ′
j = {(xj, y)|y ∈ Ij}. Thus Wj is not a best response to W−j which is a

contradiction to the assumption of the lemma.

To prove the second statement, note that if Wj = {(xj, y)|y ∈ Ij}, then |Ij| = |Wj|. Thus
we only have to show that when bj(1) > bj(2), if |Ij| = |Wj|, then Wj = {(xj, y)|y ∈ Ij}.
Assume by way of contradiction that there exists y∗ ∈ Ij such that (xj, y

∗) /∈ Wj . This means
that dG(xj, y

∗) ≥ 2 and thus

uj(Wj ∪W−j|G1, G2, GI) =
∑
y∈Ij

bj(dG(xj, y))− cj|Wj|

< |Ij|bj(1)− cj|Ij|
= uj(W

′
j ∪W−j|G1, G2, GI),

where in the above W ′
j = {(xj, y)|y ∈ Ij}. This is a contradiction and thus we must have

{(xj, y)|y ∈ Ij} ⊆ Wj . We also know that |Wj| ≤ |Ij| and therefore, have the required result.

The next lemma characterizes a best response action of the players when the cost of con-
structing edges is less than a certain threshold. The proof follows the same reasoning as the
proof in [48] for the formation of (single) networks under low edge costs.

Lemma 12. Let Wj be a best response to W−j in the INDG

G = (P, (Si)Pi∈P , (ui)Pi∈P , G1, G2, GI).

If cj < bj(1) − bj(2), then Wj = {(xj, y)|y ∈ Ij}. Furthermore, if cj = bj(1) − bj(2), then
Wj = {(xj, y)|y ∈ Ij} is a best response action for player Pj .

Proof. Suppose that y∗ ∈ Ij and (xj, y
∗) /∈ Wj . Then bj(dG(xj, y

∗)) ≤ bj(2) where G =
(V1 ∪ V2, E1 ∪ E2 ∪Wj ∪W−j). Adding the edge (xj, y

∗) to Wj increases the utility of Wj by
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at least bj(1) − cj − bj(2) > 0 which contradicts the assumption that Wj is a best response and
thus (xj, y

∗) ∈ Wj . Hence {(xj, y)|y ∈ Ij} ⊆ Wj . By Lemma 11, we know that |Wj| ≤ |Ij| and
therefore, Wj = {(xj, y)|y ∈ Ij}.

For the case that cj = bj(1)−bj(2), note that adding the edge (xj, y
∗) toWj does not decrease

the utility of Wj and thus as in the above argument, Wj = {(xj, y)|y ∈ Ij} is a best response
action for Pj .

The next result gives an upper-bound on the maximum number of edges that a player Pj with
cj > bj(1)− bj(2) will form in a Nash equilibrium.

Lemma 13. Let Wj be a best response to W−j in the INDG

G = (P, (Si)Pi∈P , (ui)Pi∈P , G1, G2, GI).

If bj(1) − bj(2) < cj , then |Wj| ≤ |D|, where D denotes the smallest dominating set of the
network G2.

Proof. If |Ij| ≤ |D|, we have the result by the first statement of Lemma 11. Thus consider the
case that |Ij| > |D|. Assume by way of contradiction that |Wj| > |D|. Let G = (V1 ∪ V2, E1 ∪
E2 ∪Wj ∪W−j). Then

uj(Wj ∪W−j|G1, G2, GI) =
∑
y∈Ij

bj(dG(xj, y))− cj|Wj|

≤ |Wj|(bj(1)− cj) + (|Ij| − |Wj|)bj(2)

= |D|(bj(1)− cj) + (|Wj| − |D|)(bj(1)− cj) + (|Ij| − |Wj|)bj(2)

< |D|(bj(1)− cj) + (|Ij| − |D|)bj(2)

= uj(W
′
j ∪W−j|G1, G2, GI),

where W ′
j = {(xj, y)|y ∈ D}. Thus W ′

j produces more utility than Wj for player Pj which is a
contradiction to the assumption that Wj is a best response action to W−j .

We use Lemma 13 in Section 4.3 to determine a Nash equilibrium instance of the INDG
when G2 has a star subgraph.

Based on the distance utility function for the players in (4.1), increasing the number of edges
decreases the utility. Therefore, there must exist a threshold for the edge costs above which it is
not beneficial to construct any edges. The next lemma provides such a threshold.
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Lemma 14. Let Wj be a best response to W−j in the INDG

G = (P, (Si)Pi∈P , (ui)Pi∈P , G1, G2, GI).

If cj > bj(1) + (|Ij|−1)bj(2), then Wj = φ, i.e., it is not beneficial for the player Pj to construct
any edges incident to its associated node xj .

Proof. Assume by way of contradiction that |Wj| ≥ 1. GivenG = (V1∪V2, E1∪E2∪Wj∪W−j),
we have

uj(Wj ∪W−j|G1, G2, GI) =
∑
y∈Ij

bj(dG(xj, y))− cj|Wj|

≤ |Wj|(bj(1)− cj) + (|Ij| − |Wj|)bj(2)

= bj(1)− cj + (|Wj| − 1)(bj(1)− cj) + (|Ij| − |Wj|)bj(2)

≤ bj(1)− cj + (|Ij| − 1)bj(2) < 0,

where in the above, we are using the fact that bj(1)−cj < bj(2) by the assumption of the lemma.
Therefore, we must have that |Wj| = 0 which yields the required result.

In the next result, we propose a condition under which a player disregards the network
constructed by another player when considering the best response. We define the R-radius
of a player Pi ∈ P with bi(1) − ci > 0 as the minimum integer Ri > 0 (or ∞) such that
bi(1)− ci > bi(Ri + 1).

Lemma 15. Consider two players Pi, Pj ∈ P with R-radii Ri and Rj , respectively. For a given
instance of INDG

G = (P, (Si)Pi∈P , (ui)Pi∈P , G1, G2, GI),

assume that Wi and Wj are best response actions to W−i and W−j , respectively. If dG1(xi, xj) ≥
Ri +Rj − 1, then the actions of the players Pi and Pj are such that shortest paths from nodes xi
and xj to the nodes that they depend on in V2 are node disjoint in G1.

Proof. The idea behind the proof stems from the fact that for any two nodes xi, xj ∈ V1 with
dG1(xi, xj) ≥ Ri + Rj − 1, there does not exist any node xk ∈ V1 that simultaneously has
distance less than Ri to xi and less than Rj to xj . To formally prove the lemma, consider
{(xi, yi), (xj, yj)} ⊆ EI . By way of contradiction, assume that the shortest paths from xi to
yi and xj to yj intersect at a node xk ∈ V1. Without loss of generality, let dG1(xi, xk) ≥ Ri.
This means that dG(xi, yi) ≥ Ri + 1 where G = (V1 ∪ V2, E1 ∪E2 ∪Wi ∪W−i). Now consider
W ′
i = Wi ∪ {(xi, yi)} as a modified action of player Pi. This new action will increase the utility

of player Pi by at least bi(1) − ci − bi(Ri + 1) > 0, which is a contradiction to the assumption
that Wi is a best response to W−i.
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The following example illustrates the application of Lemma 15 in determining a Nash equi-
librium of the INDG.

Example 7. Consider networks G1 = (V1, E1) and G2 = (V2, E2) depicted in Fig. 4.1a with
the given dependency network GI between them (shown by dashed edges). Assume that bi(3) >
bi(1)− ci > bi(4) for i ∈ {1, 6} which yields R1 = R6 = 3. Nodes x1 and x6 correspond to the
players P1 and P6, respectively. Note that since all of the other nodes xi ∈ V1 \ {x1, x2} have
Ii = ∅, their associated players do not construct any edges in any Nash equilibrium by Lemma
11. Both x1 and x2 are dependent on all nodes in G2, as illustrated for x1 in Fig. 4.1b. The
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Figure 4.1: (a) Networks G1 and G2 with interdependencies shown by dashed edges. (b) Interde-
pendencies of player P1 with nodes in G2. (c) Best response action of P1 (d) A Nash equilibrium
instance.

distance between nodes x1 and x6 in G1 is 5 and thus the networks constructed by players P1

and P6 will be such that the shortest paths from x1 to the nodes in G2 are node disjoint (in G1)
from the shortest paths from x6 to the nodes in G2, by Lemma 15. Fig. 4.1c demonstrates a best
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response for player P1. Using the optimal action of P1 and Lemma 15, we can determine a Nash
equilibrium as shown in Fig. 4.1d.

4.3 Nash Equilibrium of INDG for Networks Containing Star
Subgraphs

With our results on best responses in hand, we now turn our attention to proving the existence
of a Nash equilibrium. While it is challenging to show this for general G1, G2 and GI , here we
will prove that the INDG always has a Nash equilibrium when G2 contains a star subgraph,2 and
GI = (V1 ∪ V2, EI) is the complete bipartite network, i.e., EI = V1 × V2. We allow G1 to be
arbitrary. Without loss of generality, let y1 ∈ V2 be the hub node in G2 = (V2, E2), i.e.,

{(y1, y)|y ∈ V2, y 6= y1} ⊆ E2.

As we illustrate later via an example, the presence of heterogeneous players (captured by individ-
ual benefit functions and edge costs) along with the arbitrary structure of G1 leads to non-trivial
interconnection networks in equilibrium, even under the above assumptions on G2 and GI .

To develop our results, we partition the set of players P into two sets: high-cost players
SH = {Pi ∈ P |bi(1) − bi(2) < ci} and low-cost players SL = {Pi ∈ P |bi(1) − bi(2) ≥ ci}.
Recall that we assumed V1 = {x1, · · · , xn} and V2 = {y1, · · · , ym}. For the rest of this section,
we denote the number of players |P | by |V1| = n and the number of nodes in |V2| bym. We begin
our analysis in this section with the following useful corollary of Lemma 12 which determines a
best response action for the low-cost players.

Corollary 2. Assume that Pi ∈ SL. Then Wi = {(xi, y)|y ∈ V2} is a best response action for
player Pi regardless of the actions of the other players.

In the remaining of this chapter, we assume that low-cost players always set their action
according to the best response given by Corollary 2. In the next proposition, we discuss the best
responses of high-cost players when there is a low-cost player in their neighborhood. We define
the L-radius of a player Pi as the maximum nonnegative integer Li such that

bi(1)− ci + (m− 1)bi(2) ≤ mbi(Li + 1). (4.3)
2Such networks can be used to represent, for example, sensor networks that have a fusion center, or transportation

networks that have a “hub-and-spoke” structure [1, 82, 15].
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Proposition 11. Let Pi be a high-cost player. Suppose that there exists a low-cost player Pj ∈ SL
such that the distance between xj and xi is less than Li + 1 (i.e., dG1(xi, xj) < Li + 1), where
Li is the L-radius of player Pi. Then, if Pj has constructed edges to all nodes in V2, the empty
network is a best response action for player Pi.

Proof. Let Wi denote a best response action of the player Pi ∈ SH with respect to W−i. Node xi
has distance d ≤ Li to xj which is associated with a low-cost player Pj ∈ SL that is connected
to all of the nodes in V2. Now assume that Wi 6= φ. Then we have

Ψi(W1, · · · ,Wn) = ui(∪nj=1Wj|G1, G2, GI)

=
∑
yjinIi

bi(dG(xi, yj))− ci|Wi|

≤ |Wi|(bi(1)− ci) + (m− |Wi|)bi(2) (4.4)
≤ bi(1)− ci + (|Wi| − 1)bi(2) + (m− |Wi|)bi(2)

= bi(1)− ci + (m− 1)bi(2) ≤ mbi(Li + 1) ≤ mbi(d+ 1).

Therefore, player Pi can change its action to be the empty network and connect to the nodes it
depends on in G2 via edges constructed by the low-cost player Pj .

The above result shows that the existence of a low-cost player in the proximity of a high-cost
player will make the high-cost player a free rider in any Nash equilibrium, i.e., the high-cost
player does not construct any edges and benefits from the low-cost player’s edges.

Remark 11. Note that Corollary 2 and Proposition 11 do not rely onG2 having a star subgraph,
and hold whenever the low-cost players have dependencies on all nodes in G2.

Corollary 3. Assume that Pi ∈ SH . Then for any best response action of the player Pi, node xi
is either connected to only the center of the star subgraph in G2 (i.e., node y1 ∈ V2) or it does
not have any edges.

Proof. Since G2 has a star subgraph, the size of its smallest dominating set is 1 (i.e., the center
of the star, y1). Therefore, by Lemma 13, we must have that |Wi| ≤ 1. Furthermore, the proof of
Lemma 13 shows that with a single edge, Wi = {(xi, y1)} produces the highest possible utility
for Pi. Proposition 11 gives an instance of the situation when Wi = φ.

Although Corollary 3 limits the set of best response actions of a high-cost player to two
actions, it is not clear whether this game has a pure strategy Nash equilibrium for any set of
players with arbitrary network G1, edge cost ci and benefit function bi(·). We prove existence of
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Nash equilibrium in this game by providing an algorithm that outputs such an equilibrium. In
order to do this, we first need to define an index ri for each high-cost player Pi ∈ SH , called the
r-radius. The r-radius3 of player Pi with benefit function bi(·) and edge cost ci is defined as the
maximum nonnegative constant ri such that

bi(1)− ci+(m− 1)bi(2) ≤ bi(ri + 1) + (m− 1)bi(ri + 2). (4.5)

Note that by the above definition, Li ≥ ri where Li was defined in (4.3). For a given r-radius ri,
we define the ri-neighborhood of node xi as

Ni = {xj|Pj ∈ SH and dG1(xi, xj) ≤ ri}. (4.6)

If a high-cost player Pi has another high-cost player Pj with a single edge to V2 such that xj ∈ Ni,
then player Pi is better off with no edge to V2. This statement is also true if Pj is a low-cost player
by Proposition 11 and the fact that ri ≤ Li. The following proposition formally states these ideas.

Proposition 12. Let Pi be a high-cost player with r-radius ri. Suppose that there exists a player
Pj such that |Wj| ≥ 1 and dG1(xi, xj) ≤ ri. Then the empty network is a best response action
for the player Pi with respect to W−i.

The set of propositions that we provided in this section enables us to give an algorithm that
outputs a Nash equilibrium instance of the interconnection network design game with distance
utilities for an arbitrary relation between the set of players (i.e., arbitrary network G1) and arbi-
trary benefit function and cost of edges.

Theorem 3. Assume that network G2 has a star subgraph and GI is a complete bipartite graph
with partitions V1 and V2. Then the interconnection network design game with distance utilities
in Definition 12 always has a pure strategy Nash equilibrium.

Proof. We prove this theorem by construction. We provide an algorithm that outputs a Nash
equilibrium instance of the game given by a set of actions (W1,W2, · · · ,Wn) for the players.
The steps of the algorithm are as follows:

1. Connect nodes associated to the low-cost players to all of the nodes in V2.

2. Take S∞H as the set of all high-cost players with ri = ∞. Set the actions of all players
Pi ∈ S∞H to be the empty network, i.e., Wi = ∅.

3A player Pi with bi(1) − ci + (m − 1)bi(2) < 0 is defined to have ri = ∞, and their best response action is
always the empty network by Lemma 14.
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3. Determine the set SLH which consists of all high-cost players that have a low-cost player in
their Li-neighborhood where Li denotes the L-radius, i.e.,

SLH = {Pi ∈ SH |∃Pj ∈ SL; dG1(xi, xj) ≤ Li}

Set the actions of these players to be the empty network (by Proposition 11).

4. Consider the set of players whose actions have not been determined yet, and call it Q (we
know that Q ⊆ SH \ (SLH ∪ S∞H )). If the set Q is empty, exit the algorithm. Otherwise, let
Pi ∈ Q be the player with the lowest r-radius. Connect xi (i.e., the node associated to Pi)
via a single edge to the central node in G2. Remove Pi from Q.

5. Set the action of all high-cost players Pj ∈ Q with xi ∈ Nj
4 to the empty network and

remove them from the set Q.

6. Return to step 4.

We now argue that the output of the above algorithm is in fact a Nash equilibrium. Since the
actions of low-cost players are in accordance with Corollary 2, they are in Nash equilibrium.
The same is true for all high-cost players in S∞H by Lemma 14. High cost players with a low-
cost player in their Li-neighborhood are also playing their optimal action, according to Proposi-
tion 11. Thus we only need to prove optimality of the actions of the remaining players which are
determined through steps 4 to 6. Note that all of the remaining players have ri <∞.

Consider the set SH \ (SLH ∪ S∞H ) = {Pi1 , · · · , Pit} and assume without loss of generality
that ri1 ≤ ri2 ≤ · · · ≤ rit . Under the algorithm, the action of Pi1 is Wi1 = {(xi1 , y1)}. We know
that there is no low-cost player in the Li1-neighborhood of Pi1 , since Pi1 ∈ SH \ (SLH ∪ S∞H ).
Similarly, there is no high-cost player with a nonempty action in the Ni1 neighborhood of Pi1 .
Now assume that there exists a player Pij ∈ SH \ (SLH ∪S∞H ) with j > 1 and |Wij | = 1. We have
to show that xij /∈ Ni1 , since otherwise the action of player Pi1 will not be optimal. In step 5 of
the algorithm, we set the actions of all players Piq such that xi1 ∈ Niq to the empty network and
remove them from the set Q. Hence, we must have that xi1 /∈ Nij , i.e.,

dG1(xi1 , xij) > rij ≥ ri1 .

Therefore, xij /∈ Ni1 and thus the action of player Pi1 is optimal.

The actions of all players whose actions are set to be the empty network in step 5 are optimal,
by Proposition 12.

4Nj is the rj-neighborhood of player Pj and was defined in (4.6).
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Finally, consider any player Pij with |Wij | = 1 and j > 1. We know that xik /∈ Nij for
any k < j with |Wik | = 1; otherwise the action of player Pij would have been set to the empty
network in step 5 of the algorithm after assigning the action of player Pik in step 4. Moreover,
by a reasoning similar to the argument for optimality of Pi1’s action, we can show that for any
player Pit with t > j and |Wit| = 1, xit /∈ Nij . Therefore, the action of player Pij is a best
response.

Thus, each player is playing their best response given the actions of the rest of the players,
which implies that the given vector of actions is a Nash equilibrium.

Algorithm 1 gives the pseudo-code of the algorithm that we explained in the proof of Theo-
rem 3. The following example illustrates the steps of the algorithm, and the corresponding Nash
equilibrium.
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Figure 4.2: (a) Network G1 (b) Network G2.

Example 8. Consider two networks G1 = (V1, E1) and G2 = (V2, E2) depicted in Figures 4.2a
and 4.2b with complete dependencies between nodes in G1 and G2. Assume that the cost of
constructing edges is equal to 1 for all of the players, i.e., ci = 1, 1 ≤ i ≤ 9. Suppose the benefit
functions for the players take the values given in Table 4.1. Based on these values, player 7 is a
low-cost player (since c7 < b7(1)− b7(2)) and the rest of the players have high edge costs, i.e.,

SL = {P7}
SH = {P1, P2, · · · , P6, P8, P9}.

The corresponding values of the radii ri and Li (given by inequalities (4.5) and (4.3), respec-
tively) are shown in the table.

We now follow the algorithm prescribed in the proof of Theorem 3.

1. P7 is the only low-cost player, and thus we connect x7 to all of the nodes in G2, i.e.,

W7 = {(x7, yi)|1 ≤ i ≤ 7}.
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Algorithm 1 Find Nash Equilibria
Input: Graphs G1 and G2, benefit functions bi(·) and edge cost ci for each player
Output: A set of actions for players that constitutes a Nash equilibrium instance of the Network
Design Game with Distance Utilities

1: for each vertex xi ∈ V1 do
2: Set[i]=0
3: if bi(1)− ci > bi(2) then
4: Set[i]=1
5: Wi = {(xi, yj)|yj ∈ V2}
6: end if
7: end for
8: for each vertex xi ∈ V1 & Set[i]=0 do
9: Li = arg maxL≥0{bi(1)− ci + (m− 1)bi(2) ≤ mbi(L+ 1)}

10: if ∃xj ∈ V1 with set[j]=1 & dG1(xi, xj) ≤ Li then
11: Set[i]=2
12: Wj = {}
13: end if
14: end for
15: for each vertex xi ∈ V1 & Set[i]=0 do
16: ri = arg maxr≥0{bi(1)− ci + (m− 1)bi(2) ≤ bi(r + 1) + (m− 1)bi(r + 2)}
17: Ni = {xj|dG1(xi, xj) ≤ ri}
18: end for
19: while ∃xi ∈ V1 s.t. Set[i]=0 do
20: j = arg minSet[i]=0{ri}
21: Set[j]=3
22: Wj = {(xj, y1)}
23: for each xk ∈ V1 such that Set[k]=0 & xj ∈ Nk do
24: Set[k]=2
25: end for
26: end while

2. For each node vi whose distance to the low-cost player x7 is at most Li, we set that player’s
action to be empty. These nodes are given by {P1, P3, P8, P9}, and thusW1 = W3 = W8 =
W9 = ∅.

3. The second player has the lowest r-radius among the remaining players and thus we set
its action to W2 = {(x2, y1)}. Since @Pj, j ∈ {4, 5, 6} such that x2 ∈ Nj , we must choose
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bi(1) bi(2) bi(3) bi(4) bi(5) Li ri
P1 1.5 1.3 1.2 1.1 0.2 2 1
P2 1.2 0.8 0.5 0.2 0 1 0
P3 1.1 0.9 0.1 0 0 1 0
P4 0.9 0.8 0.7 0.5 0.2 2 1
P5 1.2 1.1 0.9 0.2 0.1 1 0
P6 1.3 1 0.5 0.4 0.3 1 0
P7 3 1 0.5 0.5 0.4 NA NA
P8 1.2 0.8 0.7 0.5 0.4 1 1
P9 1.2 1.1 1.1 1 0.2 3 2

Table 4.1: Benefit function, r-radius and L-radius of the players in Example 8

the next player with the lowest ri. Recall that Nj was defined in (4.6).

4. Player P5 with r5 = 0 has the lowest r-radius among the remaining players. Thus we set
W5 = {(x5, y1)}. Again since @Pj, j ∈ {4, 6} such that x5 ∈ Nj , we must choose the next
player with the lowest ri.

5. Finally, we choose player P6 with r6 = 0 and set its action to W6 = {(x6, y1)}. Due to the
fact that x6 ∈ N4, we set the action of player P4 to the empty network, i.e., W4 = φ.

Fig. 4.3 demonstrates the output of the algorithm given in the proof of Theorem 3 when networks
G1 and G2 depicted in Fig. 4.2b are given as input.

As one can see, the role of the hub nodes is crucial in the structure of the Nash equilibrium
interconnection networks. While low edge cost players connect their associated nodes in G1 to
all of the nodes in the network G2 (and thus themselves become hubs), the remaining high-cost
players either choose (I) the empty network and connect via edges constructed by other players
or (II) they directly connect to the hub node in network G2.

4.3.1 Price of Anarchy

The concept of “price of anarchy” (PoA) was introduced in [58] to measure how selfish behav-
ior of the individual players degrades the efficiency of the output in a non-cooperative game.
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Figure 4.3: Networks G1 and G2 with the Nash equilibrium interconnection network Gp con-
necting them. Network Gp was produced by the algorithm given in the proof of Theorem 3.

Given a strategy W = (W1,W2, . . . ,Wn) taken by the players and T (W ) =
∑n

i=1 ui(Wi ∪
W−i|G1, G2, GI) as the social welfare function, PoA is defined as

PoA =
maxW∈S T (W )

minW∈E T (W )
,

where in the above S denotes the joint strategy space and E ⊆ S is the set of strategies in Nash
equilibrium.

We show via the following example that the PoA can be arbitrarily large in the INDG.

Example 9. Consider two networks G1 = (V1, E1) and G2 = (V2, E2), each containing star
subgraphs centered on nodes x1 ∈ V1 and y1 ∈ V2, respectively, i.e.,

{(x1, xi)|xi ∈ V1} ⊆ E1

{(y1, yi)|yi ∈ V2} ⊆ E2.

Suppose that we have full dependencies between nodes in V1 and V2, i.e.,GI = (V1∪V2, V1×V2).
Assume that all of the players Pi, 1 ≤ i ≤ |V1| in the INDG have ci = 2.1, bi(1) = 1 and
bi(2) = bi(3) = 1/(|V2|−1), where |V1| > |V2| > 1. This means that bi(1)−ci+(|V2|−1)bi(2) =
−0.1 < 0 for all of the players Pi ∈ P and thus by Lemma 14, none of the players constructs
any edges. Therefore, the social welfare value T (W ) = 0 for all strategies in Nash equilibrium.
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Now consider the socially optimal interconnection strategy, i.e., the strategy that maximizes
T (·). For the strategy W ? = (W ?

1 ,W
?
2 , . . . ,W

?
n) where W ?

1 = {(x1, y1)} and W ?
i = φ, i 6= 1,

we have that

T (W ?) =
n∑
i=1

ui(W
∗
i ∪W ∗

−i|G1, G2, GI)

= b1(1)− c1 + (|V2| − 1)b1(2) +

|V1|∑
j=2

(bj(2) + (|V2| − 1)bj(3))

= −0.1 +
(|V1| − 1)|V2|
|V2| − 1

> 0.

Therefore, the network that maximizes the social welfare function has a nonzero utility and thus
PoA is trivially infinite.

Remark 12. The network GSocOpt = ∪ni=1Wi that maximizes the social utility function T (W ) is
called the socially optimal network. Similar to the proof of the Theorem 2, one can show that
finding the socially optimal network is an NP-hard problem.

4.4 INDG vs Islands-Connection model

The interconnection network design problem that we investigated in this chapter has similarities
to the Islands-Connection (IC) model that was mentioned in the Introduction (Chapter 1). While
the IC model considers a homogeneous set of players, the INDG model includes the case that
players have different cost and benefit functions. Furthermore, the topologies of networks G1

and G2 (which correspond to islands in the IC model) in INDG are fixed, whereas in IC the
structure of the islands depends on the cost of intra-island edge construction. When the cost of
intra-island and inter-island edge formation are lower than certain thresholds, [49] shows that
there are complete connections inside the islands. In addition, while the distance between all
pairs of inter-island nodes are taken into account in the IC model, our INDG model allows the
interdependency network GI to characterize the set of important inter-island distances.

4.5 Summary

We introduced the interconnection network design game between two networks G1 and G2. In
this game, there is a heterogeneous (in terms of utility function) set of network designers, each
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associated with a node in the network G1. Each node in G1 is dependent on certain nodes in G2,
and these dependencies are captured by a network GI . The utility of the players is defined based
on the distance-utility function where the objective of each player is to build a set of edges from
its associated node to nodes in the network G2 such that distances between its associated node
and the nodes it depends on in G2 are minimized. We showed that finding a best response action
of a player is NP-hard. Nevertheless, we showed certain important properties of the best response
networks, which enabled us to find a Nash equilibrium for certain instances of the game.
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Chapter 5

Random Interdependent Networks

In Chapter 4, we studied the optimal allocation of interconnection edges in an interdependent net-
work. To complement our studies, in this chapter we use random network models to investigate
certain spectral and structural properties of such networks, namely edge expansion, r-robustness,
algebraic connectivity and the smallest eigenvalue of the grounded Laplacian matrix. In addition
to their topological implications, these properties also play a key role in certain variants of diffu-
sion dynamics on networks. Our analysis in this chapter is applicable to interdependent networks
with an arbitrary number of subnetworks.

We consider the class of random interdependent networks consisting of k subnetworks, where
each edge between nodes in different subnetworks is present independently with a certain proba-
bility p. Our model is fairly general in that we make no assumption on the topologies within the
subnetworks, and captures Erdos-Renyi graphs and random k-partite graphs as special cases. We
use the graph theoretic notion of isoperimetric constant (denoted by i(G)) as the key property
to derive our results. Our first result characterizes a threshold pr for random k-partite networks
to have i(G) > r − 1 where r is a positive integer. Furthermore, we prove that pr is also the
threshold for the minimum degree of the network to be r. This is potentially surprising given that
i(G) > r − 1 is a significantly stronger graph property than r-minimum-degree. Secondly, we
show that when the probability of inter-network edge formation is sufficiently high, i(G) scales
as Θ(np), where n is the number of nodes in each subnetwork.

We then focus on the algebraic connectivity of random interdependent networks (defined as
the second smallest eigenvalue of the Laplacian matrix). We show that when the inter-network
edge formation probability p satisfies a certain condition, the algebraic connectivity of the net-
work grows as Θ(np) asymptotically almost surely, regardless of the topologies within the sub-
networks. Given the key role of algebraic connectivity in the speed of consensus dynamics
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on networks [73], our analysis demonstrates the importance of the edges that connect different
communities in the network in terms of facilitating information spreading, in line with classical
findings in the sociology literature [42]. Our result on algebraic connectivity of random inter-
dependent networks is also applicable to the stochastic block model or planted partition model
that has been widely studied in the machine learning literature [28, 2, 20, 65]. While we con-
sider arbitrary intra-network topologies, in the planted partition model it is assumed that the
intra-network edges are also placed randomly with a certain probability. Furthermore, the lower
bound that we obtain here for λ2(L) is tighter than the lower bounds obtained in the existing
planted partition literature for the range of edge formation probabilities that we consider [28].

Next, we provide a bound for the smallest eigenvalue of the grounded Laplacian matrix (ob-
tained by removing certain rows and columns of the Laplacian matrix) of random interdependent
networks. This eigenvalue dictates the rate of convergence in consensus dynamics in a network
where some nodes do not change their states; such nodes are called stubborn or leaders (de-
pending on the context). The rate of convergence induced by certain sets of stubborn nodes in
consensus dynamics has been the subject of study over the past few years [18, 35, 79], and our
results add to this literature by studying such dynamics in interdependent networks. We show
that in the case where all of the nodes in one of the subnetworks are leaders or stubborn agents,
the smallest eigenvalue of the grounded Laplacian scales as Θ(np) asymptotically almost surely
provided that the probability of edge formation between a normal node and a leader node is
sufficiently high.

Finally, we analyze a metric known as r-robustness of networks. In recent years, the robust-
ness of interdependent networks to intentional disruption or natural malfunctions has started to
attract attention by a variety of researchers [32, 84, 97]. As we will describe later, r-robustness
has strong connotations for the ability of networks to withstand structural and dynamical dis-
ruptions: it guarantees that the network will remain connected even if up to r − 1 nodes are
removed from the neighborhood of every node in the network, and facilitates certain consensus
dynamics that are resilient to adversarial nodes [62, 100, 23, 98, 92]. We identify a bound pr for
the probability of inter-network edge formation p such that for p > pr, random interdependent
networks with arbitrary intra-network topologies are guaranteed to be r-robust asymptotically
almost surely. For the special case of k-partite random graphs, we show that this pr is tight (i.e.,
it forms a threshold for the property of r-robustness). In fact, the aforementioned pr is the same
as the threshold for k-partite random graphs to have isoperimetric constant higher than r − 1
which itself is equal to the threshold to have minimum degree of r. Recent work has shown that
the two properties of r-minimum degree and r-robustness share the same thresholds in Erdos-
Renyi random graphs [98] and random intersection graphs [100], and our work in this chapter
adds random k-partite graphs to this list.

We start with defining each property and then discussing its implications for dynamics on
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such networks.

5.1 Background and Application

5.1.1 Isoperimetric Constant

The edge-boundary of a set of nodes S ⊂ V is given by ∂S = {(vi, vj) ∈ E | vi ∈ S, vj ∈ V \S}.
The isoperimetric constant of G is defined as [16]

i(G) , min
A⊂V,|A|≤n

2

|∂A|
|A|

. (5.1)

By choosing A as the vertex with the smallest degree we obtain i(G) ≤ dmin. Our results about
the isoperimetric constant of random interdependent networks (given in Section 5.3) are at the
heart of many of the subsequent results that we provide in this chapter.

5.1.2 Algebraic Connectivity

The second smallest eigenvalue of the Laplacian matrix λ2(L), is called the algebraic connectiv-
ity of the graph and is related to the isoperimetric constant by [16]

i(G)2

2dmax
≤ λ2(L) ≤ 2i(G). (5.2)

Algebraic connectivity has important implications in various areas [30, 21]. For instance, alge-
braic connectivity is a lower bound for node and edge connectivity, i.e., the minimum number of
nodes or edges that have to be removed in order to make the graph disconnected [52]. Here, we
focus on the application of algebraic connectivity in consensus dynamics.

Consider a multi-agent setting with n agents and interaction topology modeled by the graph
G = (V,E), where each node of G corresponds to an agent. There is an edge between two nodes
in the graph G if their corresponding agents communicate or exchange information. Associated
with each agent vi ∈ V is an initial state (an opinion, decision, measurement, etc.) which is
represented by a real value xi(0) ∈ R and evolves over time as a function of the states of vi’s
neighbors. Assume that each agent updates its state xi(t) as

ẋi(t) =
∑
vj∈Ni

(xj(t)− xi(t)).
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The system-wide dynamics can then be represented by

Ẋ(t) = −LX(t), (5.3)

where X(t) = [x1(t), x2(t), . . . , xn(t)]T denotes the vector of states of all of the nodes and
L denotes the Laplacian matrix. When G is a connected graph, the state of all of the agents
converges to 1TX(0)/n (the average of the initial values) and the asymptotic convergence rate
is given by λ2(L) [73]. We provide a tight bound for λ2(L) in Section 5.4 when the underlying
graph belongs to the class of random interdependent networks.

5.1.3 Smallest Eigenvalue of the Grounded Laplacian

Next, consider the consensus setting with a group of agents S ⊂ V who keep their states constant,
i.e., ∀vs ∈ S,∃xs ∈ R such that xs(t) = xs, ∀t ≥ 0. Depending on the context, these agents are
called stubborn agents or leaders [35, 79]. Let XF and XS denote the states of the follower and
stubborn agents, respectively. Then the equation (5.3) can be written as[

ẊF (t)

ẊS(t)

]
= −

[
L11 L12

L21 L22

] [
XF (t)
XS(t)

]
. (5.4)

Matrices L21 and L22 are both zero by the definition of stubborn agents. Matrix L11 is called
the grounded Laplacian of the system and is denoted by L11 = Lg(S); we drop the argument
S whenever it is clear from the context. It can be shown that the state of each follower agent
asymptotically converges to a convex combination of the values of the stubborn agents with
convergence rate given by λ(Lg), the smallest eigenvalue of the grounded Laplacian [18]. Fur-
thermore, the smallest eigenvalue of the grounded Laplacian is inversely proportional to the H∞
coherence metric which is used to measure deviations of the non-leader agents from their steady
state value when they are affected by noise [78]. In Section 5.5, we obtain a bound for λ(Lg)
when G is a random interdependent network.

5.1.4 The Notion of r-Robustness

We use the following metric known as r-robustness to study robustness of networks against
structural and dynamical disruptions.

Definition 15 ([62]). Let r ∈ N. A subset S of nodes in the graph G = (V,E) is said to be
r-reachable if there exists a node vi ∈ S such that |Ni \ S| ≥ r. A graph G = (V,E) is said
to be r-robust if for every pair of nonempty, disjoint subsets V1, V2 ⊆ V , either V1 or V2 is
r-reachable.
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Simply put, an r-reachable set contains a node that has r neighbors outside that set, and an
r-robust graph has the property that no matter how one chooses two disjoint nonempty sets, at
least one of those sets is r-reachable. The property of r-robustness is significantly stronger than
the property of r-connectivity (or r-minimum degree); an r-robust graph will remain connected
even after up to r− 1 nodes are removed from the neighborhood of every remaining node, while
an r-connected graph will only guarantee connectedness after the removal of r− 1 nodes in total
[62, 98]. Indeed, the gap between the robustness and node connectivity (and minimum degree)
parameters can be arbitrarily large, as illustrated by the graphG in Fig. 5.1a. While the minimum
degree and node connectivity of the graph G is n/4, it is only 1-robust (consider disjoint subsets
V1 ∪ V2 and V3 ∪ V4).

The following result shows that the isoperimetric constant i(G) provides a lower bound on
the robustness parameter.

..

.
..
.

..

.
..
.

V1 V2 V3 V4

(a)

i(G) > r − 1

G is r-robust
G is r-connected

dmin(G) = r

G is a graph on n nodes

(b)

Figure 5.1: (a) Graph G = (V,E) with V = V1 ∪ V2 ∪ V3 ∪ V4 and |Vi| = n
4
, 1 ≤ i ≤ 4. All of

the nodes in V1 (V3) are connected to all of the nodes in V2 (V4). Furthermore, there is a one to
one connection between nodes in V2 and nodes in V3. (b) Relationships between different notions
of robustness.

Lemma 16. Let r be a positive integer. If i(G) > r − 1, then the graph is at least r-robust.

Proof. If i(G) > r− 1, then every set of nodes S ⊂ V of size up to n
2

has at least (r− 1)|S|+ 1
edges leaving that set (by the definition of i(G)). By the pigeonhole principle, at least one node
in S has at least r neighbors outside S. Now for any two disjoint non-empty sets S1 and S2,
at least one of these sets has size at most n

2
, and thus is r-reachable. Therefore, the graph is

r-robust.
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Note that together with (5.2), the above lemma implies that any graph is at least dλ2(L)
2
e-

robust. As an example of Lemma 16, consider the graph G in Fig. 5.1a which has isoperimetric
constant of at most 0.5 (since the edge boundary of V1∪V2 has size n/4), but is 1-robust. In fact,
the gap between the robustness parameter and isoperimetric constant can be arbitrarily large.
For instance, given any arbitrary t ∈ N and n sufficiently large, assume that each node in V2

(V3) is connected to exactly t nodes in V3 (V2)) and the rest of the graph is the same as the
structure shown in Fig. 5.1a. Then the isoperimetric constant of the proposed graph is at most
t/2. However, one can show that the constructed graph is t-robust. The relationships between
these different graph-theoretic measures of robustness are summarized in Fig. 5.1b.

In order to see application of r-robustness in consensus dynamics, consider the case where
agents synchronously update their states according to the following filtering dynamics [62, 98]:
given F ∈ N, at each time step, each node receives the values of its neighbors, disregards the
largest and the smallest F values (breaking ties arbitrarily) and updates its state as

xi[k + 1] = wii[k]xi[k] +
∑

j∈Ri[k]

wij[k]xj[k], (5.5)

where Ri[k] represents the set of nodes whose values were adopted by node i at time step k. In
(5.5), wii[k] and wij[k] are the weights at time step k which satisfy

∑
j∈Ri[k] wij[k] = 1, ∀i ∈

V, k ∈ Z≥0. Then, consensus of the agents is guaranteed if and only if the underlying graph G is
at least (F + 1)-robust [62]. Furthermore, if there are up to F adversarial (arbitrarily behaving)
nodes in the neighborhood of every normal node, then under these dynamics, all regular nodes
will converge to consensus in the convex hull of the initial values of the normal nodes as long as
the graph is (2F + 1)-robust [62, 98].

5.2 Random Interdependent Networks

We investigate the properties that we discussed in the last section for the class of random inter-
dependent networks. The formal definition of this class of networks is given below.

Definition 16. An interdependent network G is denoted by a tuple G = (G1, G2, . . . , Gk, Gp)
where Gi = (Vi, Ei) for i = 1, 2, . . . , k are called the subnetworks of the network G, and
Gp = (V1 ∪ V2 ∪ . . . ∪ Vk, Ep) is a k-partite network with Ep ⊆ ∪i 6=jVi × Vj specifying the
interconnection (or inter-network) topology.

In the remaining of this chapter, we assume that |V1| = |V2| = · · · = |Vk| = n and that the
number of subnetworks k is at least 2.
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Definition 17. Define the probability space (Ωn,Fn,Pn), where the sample space Ωn consists
of all possible interdependent networks (G1, G2, . . . , Gk, Gp) and the index n ∈ N denotes
the number of nodes in each subnetwork. The σ-algebra Fn is the power set of Ωn and the
probability measure Pn associates a probability P(G1, G2, . . . , Gk, Gp) to each network G =
(G1, G2, . . . , Gk, Gp). A random interdependent network is a networkG = (G1, G2, . . . , Gk, Gp)
drawn from Ωn according to the given probability distribution.

Note that deterministic structures for the subnetworks or interconnections can be obtained as
a special case of the above definition where P(G1, G2, . . . , Gk, Gp) is 0 for interdependent net-
works not containing those specific structures; for instance, a random k-partite graph is obtained
by allocating a probability of 0 to interdependent networks where any of the Gi for 1 ≤ i ≤ k
is nonempty. Through an abuse of notation, we will refer to random k-partite graphs simply by
Gp. Similarly, Erdos-Renyi random graphs on kn nodes are obtained as a special case of the
above definition by choosing the edges in G1, G2, . . . , Gk and Gp independently with a common
probability p.

In this chapter, we will focus on the case where Gp is independent of Gi for 1 ≤ i ≤ k.
Specifically, we assume that each possible edge of the k-partite network Gp is present indepen-
dently with probability p (which can be a function of n). We will characterize certain properties
of such networks as n gets large. Recall that for a random interdependent network (similar to the
ER networks), we say that a property P holds asymptotically almost surely (a.a.s.) if the prob-
ability measure of the set of graphs with property P (over the probability space (Ωn,Fn,Pn))
tends to 1 as n→∞.

5.2.1 Application of Consensus Dynamics on Random Interdependent Net-
works

Consider a society with multiple communities, where individuals have inter-community and
intra-community links. Modeling the interaction among individuals by an interdependent net-
work (where each subnetwork represents a community), the consensus (or opinion) dynamics
described in the previous section can be interpreted as follows.

• The case that individuals update their decision by aggregating the opinions of all of their
neighbors corresponds to the standard consensus dynamics given by equation (5.3). Then,
the algebraic connectivity of the interdependent network determines how fast information
spreads throughout the network.
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• Equation (5.4) models the situation that one of the communities acts as a leader community
(i.e., its members keep their opinions fixed). In this case, the smallest eigenvalue of the
grounded Laplacian matrix determines the speed at which the follower nodes converge to
the steady state.

• Finally, the filtering dynamics in equation (5.5) generalize DeGroot opinion dynamics [22]
by allowing the nodes to discard the most extreme opinions of their neighbors before aver-
aging the rest [98]. The notion of r-robustness enables us to understand the ability of the
network to facilitate consensus under such dynamics even when some individuals behave
in an adversarial or erratic manner.

5.3 Isoperimetric Constant of Random Interdependent Net-
works

This section provides two important results about the isoperimetric constant of random interde-
pendent networks. We start with the following lemma, giving a threshold for the isoperimetric
constant of a random k-partite network to be greater than r − 1.

Lemma 17. Consider a random k-partite network Gp with n nodes in each subnetwork and
inter-network edge formation probability p = p(n). Let x = x(n) be some function satisfying
x = o(ln lnn) and x→∞ as n→∞. Then for any positive integer r and k ≥ 2,

1. If p(n) = lnn+(r−1) ln lnn+x(n)
(k−1)n

, then i(Gp) > r− 1 (and thus the minimum degree is at least
r) a.a.s., and

2. If p(n) = lnn+(r−1) ln lnn−x(n)
(k−1)n

, then the minimum degree is at most r− 1 (and thus i(Gp) ≤
r − 1) a.a.s.

Proof. First consider the case that the inter-network edge formation probability is

p =
lnn+ (r − 1) ln lnn+ x

(k − 1)n
,

where x = o(ln lnn) and x→∞ when n→∞. We have to show that for any set of vertices of
size m, 1 ≤ m ≤ nk/2, there are at least m(r − 1) + 1 edges that leave the set a.a.s. Consider a
set S ⊂ V1 ∪ V2 ∪ · · · ∪ Vk with |S| = m. Assume that the set S contains si nodes from Vi for
1 ≤ i ≤ k (i.e., |S ∩ Vi| = si ≥ 0). Define ES as the event that m(r− 1) or fewer edges leave S.
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Note that |∂S| is a binomial random variable with parameters
∑k

l=1 sl

(∑k
t=1,t6=l(n− st)

)
and

p. We have that

k∑
l=1

sl

(
k∑

t=1,t 6=l

(n− st)

)
=

k∑
l=1

sl(n(k − 1)−m+ sl)

= n(k − 1)m−m2 +
k∑
l=1

s2
l . (5.6)

Then we have

Pr(ES) =

m(r−1)∑
i=0

(
n(k − 1)m−m2 +

∑k
l=1 s

2
l

i

)
pi(1− p)n(k−1)m−m2+

∑k
l=1 s

2
l−i

≤
m(r−1)∑
i=0

(
n(k − 1)m

i

)
pi(1− p)n(k−1)m−m2+

∑k
l=1 s

2
l−i. (5.7)

For si ∈ R, 1 ≤ i ≤ k, we have

k∑
i=1

s2
i ≥

(∑k
i=1 si

)2

k
, (5.8)

which is a direct consequence of the Cauchy-Schwartz inequality. Applying (5.8) to the inequal-
ity (5.7), we get 0 ≤ m2 −

∑k
l=1 s

2
l ≤

(k−1)m2

k
and thus

Pr(ES) ≤
m(r−1)∑
i=0

(
n(k − 1)m

i

)
pi(1− p)n(k−1)m− (k−1)m2

k
−i. (5.9)

Next note that k ≥ 2 and for 1 ≤ i ≤ m(r − 1), we have(
n(k−1)m

i

)
pi(1− p)n(k−1)m− (k−1)m2

k
−i(

n(k−1)m
i−1

)
pi−1(1− p)n(k−1)m− (k−1)m2

k
−(i−1)

=
n(k − 1)m− i+ 1

i

p

1− p

≥ n(k − 1)m−m(r − 1) + 1

m(r − 1)
× p

1− p

≥ n(k − 1)− r + 1

r − 1
× p

1− p
,
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which is lower bounded by some constant strictly larger than 1 for sufficiently large n. Thus
there exists some constant R > 0 such that

Pr(ES) ≤
m(r−1)∑
i=0

(
n(k − 1)m

i

)
pi(1− p)n(k−1)m− (k−1)m2

k
−i (5.10)

≤ R

(
n(k − 1)m

m(r − 1)

)
pm(r−1) × (1− p)n(k−1)m− (k−1)m2

k
−m(r−1).

Define Pm as the probability that there exists a set of nodes T such that |T | = m and |∂T | ≤
m(r − 1). Then using the inequality

(
n
m

)
≤ (ne

m
)m yields

Pm ≤
∑
|S|=m,

S⊂∪ki=1Vi

Pr(ES)

≤ R

(
nk

m

)(
n(k − 1)m

m(r − 1)

)
pm(r−1)(1− p)n(k−1)m− (k−1)m2

k
−m(r−1)

≤ R

(
nke

m

)m(
n(k − 1)mep

m(r − 1)

)m(r−1)

(1− p)n(k−1)m− (k−1)m2

k
−m(r−1) (5.11)

= R

(
ker

(r − 1)r−1(1− p)r−1

n(1− p)n(k−1)(n(k − 1)p)r−1

m(1− p)
(k−1)m

k

)m
≤ R

(
c1n(1− p)n(k−1)(n(k − 1)p)r−1

m(1− p)
(k−1)m

k

)m

,

where c1 is some constant satisfying ker

(r−1)r−1(1−p)r−1 ≤ c1 <
2ker

(r−1)r−1 for sufficiently large n.

Recalling the function p(n) = lnn+(r−1) ln lnn+x
(k−1)n

and using the inequality 1− p ≤ e−p yields

Pm ≤ R

(
c1ne

−n(k−1)p(n(k − 1)p)r−1

m(1− p)
(k−1)m

k

)m
= R

(
c1

(
lnn+ (r − 1) ln lnn+ x

lnn

)r−1
e−x

m(1− p)
(k−1)m

k

)m
≤ R

(
c2e
−x

m(1− p)
(k−1)m

k

)m

.

Due to the fact that lnn+(r−1) ln lnn+x
lnn

< 2 for sufficiently large n, c2 is a constant upper bound

for c1

(
lnn+(r−1) ln lnn+x

lnn

)r−1

such that 0 < c2 < c12r−1. Next, we substitute the Taylor series
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expansion ln(1− p) = −
∑∞

i=1
pi

i
for p ∈ [0, 1) in the above inequality to obtain

Pm ≤ R

(
c2e
−xe−

(k−1)m
k

ln(1−p)

m

)m

= R

(
c2e
−xe

(k−1)mp
k exp{ (k−1)m

k
p2
∑∞

i=2
pi−2

i
}

m

)m

.

Since we have
∑∞

i=2
pi−2

i
<
∑∞

i=2 p
i−2 = 1

1−p and (k−1)m
k

p2 → 0 as n → ∞, there exists a

constant c3 such that 0 < (k−1)m
k

p2
∑∞

i=2
pi−2

i
< c3 < 1 for sufficiently large n. Therefore,

Pm ≤ R

(
c2e

c3
e−xe

(k−1)mp
k

m

)m

= R

(
c4
e−xe

(k−1)mp
k

m

)m

,

where 0 < c4 = c2e
c3 < ker+12r

(r−1)r−1 .

Consider the function f(m) = e
(k−1)mp

k

m
. Since df

dm
=

e
(k−1)mp

k (
(k−1)mp

k
−1)

m2 , we have that df
dm

< 0

for m < k
(k−1)p

and df
dm

> 0 for m > k
(k−1)p

. Therefore, f(m) ≤ max{f(1), f(nk/2)} for
m ∈ {1, 2, . . . , bnk/2c}. We have

f(nk/2) =
2e

(k−1)nkp
2k

nk

=
2

k
e(− lnn+(r−1) ln lnn+x)/2.

Since ln lnn = o(lnn), we have that f(nk/2) = o(1). Moreover, 1 < f(1) = e
(k−1)p
k < e and

thus for sufficiently large n we must have f(m) ≤ f(1) < e. Therefore,

Pm ≤ R(c4e
1−x)m.

Let P0 be the probability that there exists a set S with size nk/2 or less that it is not r-reachable.
Then by the union bound we have

P0 ≤
bnk/2c∑
m=1

Pm ≤
∞∑
m=1

R(c4e
1−x)m =

Rc4e
1−x

1− c4e1−x = o(1),

since x → ∞ as n → ∞. Thus i(Gp) > r − 1 a.a.s. This also implies that Gp has minimum
degree at least r a.a.s. (by the relationships shown in Fig. 5.1b).
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To complete the proof, we have to show that for p = lnn+(r−1) ln lnn−x
(k−1)n

where x = o(ln lnn)

and x → ∞ when n → ∞, i(Gp) ≤ r − 1 a.a.s. In order to prove this, we show the stronger
result that Gp has a node with degree less than or equal to r − 1.

Consider the vertex set V1 = {v1, . . . , vn}, and define the random variable X = X1 + X2 +
· · · + Xn where Xi = 1 if the degree of node vi is less than r and zero otherwise. The goal is
to show that if p(n) = lnn+(r−1) ln lnn−x

(k−1)n
, then Pr(X = 0) → 0 asymptotically almost surely.

This means that for the specified p(n), there exists a node in V1 with degree less than r with high
probability. Thus by selecting that single node as the set S, we have i(Gp) ≤ |∂S|

|S| = r− 1 which
is exactly what we want to show.

The random variable X is zero if and only if Xi = 0 for 1 ≤ i ≤ n. The random variables
Xi and Xj are identically distributed and independent when i 6= j and thus we have

Pr(X = 0) = Pr(X1 = 0)n

= (1−Pr(X1 = 1))n

≤ e−nPr(X1=1), (5.12)

where the last inequality is due to the fact that 1− p ≤ e−p for p ≥ 0. Now, note that

nPr(X1 = 1) = n
r−1∑
i=0

(
n(k − 1)

i

)
pi(1− p)n(k−1)−i

≥ n

(
n(k − 1)

r − 1

)
pr−1(1− p)n(k−1)−r+1

≥ n

(
n(k − 1)

r − 1

)
pr−1(1− p)n(k−1), (5.13)

where the last inequality is obtained by using the fact that 0 < (1− p)r−1 ≤ 1 for r ≥ 1. Using
the fact that

(
n(k−1)
r−1

)
= Ω (nr−1) for constant r and k, and (1 − p)n(k−1) = en(k−1) ln(1−p) =

Ω(e−n(k−1)p) when np2 → 0 (which is satisfied for the function p that we are considering above),
the inequality (5.13) becomes

nPr(X1 = 1) = Ω
(
nrpr−1e−n(k−1)p

)
.

Substituting p = lnn+(r−1) ln lnn−x
(k−1)n

and simplifying, we obtain

nPr(X1 = 1) = Ω

(
(lnn+ (r − 1) ln lnn− x)r−1

(lnn)r−1
ex
)

= Ω(ex).
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Thus we must have that limn→∞ nPr(X1 = 1) = ∞, which proves that Pr(X = 0) → 0
as n → ∞ (from (5.12)). Therefore, there exists a node with degree less than r a.a.s. and
consequently, i(Gp) ≤ r − 1 a.a.s.

The above result shows that the function t(n) = lnn+(r−1) ln lnn
(k−1)n

forms a (sharp) threshold for
the property i(Gp) > r − 1, and also for the graph to have minimum degree r (a significantly
weaker property)1. Also note that the restriction x(n) = o(ln lnn) in the above lemma is for
technical reasons; the result will hold even if x(n) grows faster than this bound due to the fact
that i(Gp) > r− 1 and minimum degree being at least r are both monotonic properties (i.e., they
hold if more edges are added to the graph) [31].

Lemma 17 provides the condition under which the isoperimetric constant is higher or lower
than r − 1 (a constant value). Next, we will investigate a coarser rate of growth for the inter-
network edge formation p, and show that for such probability functions, the isoperimetric con-
stant scales as Θ(np). This will play a role in Sections 5.4 and 5.6, where we investigate algebraic
connectivity and robustness of random interdependent networks.

Lemma 18. Consider a random k-partite graph Gp = (V1 ∪ V2 ∪ · · · ∪ Vk, Ep) with node sets
Vi = {(i − 1)n + 1, (i − 1)n + 2, . . . , in} for 1 ≤ i ≤ k. Assume that the inter-network edge
formation probability p satisfies lim supn→∞

lnn
(k−1)np

< 1. Fix any ε ∈ (0, 1
2
]. Then there exists a

constant α (that depends on p) such that the minimum degree dmin, maximum degree dmax and
isoperimetric constant i(Gp) a.a.s. satisfy

αnp ≤ i(Gp) ≤ dmin ≤ dmax ≤ n(k − 1)p

(
1 +
√

3

(
lnn

(k − 1)np

) 1
2
−ε
)
. (5.14)

Proof. The inequality i(Gp) ≤ dmin follows immediately from the definition of the isoperimetric

constant. We will show that dmax ≤ n(k − 1)p
(

1 +
√

3( lnn
(k−1)np

)
1
2
−ε
)

asymptotically almost
surely. Let dj denote the degree of vertex j, 1 ≤ j ≤ kn. From the definition, dj is a binomial
random variable with parameters n(k − 1) and p and thus E[dj] = n(k − 1)p. Then, for any
0 < β ≤

√
3, by the Chernoff bound [67, 79]

Pr(dj ≥ (1 + β)E[dj]) ≤ e−
E[dj ]β

2

3 . (5.15)

1Loosely speaking, if p(n) is “bigger” than t(n) (in the sense specified by the lemma), then the stated properties
a.a.s. hold and if p(n) is “less” than t(n), the properties a.a.s. do not hold.
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Choose β =
√

3( lnn
(k−1)np

)
1
2
−ε, which is at most

√
3 for n sufficiently large and p satisfying the

conditions in the lemma. Substituting into equation (5.15), we have

Pr(dj ≥ (1 + β)E[dj]) ≤ e−(lnn)( lnn
(k−1)np

)−2ε

.

The probability that dmax is higher than (1 + β)E[dj] equals the probability that at least one of
the vertices has degree higher than (1 + β)E[dj], which by the union bound is upper bounded by

Pr(dmax ≥ (1 + β)E[dj]) ≤ knPr(dj ≥ (1 + β)E[dj])

≤ ke(lnn)−(lnn)( lnn
(k−1)np

)−2ε

≤ ke(lnn)(1−( lnn
(k−1)np

)−2ε).

Since the right hand-side of the above inequality goes to zero as n → ∞ for p satisfying the
condition in the lemma, we conclude that

dmax ≤ n(k − 1)p

(
1 +
√

3

(
lnn

(k − 1)np

) 1
2
−ε
)
,

asymptotically almost surely.

Next, we prove the lower-bound for i(Gp) in (5.14). We show that for any set of vertices of
size m, 1 ≤ m ≤ nk/2, there are at least αmnp edges that leave the set, for some constant α
that we will specify later and probability p satisfying limn→∞

lnn
(k−1)np

< 1.

Consider a set S ⊂ V1 ∪ V2 ∪ · · · ∪ Vk with |S| = m. Assume that the set S contains
si nodes from Vi for 1 ≤ i ≤ k (i.e., |S ∩ Vi| = si ≥ 0). Define ES as the event that
αmnp or fewer edges leave S. Note that |∂S| is a binomial random variable with parameters∑k

l=1 sl

(∑k
t=1,t6=l(n− st)

)
and p. As in the equality (5.6) and inequalities (5.7) and (5.9), we

have that

Pr(ES) ≤
bαmnpc∑
i=0

(
n(k − 1)m

i

)
pi(1− p)n(k−1)m− (k−1)m2

k
−i. (5.16)

Next note that k ≥ 2 and for 1 ≤ i ≤ bαmnpc,(
n(k−1)m

i

)
pi(1− p)n(k−1)m− (k−1)m2

k
−i(

n(k−1)m
i−1

)
pi−1(1− p)n(k−1)m− (k−1)m2

k
−(i−1)

=
n(k − 1)m− i+ 1

i
× p

1− p

≥ n(k − 1)m− αmnp+ 1

αmnp
× p

1− p

≥ k − 1− αp
α

× 1

1− p
≥ 1− αp
α(1− p)

≥ 1

α
,
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for α < 1 which will be satisfied by our eventual choice for α.

Now let Pm denote the probability of the event that there exists a set of size m with bαmnpc
or fewer number of edges leaving it. Then there must exist some constant R > 0 such that by the
same procedure as in inequalities (5.10) and (5.11), we have

Pm ≤ R

(
nke

m

)m(
n(k − 1)mep

αmnp

)αmnp
(1− p)n(k−1)m−αmnp− (k−1)m2

k

≤ R

(
(k − 1)e

α

)αmnp
em ln(nkem )e−p(n(k−1)m−αmnp− (k−1)m2

k
)

= Remh(m), (5.17)

where

h(m) = αnp+ αnp ln(k − 1)− αnp lnα + ln

(
nke

m

)
− p(n(k − 1)− αnp− (k − 1)m

k
)

= 1 + ln k +
(k − 1)pm

k
− lnm+ np

α + α ln(k − 1)− α lnα +
lnn

np
− (k − 1) + αp︸ ︷︷ ︸

Γ(α)

 .

(5.18)

Since ∂h(m)
∂m

= (k−1)p
k
− 1

m
is negative for m < k

(k−1)p
and positive for m > k

(k−1)p
, we have

h(m) ≤ max{h(1), h(nk/2)}

≤ max
{

1 + ln k +
(k − 1)p

k
+ npΓ(α), 1 + ln 2 + np

(
Γ(α) +

(k − 1)

2
− lnn

np

)}
.

From (5.18), ∂Γ(α)
∂α

= ln(k − 1) − lnα + p > 0 and thus Γ(α) is an increasing function in α
for α < (k − 1), with Γ(0) = lnn

np
− (k − 1) which is negative and bounded away from 0 for

sufficiently large n (by the assumption on p in the lemma). Therefore, for sufficiently small α,
there exists some positive constant ᾱ such that h(m) ≤ −ᾱnp for sufficiently large n. Thus
(5.17) becomes Pm ≤ Re−ᾱmnp for sufficiently large n.

The probability that i(Gp) ≤ αnp is upper bounded by the sum of the probabilities Pm for

87



1 ≤ m ≤ bnk/2c. Using the above inequality, we have

Pr(i(Gp) ≤ αnp) ≤
bnk/2c∑
m=1

Pm ≤ R

bnk/2c∑
m=1

e−ᾱmnp

≤ R

∞∑
m=1

e−ᾱmnp

= R
e−ᾱnp

1− e−ᾱnp
,

which goes to 0 as n→∞. Therefore, we have i(Gp) ≥ αnp asymptotically almost surely.

So far in this section, we have been focused on random k-partite graphs. In the next result, we
provide a bound for the isoperimetric constant of random interdependent graphs (with arbitrary
topologies within the subnetworks).

Lemma 19. Let G = (G1, G2, . . . , Gk, Gp) be a random interdependent network and assume
that the probability of inter-network edge formation p satisfies lim supn→∞

lnn
(k−1)np

< 1. Then
i(G) = Θ(np).

Proof. First we show that i(G) ≤ γnp for some γ > 0 a.a.s. Consider the set of nodes V1 in the
first subnetwork G1. The number of edges between V1 and all other Vj , 2 ≤ j ≤ k is a binomial
random variable B(n2(k − 1), p) and thus E[|∂V1|] = n2(k − 1)p. Using the Chernoff bound
[67] for the random variable |∂V1|, we have (for 0 < δ < 1)

Pr(|∂V1| ≥ (1 + δ)E[|∂V1|]) ≤ e
−E(|∂V1|)δ

2

3 . (5.19)

Choosing δ =
√

3√
lnn

, the upper bound in the expression above becomes exp
(
−n2(k−1)p

lnn

)
. Since

lnn < n(k− 1)p for n sufficiently large and for p satisfying the condition in the proposition, the
right hand side of inequality (5.19) goes to zero as n → ∞. Thus |∂V1| ≤ (1 + o(1))E[|∂V1|]
a.a.s. Therefore

i(G) = min
|A|≤nk

2
,

A⊆V1∪V2∪···∪Vk

|∂A|
|A|
≤ |∂V1|
|V1|

≤ (1 + o(1))n2(k − 1)p

n
≤ γnp,
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a.a.s. for some γ > 0.

Next, we have to show that i(G) ≥ αnp for some α > 0. Consider the k-partite subgraph of
network G which is denoted by Gp. By Lemma 18, we know that i(Gp) ≥ αnp a.a.s. Adding
edges does not decrease the isoperimetric constant (by definition of the isoperimetric constant)
and thus i(G) ≥ i(Gp) ≥ αnp a.a.s.

Remark 13. The results that we developed in this section for isoperimetric constant of ran-
dom interdependent and k-partite networks only depend on the inter-network edge formation
probability p. This fact demonstrates the importance of inter-network edges and is in line with
classical findings in the sociology literature [42]. For instance, in the setting introduced in Sec-
tion 5.2.1, the set of inter-network edges work as bridges between different communities and
transfer valuable information that cannot be obtained by the individuals otherwise. Moreover,
since our results in the rest of this chapter are directly derived from Lemmas 17, 18 and 19, they
are also only dependent on inter-network edge formation probability p and are independent of
intra-network topologies. A deeper investigation of the role of the subnetwork topologies would
potentially lead to further refinement of our results which is left as a venue for future work.

In the following sections, we build on these results to study the spectral and structural proper-
ties of random interdependent networks (with corresponding implications for consensus dynam-
ics that operate over these networks).

5.4 Algebraic Connectivity of Random Interdependent Net-
works

The algebraic connectivity of interdependent networks has started to receive attention in recent
years. The authors of [80] analyzed the algebraic connectivity of deterministic interconnected
networks with one-to-one weighted symmetric inter-network connections. The recent paper [64]
studied the algebraic connectivity of a mean field model of interdependent networks where each
subnetwork has an identical structure, and the interconnections are all-to-all with appropriately
chosen weights. Spectral properties of random interdependent networks (under the moniker
of planted partition models) have also been studied in research areas such as algorithms and
machine learning [2, 28, 71]. Here, we leverage our results from the previous section to provide
a bound on the algebraic connectivity for random interdependent networks that is the tightest
known bound for the range of inter-network edge formation probabilities that we consider.
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Theorem 4. Consider a random interdependent network G = (G1, G2, . . . , Gk, Gp) and assume
that the probability of inter-network edge formation p satisfies lim supn→∞

lnn
(k−1)np

< 1. Then
λ2(G) = Θ(np) a.a.s.

Proof. First note that by Lemma 19, there exists a constant γ > 0 such that i(G) ≤ γnp a.a.s.
Hence from inequality (5.2), we have λ2(G) = O(np) a.a.s.

Next, we prove the lower bound on λ2(G). Consider the k-partite subgraphGp of the network
G. By Lemma 18 and the inequality (5.2), we know that λ2(Gp) ≥ αnp for some constant α
a.a.s. Since adding edges to a graph does not decrease the algebraic connectivity of that graph
[13], we have λ2(G) ≥ λ2(Gp) ≥ αnp a.a.s.

Theorem 4 demonstrates the importance of inter-network edges on the algebraic connectivity
of the overall network when lim supn→∞

lnn
(k−1)np

< 1. This requirement on the growth rate of
p cannot be reduced if one wishes to stay agnostic about the probability distributions over the
topologies of the subnetworks. Indeed, by Lemma 17, if lim supn→∞

lnn
(k−1)np

> 1, a random
k-partite graph will have at least one isolated node a.a.s. and thus has algebraic connectivity
equal to zero a.a.s. In this case the quantity lnn

(k−1)n
forms a coarse threshold for the algebraic

connectivity being 0, or growing as Θ(np). On the other hand, if one had further information
about the probability distributions over the subnetworks, one could potentially relax the condition
on p required in the above results. For instance, as mentioned in Section 5.2, when each of the k
subnetworks is an Erdos-Renyi graph formed with probability p, then the entire interdependent
network is an Erdos-Renyi graph on kn nodes; in this case, the algebraic connectivity is Ω(np)
a.a.s. as long as lim supn→∞

lnn
knp

< 1 [79]. This constraint on p differs by a factor of k
k−1

from
the expression in Theorem 4.

5.5 Smallest Eigenvalue of the Grounded Laplacian in Ran-
dom Interdependent Networks

We now turn our attention to the smallest eigenvalue of the grounded Laplacian matrix, obtained
by removing certain rows and columns from the Laplacian. Specifically, we consider the case
where all of the rows and columns corresponding to the nodes in one of the subnetworks are
removed as described in Section 5.1.3. This represents the situation where all of the nodes in
the grounded subnetwork act as leaders in consensus dynamics, while the rest of the nodes are
followers.

90



Theorem 5. Consider a random interdependent network G = (G1, G2, . . . , Gk, Gp) with k sub-
networks Gi = (Vi, Ei), 1 ≤ i ≤ k where |Vi| = n for 1 ≤ i ≤ k and Gp = (∪ki=1Vi, Ep).
Suppose that one of the subnetworks consists only of leader nodes and the rest of the nodes in
the network are followers. Assume that the probability of edge formation between a follower and
leader node is denoted by p and satisfies lim supn→∞

lnn
np

< 1. Then the smallest eigenvalue of
the grounded Laplacian satisfies λ = Θ(np).

In order to prove this theorem, we use a simplified version of Theorem 1 in [78] which is
stated below.

Lemma 20 ([78]). Consider a graphG = (V,E) and suppose S ⊂ V is a set of grounded nodes.
For vi ∈ V \ S, let βi be the number of grounded nodes in node vi’s neighborhood and λ denote
the smallest eigenvalue of the grounded Laplacian Lg. Then

min
i∈V\S

βi ≤ λ ≤ max
i∈V\S

βi. (5.20)

Proof of Theorem 5. Without loss of generality assume that V1 consists entirely of leader nodes
and all other nodes are followers. For any node vj ∈ Vi where 2 ≤ i ≤ k, let βij be the number of
neighbors of the node vj in the set V1. Consider the inter-network topology Hi = (Vi ∪ V1, E

i
H)

between nodes in Vi and V1, i.e, Ei
H = Ep ∩ (Vi × V1). It is clear that Hi is a bipartite network

and thus βij is the degree of the nodes in Vi in the network Hi. Therefore, by Lemma 18 (with
k = 2), for the specified range of p, there exist α and γ such that

αnp ≤ dmin(Hi) ≤ min
1≤j≤n

βji

max
1≤j≤n

βji ≤ dmax(Hi) ≤ γnp,

a.a.s. The above inequalities hold for all 2 ≤ i ≤ k a.a.s. Since k is a constant value, we conclude
that there must exist α′, γ′ > 0 such that α′np ≤ mini∈V\S βi and maxi∈V\S βi ≤ γ′np a.a.s and
thus by Lemma 20, λ = Θ(np) a.a.s.

Remark 14. The analysis of grounded Laplacian matrices for scenarios where the leaders are
spread across multiple subnetworks is more challenging. The existing analytical bounds in the
literature for general grounded Laplacians require more information about the network topology
[79], and thus further research is required to obtain bounds for random interdependent networks
with arbitrary subnetwork topologies and general leader sets.
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5.6 Robustness of Random Interdependent Networks

Finally in this section, we characterize the conditions under which random interdependent net-
works are r-robust. We will first consider random k-partite networks, and show that they exhibit
phase transitions at certain thresholds for the probability p.

Theorem 6. For any positive integers r and k ≥ 2,

t(n) =
lnn+ (r − 1) ln lnn

(k − 1)n

is a threshold for r-robustness of random k-partite graphs.

Proof. Consider a random k-partite graph Gp with edge formation probability p(n) given by

p(n) =
lnn+ (r − 1) ln lnn+ x

(k − 1)n
,

where r ∈ N is a constant and x = x(n) is some function satisfying x = o(ln lnn) and x → ∞
as n→∞. By Lemma 17, we know that i(Gp) > r− 1. Therefore, by Lemma 16, Gp is at least
r-robust a.a.s.

Next consider p(n) = lnn+(r−1) ln lnn−x
(k−1)n

, where x = x(n) is some function satisfying x =

o(ln lnn) and x → ∞ as n → ∞. Lemma 17 indicates that the minimum degree of a random
k-partite graph Gp is less than r a.a.s. Hence, Gp is not r-robust a.a.s (by the relationships shown
in Fig. 5.1b).

Together with Lemma 17, the above result indicates that the properties of r-robustness and
r-minimum-degree (and correspondingly, r-connectivity) all share the same threshold function
in random k-partite graphs, despite the fact that r-robustness is a significantly stronger property
than the other two properties. In particular, this indicates that above the given threshold, random
k-partite networks possess stronger robustness properties than simply being r-connected: they
can withstand the removal of a large number of nodes (up to r − 1 from every neighborhood),
and facilitate consensus dynamics that are resilient to a large number of malicious nodes (up to
b r−1

2
c in the neighborhood of every normal node).

With the sharp threshold given by Theorem 6 for random k-partite graphs in hand, we now
consider general random interdependent networks with arbitrary topologies within the subnet-
works. Note that any general random interdependent network can be obtained by first drawing a
random k-partite graph, and then adding additional edges to fill out the subnetworks. Using the
fact that r-robustness is a monotonic graph property (i.e., adding edges to an r-robust graph does
not decrease the robustness parameter), we obtain the following result.
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Corollary 4. Consider a random interdependent network G = (G1, G2, . . . , Gk, Gp). Assume
that the inter-network edge formation probability satisfies p(n) ≥ lnn+(r−1) ln lnn+x

(k−1)n
, r ∈ Z≥1 and

x = x(n) is some function satisfying x = o(ln lnn) and x→∞ as n→∞. Then G is r-robust
a.a.s.

We conclude this section by characterizing the robustness of random interdependent networks
under a coarser rate of growth in p.

Theorem 7. Consider a random k-partite graph Gp with inter-network edge formation proba-
bility p = p(n) that satisfies lim supn→∞

lnn
(k−1)np

< 1. Then Gp is Θ(np)-robust a.a.s.

Proof. For p = p(n) satisfying the given condition, we have i(Gp) = Θ(np) a.a.s. from
Lemma 18. By Lemma 16, the robustness parameter of Gp is Ω(np) a.a.s. Furthermore, since
the robustness parameter is always less than the minimum degree of the graph, the robustness
parameter is O(np) a.a.s. from Lemma 18.

Once again, since adding edges to a network does not decrease the robustness parameter, the
above result immediately implies that for random interdependent networks with inter-network
edge formation probability satisfying lim supn→∞

lnn
(k−1)np

< 1, the robustness is Ω(np) a.a.s.

5.7 Summary

We studied certain spectral and structural properties of random interdependent networks. We
started by analyzing the isoperimetric constant of random k-partite graphs, and showed that the
properties i(G) > r− 1 and r-minimum-degree share the same threshold function. We also pro-
vided a range for p, the probability of inter-network edge formation, for which the isoperimetric
constant grows as Θ(np). We exploited these results to investigate three important characteristics
of random interdependent networks, namely the algebraic connectivity, the smallest eigenvalue
of the grounded Laplacian matrix and r-robustness. We determined tight asymptotic rates of
growth on the algebraic connectivity of random interdependent networks for certain ranges of
inter-network edge formation probabilities (regardless of the subnetwork topologies). Next, we
analyzed the condition where nodes in one of the subnetworks act as leaders and all of the other
nodes are followers. We specified a growth rate for the smallest eigenvalue of the grounded
Laplacian matrix for a range of inter-network edge formation probabilities (again, regardless of
the interaction topology among the follower nodes). Finally, we showed that r-robustness and
r-minimum-degree (and r-connectivity) all share the same threshold function, despite the fact
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that r-robustness is a much stronger property than the others. Our results lead to insights about
consensus and opinion dynamics that operate over random interdependent networks.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The objective of this thesis was to study the structure of multi-layer and interdependent networks.
One approach to investigate this problem was through the framework of random networks, where
each network is drawn from a certain probability distribution. An alternative perspective on
understanding the structure of networks was to view the edges as being optimally/strategically
placed (either by a central designer, or by different decision makers) in order to maximize some
given utility function(s). Each of these methods has its own weaknesses and strengths, and
provide different (complementary) perspectives on the structure of networks. While random
models exhibit certain interesting features, they do not explain why those processes might arise.
This is in contrast with the strategic models, where the reason behind a specific characteristic
can be traced back to primitive elements such as the cost of constructing edges and the form of
the utility function. However, strategic network formation models have two main drawbacks: the
requirement to model network designer incentives in the utility function and prediction of the
structure of the emerging networks. We obtained the following key results:

1. We generalized distance-based network formation to multi-layer networks, and showed
that the problem of finding an optimal network in this setting is NP-hard. By characterizing
some particular properties of optimal networks, we found the optimal networks for certain
special cases of reference graphs. Extending the concept of pairwise stability to multi-layer
networks revealed that the optimally designed networks are not necessarily stable.

2. We then focused on the case where multiple network designers are constructing their net-
works simultaneously. In introducing a game-theoretic framework to model this situation,
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we assumed that the utility of each network designer (player) depends on the structure of its
own network as well as the structure of the network designed by other players. We started
the analysis of this game by considering a distance-based utility with strategic substitute
for each player. This utility function has two important properties: first, the existence of
a link in the network of one player makes it less desirable for that link to appear in the
network of other players; and second, in this setting, each player can have its own specific
cost and benefit function. By construction, we proved that this game always has a Nash
equilibrium. Furthermore, our result indicates that hub-and-spoke networks commonly
observed in transportation systems arise as a Nash equilibrium, and that the presence of
low-cost players pushes high-cost players out of the game.

3. We also applied our multi-layer network formation game to a setting where each link can
appear in the network of only one of the players. This led to a 2-players game based
on the classical Colonel Blotto game where each player (as a network designer) has a
limited amount of resources to invest on the edges, and the player with a higher amount
of investment on one edge wins that edge. We characterized a Nash equilibrium of this
game when the utility of each player is a function of the diameter or the largest connected
component of the outcome network.

4. We then turned our attention to coupled interdependent networks. We defined a network
design game for optimally allocating the interconnection links between nodes of two net-
works G1 = (V1, E1) and G2 = (V2, E2), where V1 6= V2. There are |V1| players in this
game, each associated with a node in the set V1. Each node in V1 has interdependencies
with a subset of nodes in V2. Then the objective of each player was defined to build a set
of edges from its associated node to nodes in V2 such that its distances to the set of nodes it
depends on in G2 are minimized. We showed that determining a best response action of a
player in this game is NP-hard; however, certain insights can be gained about the structure
of the optimal actions. We proved existence of a pure Nash equilibria in this game under
certain conditions by providing an algorithm that outputs such an equilibrium of the game
for any set of players.

5. Finally, we focused on studying structural and spectral properties of interdependent net-
works via random network models. In a major contribution, we showed that “i(G) >
r − 1”, r-minimum degree, r-robustness and r-connectivity all share the same threshold
function, despite the fact that these properties have different degrees of strength. We also
provided a condition under which algebraic connectivity of random interdependent net-
works scales as Θ(np), which is independent of the topology inside the subnetworks and
depends only on the inter-network edge formation probability p. Our results were applica-
ble to random interdependent networks with an arbitrary number of subnetworks and led
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to insights about consensus and opinion dynamics that operate over such networks.

6.2 Future Work

It is likely that our results on multi-layer and interdependent networks can be further extended
to obtain finer insights into the structure of such networks. Below we provide some immediate
avenues for further studies.

1. In Chapter 2, we showed that finding a best response with respect to an arbitrary network
is NP-hard. Developing approximation algorithms is an interesting and potentially chal-
lenging avenue for future research on this problem. Our analysis revealed a relationship
between the tree-t-spanner problem and the best response network design problem (i.e.,
there is a reduction from the former to the latter), which formed the basis of our NP-
hardness proof. There is a rich literature on approximation algorithms for tree-t-spanners
[14, 11, 29, 25], and thus further investigations of the connections between tree-t-spanners
and the best response network problem might lead to approximation algorithms for the
latter.

2. Since we introduced multi-layer network formation games for the first time in this thesis,
our goal was to establish the existence and structural properties of the Nash equilibria,
which we could then use as a baseline to study other classes of games (such as Stackelberg
or sequential games). One avenue for further research on this problem is to study sequential
best response dynamics by the different players in order to capture the players changing
their networks over time in response to the networks constructed by other players. Our
simulations show that such best response dynamics converge to the Nash equilibria that
we have identified in this thesis, but we currently have proofs of convergence only for
certain cases.

3. The utility that we considered in our strategic network formation analysis was based on
the distance between nodes of the network. Furthermore, the networks were assumed to
be undirected unweighted graphs. Extension of this investigation to more general cases
(i.e., weighted graphs and other types of utility function) would be of value. For instance,
this might lead to an analysis of how economical relations between a group of countries
change as the political relationships between them change.

4. There are other possible research directions on the Colonel Blotto network formation game
such as investigating robustness of the pure Nash equilibrium networks against link fail-
ures, i.e., whether removing certain number of edges from the formed network of a player
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makes it disconnected or increases its diameter. Another interesting subject is exploiting
properties of random networks for strategic purposes. For example as we mentioned in
Remark 10, an Erdos Renyi graph and its complement have diameter 2 when the number
of nodes are large enough. Thus they form a pure Nash equilibria for the Colonel Blotto
network formation game with respect to diameter. Other connections that can be made
between random graphs and strategic formation is an interesting potential subject of re-
search. Studying a sequential version of the Colonel Blotto network formation game and
investigating convergence to Nash equilibria would also be of value.

5. In Chapter 4, we discussed strategic design of interdependent networks with two subnet-
works. Extension of this work to the case where there are more than two subnetworks
would be of value. We also proved the existence of a Nash equilibria when G2 has a star
subgraph and GI was the complete bipartite graph. Proving the existence of Nash equilib-
ria for other classes of G2 and GI is an interesting subject for future study.

6. The threshold function that we obtained in Chapter 5 for the isoperimetric constant of
random interdependent networks depends only on the inter-network edge formation prob-
ability. A deeper investigation of the role of the subnetwork topologies would potentially
lead to further refinement of our results. Also it was assumed that the inter-network edges
have identical and independent Bernoulli probability distributions. Extending the analy-
sis to other probability distributions over the inter-network edges is an important topic for
further research.

7. There are various interesting directions for research on the robustness of interdependent
networks, including development of a notion for structural robustness against cascading
failures. Recognizing vulnerable structures of interdependent networks (which depends
on the nature of failures and propagation dynamics) might be a helpful step toward this
direction. Another interesting subject is to consider a defense budget against adversaries
and then to investigate optimal allocation of the defense budget on the nodes to minimize
the impact of random and strategic attacks on layered networks. Finally, proposing a fault
diagnosis and compensation technique to reduce the spread of cascading failures is also an
interesting topic for further research on interdependent networks.
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