4 research outputs found

    Bus-driven floorplanning.

    Get PDF
    Law Hoi Ying.Thesis (M.Phil.)--Chinese University of Hong Kong, 2005.Includes bibliographical references (leaves 101-106).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- VLSI Design Cycle --- p.2Chapter 1.2 --- Physical Design Cycle --- p.6Chapter 1.3 --- Floorplanning --- p.10Chapter 1.3.1 --- Floorplanning Objectives --- p.11Chapter 1.3.2 --- Common Approaches --- p.12Chapter 1.3.3 --- Interconnect-Driven Floorplanning --- p.14Chapter 1.4 --- Motivations and Contributions --- p.15Chapter 1.5 --- Organization of the Thesis --- p.17Chapter 2 --- Literature Review on 2D Floorplan Representations --- p.18Chapter 2.1 --- Types of Floorplans --- p.18Chapter 2.2 --- Floorplan Representations --- p.20Chapter 2.2.1 --- Slicing Floorplan --- p.21Chapter 2.2.2 --- Non-slicing Floorplan --- p.22Chapter 2.2.3 --- Mosaic Floorplan --- p.30Chapter 2.3 --- Summary --- p.35Chapter 3 --- Literature Review on 3D Floorplan Representations --- p.37Chapter 3.1 --- Introduction --- p.37Chapter 3.2 --- Problem Formulation --- p.38Chapter 3.3 --- Previous Work --- p.38Chapter 3.4 --- Summary --- p.42Chapter 4 --- Literature Review on Bus-Driven Floorplanning --- p.44Chapter 4.1 --- Problem Formulation --- p.44Chapter 4.2 --- Previous Work --- p.45Chapter 4.2.1 --- Abutment Constraint --- p.45Chapter 4.2.2 --- Alignment Constraint --- p.49Chapter 4.2.3 --- Bus-Driven Floorplanning --- p.52Chapter 4.3 --- Summary --- p.53Chapter 5 --- Multi-Bend Bus-Driven Floorplanning --- p.55Chapter 5.1 --- Introduction --- p.55Chapter 5.2 --- Problem Formulation --- p.56Chapter 5.3 --- Methodology --- p.57Chapter 5.3.1 --- Shape Validation --- p.58Chapter 5.3.2 --- Bus Ordering --- p.65Chapter 5.3.3 --- Floorplan Realization --- p.72Chapter 5.3.4 --- Simulated Annealing --- p.73Chapter 5.3.5 --- Soft Block Adjustment --- p.75Chapter 5.4 --- Experimental Results --- p.75Chapter 5.5 --- Summary --- p.77Chapter 6 --- Bus-Driven Floorplanning for 3D Chips --- p.80Chapter 6.1 --- Introduction --- p.80Chapter 6.2 --- Problem Formulation --- p.81Chapter 6.3 --- The Representation --- p.82Chapter 6.3.1 --- Overview --- p.82Chapter 6.3.2 --- Review of TCG --- p.83Chapter 6.3.3 --- Layered Transitive Closure Graph (LTCG) --- p.84Chapter 6.3.4 --- Aligning Blocks --- p.85Chapter 6.3.5 --- Solution Perturbation --- p.87Chapter 6.4 --- Simulated Annealing --- p.92Chapter 6.5 --- Soft Block Adjustment --- p.92Chapter 6.6 --- Experimental Results --- p.93Chapter 6.7 --- Summary --- p.94Chapter 6.8 --- Acknowledgement --- p.95Chapter 7 --- Conclusion --- p.99Bibliography --- p.10

    Characterization and Avoidance of Critical Pipeline Structures in Aggressive Superscalar Processors

    Get PDF
    In recent years, with only small fractions of modern processors now accessible in a single cycle, computer architects constantly fight against propagation issues across the die. Unfortunately this trend continues to shift inward, and now the even most internal features of the pipeline are designed around communication, not computation. To address the inward creep of this constraint, this work focuses on the characterization of communication within the pipeline itself, architectural techniques to avoid it when possible, and layout co-design for early detection of problems. I present work in creating a novel detection tool for common case operand movement which can rapidly characterize an applications dataflow patterns. The results produced are suitable for exploitation as a small number of patterns can describe a significant portion of modern applications. Work on dynamic dependence collapsing takes the observations from the pattern results and shows how certain groups of operations can be dynamically grouped, avoiding unnecessary communication between individual instructions. This technique also amplifies the efficiency of pipeline data structures such as the reorder buffer, increasing both IPC and frequency. I also identify the same sets of collapsible instructions at compile time, producing the same benefits with minimal hardware complexity. This technique is also done in a backward compatible manner as the groups are exposed by simple reordering of the binarys instructions. I present aggressive pipelining approaches for these resources which avoids the critical timing often presumed necessary in aggressive superscalar processors. As these structures are designed for the worst case, pipelining them can produce greater frequency benefit than IPC loss. I also use the observation that the dynamic issue order for instructions in aggressive superscalar processors is predictable. Thus, a hardware mechanism is introduced for caching the wakeup order for groups of instructions efficiently. These wakeup vectors are then used to speculatively schedule instructions, avoiding the dynamic scheduling when it is not necessary. Finally, I present a novel approach to fast and high-quality chip layout. By allowing architects to quickly evaluate what if scenarios during early high-level design, chip designs are less likely to encounter implementation problems later in the process.Ph.D.Committee Chair: Scott Wills; Committee Member: David Schimmel; Committee Member: Gabriel Loh; Committee Member: Hsien-Hsin Lee; Committee Member: Yorai Ward

    Multi-layer Floorplanning for Reliable System-on-Package

    Get PDF
    Physical design automation for the new emerging mixed-signal System-on-Package (SOP) technology requires a new kind of floorplanner--it must place both active components such as digital IC, analog ICs, memory modules, MEMS, and opto-electronic modules, and embedded passive components such as capacitors, resistors, and inductors in a multi-layer packaging substrate while considering various signal integrity issues. We propose a new interconnect-centric multi-layer floorplanner named MF-SOP, which is based on a multiple objective stochastic Simulated Annealing method. The contribution of this work is first to formulate this new kind of floorplanning problem and then to develop an effective algorithm that handles various design constraints unique to SOP. The related experiments show that the area reduction of MFSOP compared to its 2-D counterpart is on the order of O(k) and wirelength reduction is 48% average for k-layer SOP, while satisfying design constraints

    Multi-layer Floorplanning for Reliable System-on-Package

    No full text
    Abstract- Physical design automation for the new emergin
    corecore