
Bus-Driven Floorplanning

LAW Hoi Ying

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science h Engineering

©The Chinese University of Hong Kong

August 2005

The Chinese University of Hong Kong holds the copyright of this thesis.

Any person(s) intending to use a part or the whole of the materials in this

thesis in a proposed publication must seek copyright release from the Dean of

the Graduate School.

yy^統系館書圖^^

Of m)_
^^~university""""-遍

SYSTEM/^

Abstract

As technology advances, the complexity of VLSI circuit design grows rapidly.

Interconnect-driven floor planning has become a major concern in modern floor-

planning. Bus is a collection of wires running over a set of modules. It is

favorable to align the set of modules that a bus goes through in such a way

that routing can be done easily. In this thesis, the bus-driven floorplanning

problem in 2D and 3D chips is considered. Besides, a 3D floorplan represen-

tation is proposed to solve the 3D floorplanning problem.

The bus-driven floorplanning problem involves the placement of blocks and

buses. Given a set of blocks and bus specifications (the width of each bus and

the blocks that the bus need to go through), we will generate a floorplan so-

lution such that all the buses go through their blocks in less than or equal to

2-bends, with the area of the floorplan and the total area of the buses mini-

mized. The approach proposed is based on a simulated annealing framework.

Using the sequence pair representation, we derived and proved some necessary

conditions for feasible buses, for which we allow 0-bend, 1-bend, or 2-bend.

Then, we check whether there are buses that cannot be placed at the same

time. Finally, a solution is generated giving the coordinates of the modules

and the buses. Comparing with the most updated previous work by Xiang et

al., our algorithm can handle buses going through many blocks and the dead

space of the floorplan obtained is also reduced.

ii

3D chips are useful in reducing interconnect lengths. However, there is not

much previous work done in 3D floor planning. In this thesis, we have pro-

posed a 3D floorplan representation called Layered Transitive Closure Graph

(LTCG), based on the Transitive Closure Graph (TCG) representation for

non-slicing floor plans, in addition with some layer information. A method

is introduced to align blocks (of the same bus) on different layers. A floor-

planner is implemented using the LTCG representation. Experimental results

have shown that LTCG is a promising representation for 3D floorplans and

can handle bus planning in 3D floorplan effectively.

iii

摘要
隨著科技進步,超大規模集成電路的複雜性正在迅增長。互連電路主導的佈
局規劃成為了現代佈局的一個重要課題。匯流排是一組需要經過數個組件
的電線。如果那些組件在佈局規劃時已被排列成可以讓匯流排容易通過的
序列，會令到整個設計過程更流暢。在本論文中’我們將會發表一個有效
的匯流排主導佈局規劃方案。此外，由於三維電路可以有效解決互連電路
的問題，我們將會發表一個三維的佈局規劃表示法。

匯流排主導佈局規劃問題牵涉組件和匯流排。已知一組組件和匯流排規格（
包括匯流排的寬度和匯流排須要經過哪些組件），我們要計算出一個可以讓
所有匯流排經過組件的佈局規劃，而匯流排最多可以屈曲兩次，同時要令
整個佈局規劃的面積縮到最少。我們提出的方案用了模擬降溫法。根據序
列組的表示法，我們衍生出和證明了一些可行匯流排的必要條件，而我們
只允許匯流排零屈曲、一次屈曲、或是兩次屈曲。然後，我們會檢查是否
有些匯流排不能同時存在。最後’我們會得到一個包含所有組件座標和匯
流排座標的佈局規劃。與Xiang等提出的方案發表的結果比較’我們的方案
可以處理一些經過很多組件的匯流排，而無效位置也比他們的少。

三維晶片對於減少互速電線長度很有效。然而，在這個範•沒有很多前人
的工作。在這論文中，我們根據Transitive Closure Graph (TCG)提出了
一個三維的佈局規劃表示法名為Layered Transitive Closure Graph
(LTCG)，加入了層的資訊。我們提出了一個方法去排列同一個匯流排在不

同層要經過的組件。我們研究了一個佈局規劃配置器。實驗結果證明了
LTCG是一個大有可為的三維佈局規範表示法，而且能夠效率地處理匯流排

0

iv

Acknowledgments

First of all, I must thank my supervisor, Professor Evangeline Fung Yu Young.

She has helped me a lot in my research. Throughout the two years studies,

she has given me guidances, encouragements, ideas, and advices. She is con-

siderate and understanding. Without her, I am not possible to finish this work.

I would like to express my thanks to my marker, Professor David Yu Liang

Wu. He has given me invaluable advices and constructive suggestions, which

are very helpful for improvement of my work.

I would also like to thank the authors of [1] who have kindly given us their

program and test cases, such that we can conduct the experiments and com-

pare our results with theirs.

Finally, I would like to thank my colleagues. They have supported me

and bolstered me. Without them, I would not have such an enjoyable and

memorable school life in my memory.

V

Contents

1 Introduction 1

1.1 VLSI Design Cycle 2

1.2 Physical Design Cycle 6

1.3 Flo or planning 10

1.3.1 Floorplanning Objectives 11

1.3.2 Common Approaches 12

1.3.3 Interconnect-Driven Floorplanning 14

1.4 Motivations and Contributions 15

1.5 Organization of the Thesis 17

2 Literature Review on 2D Floorplan Representations 18

2.1 Types of Floorplans 18

2.2 Floorplan Representations 20

2.2.1 Slicing Floorplan 21

2.2.2 Non-slicing Floorplan 22

2.2.3 Mosaic Floorplan 30

2.3 Summary 35

3 Literature Review on 3D Floorplan Representations 37

3.1 Introduction 37

3.2 Problem Formulation 38

3.3 Previous Work 38

vi

3.4 Summary 42

4 Literature Review on Bus-Driven Floorplanning 44

4.1 Problem Formulation 44

4.2 Previous Work 45

4.2.1 Abutment Constraint 45

4.2.2 Alignment Constraint 49

4.2.3 Bus-Driven Floorplanning 52

4.3 Summary 53

5 Multi-Bend Bus-Driven Floorplanning 55

5.1 Introduction 55

5.2 Problem Formulation 56

5.3 Methodology 57

5.3.1 Shape Validation 58

5.3.2 Bus Ordering 65

5.3.3 Floorplan Realization 72

5.3.4 Simulated Annealing 73

5.3.5 Soft Block Adjustment 75

5.4 Experimental Results 75

5.5 Summary 77

6 Bus-Driven Floorplanning for 3D Chips 80

6.1 Introduction 80

6.2 Problem Formulation 81

6.3 The Representation 82

6.3.1 Overview 82

6.3.2 Review of TCG 83

6.3.3 Layered Transitive Closure Graph (LTCG) 84

6.3.4 Aligning Blocks 85

vii

6.3.5 Solution Perturbation 87

6.4 Simulated Annealing 92

6.5 Soft Block Adjustment 92

6.6 Experimental Results 93

6.7 Summary 94

6.8 Acknowledgement 95

7 Conclusion 99

Bibliography 101

viii

List of Figures

1.1 The VLSI Design Cycle. [2] 3

1.2 A Physical Design Cycle. [2] 7

1.3 Pseudo Code of Simulated Annealing 14

1.4 Pseudo Code of Genetic Algorithm 15

2.1 Examples of the Three Main Kinds of Floorplans 18

2.2 One of the Properties of Mosaic Floorplan 19

2.3 Floorplans Categories 20

2.4 An Example of a Slicing Tree and Its Normalized Polish Ex-

pression 21

2.5 Constraint Graphs for the Sequence Pair {ABDECF, CBFADE). 23

2.6 (a) An Example of a BSG. (b) A Domain BSGpxg 24

2.7 Representing a Floorplan Using BSG 26

2.8 An Admissible Placement and Its Horizontal Constraint Graph. 27

2.9 A Floorplan and Its Corresponding B*-Tree Representation. . . 28

2.10 A Floorplan and Its Corresponding TCG Representation 29

2.11 Constructing a CBL from A Floorplan 31

2.12 A Non-Slicing Floorplan and Its TBT Representation 32

2.13 A Floorplan Realization Example using TBS 34

3.1 (a) A 3D Slicing Tree, (b) The 2D Slicing Tree and the Floor-

plans of Each Layer 40

3.2 A Floorplan Represented by CBA 42

ix

4.1 (a) A Feasible Partitioning, (b) An Infeasible Partitioning. . . . 46

4.2 A Rectilinear Block That Cannot Be Decomposed into Two L-

Shape Sub-Blocks and Its e-Approximation 46

4.3 (a)Block A is Abutted With Block B, C, and D. (b)Block A is

Abutted With Block D, Block C is Abutted With Block F.…47

4.4 Abutment Constraint Alone is Not Enough to Form a L-Shape. 48

4.5 (a) A H-Sequential Rectilinear Block, (b) A V-Sequential Rec-

tilinear Block 48

4.6 (a) A Non-Sequential Rectilinear Block, (b) It is Partitioned

into Several Sub-Blocks 49

4.7 Relative Placement Constraint: h{A, B) = [a, jS] 50

4.8 Absolute Placement Constraint: v{BB, A) = [a, p] 50

4.9 A Twisted-Bus Structure 53

5.1 Bus Ui Goes Through A, B, and C 57

5.2 (a) A 1-Bend Bus. (b) A 3-Bend Bus 58

5.3 Two Valid 0-Bend Buses, {A, B, C} and {C, F} 59

5.4 A Valid 1-Bend Bus {A, B, C, D} 62

5.5 Bus U4 Cannot Be Realized as A 1-Bend Bus 63

5.6 In Some Cases, A T-Shaped Bus Can Be Changed into A Valid

2-Bend Bus 63

5.7 The Necessary Conditions for The Position Sets to Form A Valid

2-Bend Shape 65

5.8 Pseudo Code of Shape Validation 66

5.9 Pseudo Code of 1-Bend Checking 67

5.10 Pseudo Code of 2-Bend Checking 68
5.11 Bus Ui Has to Be Placed on The Left of uj and Bus Uj Has to

Be Placed on The Left of Bus Ui 69

V

5.12 A 2-Bend Bus is Broken Down into Three 0-Bend Components

for Checking The Ordering Constraints 70

5.13 Different Cases of The Bus Ordering Constraint 70

5.14 Adding Bend to Resolve Bus Ordering Conflict 72

5.15 Pseudo Code of The Basic Alignment Step for Horizontal Buses. 73

5.16 (a) Umax, yb, and y�are Calculated Correspondingly, (b) ŷ Has

to Be Moved Up to Let The Bus Go Through 73

5.17 Result Packing of ami49-2 78

5.18 Result Packing of ami49-3 78

5.19 Result Packing of ami49-6 79

6.1 A Layered Floorplan and Its LTCG Representation 85

6.2 Block A, D and Block B, C cannot be aligned simultaneously. • 86

6.3 Cycle Exists if The Two Pair of Edges are Added Simultaneously. 87

6.4 Pseudo Code of Aligning Blocks 88

6.5 A Floorplan Before And After Applying "Move" to Edge (A,

B) in Gh 89

6.6 A Floorplan Before And After Applying "Reverse" to Edge (A,

C) in Gy 91

6.7 Result of ami49 in Data Set 1 94

6.8 Result of ami49 in Data set 3 (块 = { 0 - 5 , 32, 33, 4 4}，B �=

{6-11}, = {12-17}) 97

6.9 Result of ami33 in Data set 3 (E： - {6-9, 26, 29，30}, B] =

{10-14, 18, 24, 31}) 98

xi

List of Tables

1.1 Technology Roadmap [3] 2

2.1 Comparison between Different Kinds of Floorplan Representa-

tions 36

5.1 Data Set One 76

5.2 Data Set Two 76

5.3 Results of Data Set One 76

5.4 Results of Data Set Two 77

6.1 Characteristics of Data Set 1 93

6.2 Comparisons between [4] and LTCG 93

6.3 Characteristics of Data Set 2 95

6.4 Characteristics of Data Set 3 95

6.5 Experimental Results of Data Set 2 96

6.6 Experimental Results of Data Set 3 96

xii

Chapter 1

Introduction

The technology of integrated circuit (IC) was widely adopted for computing

devices like microprocessors, memory modules, and many other interface chips

since 1960s. It is not surprising to find that we are surrounded by a huge

number of computing devices in daily life, such as our personal computers, the

ATM machines we use to withdraw cash, and many other electronic appliances.

IC is one of the core components of those computing facilities.

As the Very Deep Sub-Micron (VDSM) technology advances, IC has evolved

from Small Scale Integration (SSI) to Very Large Scale Integration (VLSI). The

former consists of a few transistors only, where the latter consists of billions of

transistors. According to Moore's Law [5], it was predicted that the number

of transistors in a single IC will double in every 1.5 years. Table 1.1 show the

predicted technology roadmap from 1997 to 2009 [3]. In the foreseeable future,

the technology of VLSI will continue to scale down, to produce faster, more

complicated yet more powerful ICs. As a side effect, the interconnections will

hence become longer and denser, and it will be desirable to keep the sizes of

the chips as small as possible. This growing trend has brought many new chal-

lenges to VLSI design automation, and make the design process more difficult

and complicated.

1

Chapter 1 Introduction 2

—Technology (fim) || 0.25 0.18 0.15 0.13 0.1 0.07
Year � —： 1997 1 9 ^ 2001 ~20Q3 2006 2009

—Number of Transistors IIM 21M 4QM ~76M 2QQM" 52QM
"Across Chip Clock {MHz)~ 750 1200 1400 1 6 0 ^ 2000 2500
— Area (mm^) 300 340 385 ~430 5.20 —6.20
— Wiring Levels | 6 | 6-7 | 7 | 7 | 7-8 | 8 -9~

Table 1.1: Technology Roadmap [3 .

Producing a tiny chip is a time consuming process. There are many steps

to go through, and many of them are computationally expensive. Many algo-

rithms have been developed in CAD (Computer Aided Design) tools to help

accomplishing the task, but there are still many unresolved problems and new

challenges to be explored. In the following sections, the VLSI design cycle and

the physical design cycle will be described briefly. After that, the floorplanning

problem will be introduced and discussed.

1.1 VLSI Design Cycle

To design a VLSI circuit, a series of steps has to be gone through. The process

starts with a formal specification, and the final product is a fabricated chip.

Figure 1.1 shows a VLSI design cycle. In this section, the key steps leading to

a packaged chip will be described briefly.

System Specification

The first step in the design cycle is to prepare a formal specification of the

system. This specification should state clearly the performance, functionality,

physical dimension, power consumption, and other requirements of the VLSI

system. Once the specification is laid down, the design process can proceed

and the requirements stated has to be satisfied.

Chapter 1 Introduction 3

System
Specification

！M^m^mm^mdd
^ r

Architectural

> r

Functional Design

^

Logic Design

猛麵齊鄉傲：：儘
> r

Circuit Design
lv<

> r
Physical Design

> r
Fabrication

^
Packaging, Testing,

and Debugging

Figure 1.1: The VLSI Design Cycle. [2；

Chapter 1 Introduction 4

Architectural Design

Architectural decisions will be made in this step. For example, whether RISC

(Reduced Instruction Set Computer) or CISC (Complex Instruction Set Com-

puter) will be adopted, the number of ALUs (Arithmetic Logic Unit) or float-

ing point units, or the number and structure of pipelines. After architectural

design, engineers can predict the performance or power consumption of the

system accurately. The prediction can help determining whether the design is

likely to meet the specification.

Functional Design

In functional design, the behavior of the system, in terms of input, output,

and timing requirement, will be specified, in which the internal structure is

not concerned. The behavior of a system refer to the functionality that the

system is capable of. Besides, interconnections between different units will also

be defined in this step.

Logic Design

In this step, logic operations that represent the functional design of the system

are derived and tested. Boolean expressions will be used to describe the logic

operations. The logic operations include the control flow, arithmetic opera-

tions, and register allocation. The logic design has to be conformed to the

functional design, and will be simulated to verify its correctness.

Chapter 1 Introduction 5

Circuit Design

Based on the logic design, a circuit representation can be derived. The circuit

representation is a detailed circuit diagram. It shows clearly the cells, gates,

transistors, and other circuit elements, together with the interconnections be-

tween them. During the design process, the speed and power requirements are

also taken into account.

Physical Design

The step of transforming a circuit representation into a geometric represen-

tation is called physical design. The geometric representation of a circuit is

called a layout During physical design, problems like where to place the mod-

ules, how the interconnections between the modules should be made etc., will

be addressed. As physical design is a crucial yet complex step in the design

cycle, it can be further broken down into sub-steps, such as partitioning, floor-

planning, placement, routing, and compaction.

Fabrication

Once the layout is produced and verified, it is ready for fabrication. The layout

data is converted into photo-lithographic masks. There are several steps of the

fabrication process, including deposition and diffusion of various materials on

the wafer. A large wafer can be used to produce many chips. A prototype is

made before the mass production of a chip.

Chapter 1 Introduction 6

Packaging, Testing and Debugging

The fabricated chip is tested in this step. Each chip is tested to ensure that

all the requirements in the specification are met, and it can function properly.

After that, the chips will be mass produced and packaged.

1.2 Physical Design Cycle

As mentioned before, a circuit representation will be transformed into a layout

in the physical design step. It is usually broken down into several sub-steps.

A physical design cycle is shown in Figure 1.2. The details of each step will

be discussed in this section.

Partitioning

In order to achieve complicated functionalities, a chip may actually be com-

prised of millions of transistors. Breaking down a big problem into smaller

sub-problems is always a good strategy to solve complicated problems. As

huge circuits are hard to be managed efficiently and cannot be layout all at

once, decomposition into finer sub-systems is a must in the design cycle. The

step of decomposition is called partitioning, and the sub-circuits partitioned

are called blocks. After partitioning circuits into blocks, each of them can then

be designed effectively, independently, and simultaneously so as to ease the

design process. Factors like the block sizes, block dimensions and interconnec-

tions between different blocks should be taken into account.

Chapter 1 Introduction 7

C i r c u i t D e s i g n

Physical Design No

p 丁 g h
V I Yes ^^^n violatiori\^^

丨"I I"丨丨丨…丨丨…‘丨丨"丨I""丨丨丨丨？…丨…丨丨，丨少 F l o o r p l a n n i n g 4""""‘： b e f i x e d b y r e - 〉

— ^ ^ i Q ^ l a n n i n g ? ^ ^ , , / ' ' ^

。 … … ； 二 ：、" J 力確t"巧辩众办 1 ： ‘ ‘ ,
P l a c e m e n t

1 ‘

i i i i i i i i i i i i i i 讓 _ _ _ 圓 _ _ _ 圖 _ _ 議 _ _ _ _ _ 痛難 _ ! _ _ _ _ 讓 _ _ _ _ _ _ _ _ _ _ _ _ _ _

_____漏________画_禱_____________________| 1|||1|11|1||1___ iillllllllllill； _隱__|__戀黎_應難纖, i l議纖_隱纖_鐘瞧鬆纖顯纖__ 麵丨^|||1麵__纏_
i_灘__________ _ _ _ _ _ _ _ 議 顯 i i i 灘 纖 議 _ ! ! _ _ _ 議 P i | i i i i i i i i i | i 8 i i i i

\‘‘： 嫩

‘ ‘ N o ok ？^^^^ > ‘
•Hill
mmmmmmm 纖 纖 驛 攀 蘧 麗 i i 翻 W^^Smm^mmWiwimmM^mmW^

Yes ^^an violation
R o u t i n g 4 b e f i x e d b y r e - 〉

r o u t i n g ? ^ ^

lllllilB 攀_•麵_H|i__圓讓麵園 IpiiBI^^HB^^Wiililiifcw
_ _ _ _ _ i 纖 纖 _ 凝 霧 _ 纖 琴 黎 麵 縿 鐘 舞 _ _ _ 驄 丨 耀 漏 _____ _ _ _ _ _ _ _ _ _ _

‘ ‘ , - ‘ ‘ ‘ ‘ ‘ ‘ ‘ ' V :。 " , : ？ " 、 : r o u t i n g

_____|11__纖___1111__11̂11_11_寒_____111_圓1|11__1̂11̂；̂^̂；«!?̂1|̂1：1̂__賴1̂^̂^̂^̂^̂纖11̂_______ iiBiiiiiiiiiiiiiii
醒 liiilliiiiiiiiiill ____iiii i____iii_pii__iiii i i| _ _ _ _ _

疆 _ _ 譲 : , _ 塞 垂 _ 纏 錢 麵 憝 變 攀 鱅 l i l i i _ i i i i _ _ i _ i 麵 j 讓 i _ i
‘, /'/'：''‘

‘ . • : : : • : .、 “ . , . . : . •、..,..•、.；..: C o m p a c t i o n

‘：.‘,“> ；：“：‘'：；,-/ ‘ 'X-''/ ‘“ “�..'.'.’’ , /,‘,
^ ：； i ：p;：;；̂®：；：?；：̂；̂̂^̂ i 键 彳 ？ 錢 诱 ； 丨 丨 丨 g 丨 丨 _ 丨 兹 济 • 按 ？ 兹 發 资S 法拔激鬆：；盗丨_丨：：资

'。：,'V'' E x t r a c t i o n a n d " " " " N o

> , , V e r i f i c a t i o n

•i^Msyji：!^^^ ；•：：饭：：：；：衫丨;;丨5:丨殺：；®:®:丨：：：丨：：：：：：：：：：：：：招::?:®::::::::

;：:::::?：：::：：::；；::::::::::::::::::：：:::::::|：::::::::彳:::::::：：::::::::̂：:::%::;：： 1 r
::统:洪战丨s錢注孩彩拔嫁s游签磁恐该逸s

： ： ： < C j s t i m i n g o k ？ 〉

«i»iipiiiiii iiiiiii
, ' ' ' " ? ' , : ' ' , ' ” ' ' ' : ' � ’ � • , . ' - " . ' / • • - ' » • > , .

^

F a b r i c a t i o n

Figure 1.2: A Physical Design Cycle. [2

Chapter 1 Introduction 8

Floorplanning

During the step of floorplanning, the blocks are positioned on the chip roughly,

so as to optimize the circuit size and performance according to the circuit spec-

ification. A compact design is favorable, but there are many other important

aspects that have to be taken care of. For example, issues like the block di-

mensions and overall delay should be taken into account. In floorplanning, the

decisions on block shapes and pin positions are made.

Placement

The exact positions of the blocks are determined in the placement step. The

layout should meet the performance constraints, allow the interconnections

between blocks to be made, and meet the timing goal Floorplanning and

placement are vital to the design process as it affects the ultimate design sig-

nificantly and determines whether the required specifications can be met.

Routing

Routing means completing the interconnections between blocks according to

the specified netlist. The space not occupied by the blocks, the routing space,

is partitioned into channels and switchboxes. Connections are made within

them. Routing can be further broken down into two phases, namely global

routing and detailed routing.

1. Global Routing: Planning different routes from a global point of view,

without fixing the exact path of each route yet. It is a rough plan to

check whether completion of all interconnections is possible.

Chapter 1 Introduction 9

2. Detailed Routing: Complete each connection by computing the exact

positions of the wires on the metal layers. After detailed routing, the

geometric layouts of all the nets will be known.

There may be cases that some of the connections are not able to be routed.

In those situations, the technique rip-up and re-route will be used, which means

removing some of the routed connections and re-routing them in a different

order. If the problem cannot be solved by this technique, engineers may need

to go back to the earlier design phases in the physical design cycle, or even to

the logic design step and start the whole process all over again.

Compaction

Compaction means making the chip design as small as possible. During this

step, the layout is compressed from different directions so as to reduce the total

area. Note that during compaction, it is necessary to ensure that no design

rules or constraints are violated.

Extraction and Verification

The layout is verified in this step, to ensure that all the design rules and per-

formance constraints are satisfied, before proceeding to the fabrication step.

Design rules, such as wire separation rule, which is the minimum separation

between two adjacent wires, have to be fulfilled. Besides, the functionality of

the layout is also verified. If problem is found, engineers may need to go back

to the earlier designing steps to fix the problem.

Chapter 1 Introduction 10

1.3 Floorplanning

As technology advances into the deep submicron era, circuit sizes and complex-

ity increase dramatically. A good planning in the early design phase is crucial,

in order to avoid unnecessary iteration in the design cycle. Floorplanning has

become an important step in the physical design cycle.

The input to the floorplanning phase is a set of blocks, the area of each

block, the possible shapes of each block, the number of terminals of each block,

and the interconnections between blocks. In the floorplanning phase, we are

going to plan the position and shape of each block, together with the pin posi-

tions. The shapes for some blocks are fixed and cannot be altered. We called

those blocks hard blocks. For other blocks, the shapes can be altered as long as

they are within the pre-set aspect ratios. Those blocks are called soft blocks.

A formal definition of the floorplanning problem is given as followed:

Definition 1.1 The problem floorplanning is defined as:

Given a set of n modules {Mi, M2, . . . , M^}, where each module Mi is

associated with an area A , together with two aspect ratio bounds 7\ and Si

such that ri < hi/wi < Si, where hi and Wi is the height and the width of

module i respectively. The output of the problem is a packing of the set of

modules, i.e. the x- and y-coordinates and the dimension (hi, Wi) of each

module. There should be no overlapping between modules, and the circuit

performance should be optimized.

In this section, some floorplan objectives will be discussed. Besides, some

approaches adopted today to solve the floorplanning problem will be presented.

Chapter 1 Introduction 11

1.3.1 Floorplanning Objectives

There are several objectives to be optimized in floorplanning, like the total

chip area, the total wire length, the critical path delay etc. In this section,

some common floorplanning objectives will be discussed.

Chip Area

Area minimization is one of the most commonly adopted objectives . Mini-

mizing the chip area implies minimizing the wire length, and hence reducing

the circuit delay.

Total Wire Length

In addition to minimizing the chip area, minimizing the total wire length di-

rectly is also another important goal. Beside the timing issues, using less wires

to connect the modules means consuming less resources, and thus reducing the

production cost.

Delay

In some cases, minimizing the total wire length is not enough. Timing is an

important issue. The final circuit performance can be optimized by minimizing

the delay on the critical path.

Routability

Rout ability refer to the possibility of completing all the connections. A non-

routable floorplan is of no use even if it is area-optmized and delay-optimized.

Chapter 1 Introduction 12

Enhancing the rout ability of a floorplan means to reduce the chance of en-

countering routing problems in the downstream designing steps.

Others

There are still some other objectives in floor planning, like minimizing heat

dissipation, minimizing power consumption, etc. In our work, we focus on the

bus-driven floor planning problem to minimize interconnect delay by arraying

the modules on the same bus in such a way that routing can be done effectively.

1.3.2 Common Approaches

The floorplanning problem is proved to be NP-complete. Thus, different

heuristics are developed to solve the problem, which includes analytical ap-

proach, simulated annealing, genetic algorithm, force directed approach, con-

straint based approach, and other stochastic searching approaches.

Analytical Approach

In 1991, the author of [6] proposed that the floorplanning problem can be

formulated as a mixed integer linear program (MILP), such that the objective

is a linear function, all constraints are linear functions, and some variables

are real numbers while others are integers. However, the MILP problem itself

is a NP-complete problem, and the run time of the best known algorithm is

exponential to the number of variables and equations. Thus, this modelling

can only solve problems of small scales. In 1998, a convex formulation [7] is

proposed to reduce the number of variables and constraints used, by handling

the aspect ratios of the blocks in an indirect way.

Chapter 1 Introduction 13

Simulated Annealing (SA)

Simulated Annealing is a widely adopted heuristic to solve NP-complete prob-

lem. It belongs to the probabilistic and iterative class of algorithms. The

algorithm was originally proposed in [8] for finding the equilibrium configura-

tion of a collection of atoms at a given temperature. The idea of using SA

as an optimization tool is introduced in [9]. After that, it is suggested in [10

that SA can be used as a general technique for different optimization problems.

This technique is used in [11] [12] [13] [14] [15] to solve the floorplanning problem.

SA mimics the process of metal cooling and freezing into a highly ordered

crystalline structure with minimum energy (the annealing process). The frame-

work of a simulated annealing based floorplanner can be described as follows:

each fioorplan in the solution space is represented by a representation (e.g.,

sequence representation, o-tree, etc.). The quality of each candidate fioorplan

is evaluated according to a cost function, which may take area, wirelength, etc.

into consideration. The process starts with an initial solution Xq and an initial

temperature To. In each iteration, the candidate solution is changed a little,

and is evaluated by the cost function. If the newly formed solution is better

than the old one, it is accepted. Otherwise, the solution is accepted according

to a probability depending of the temperature. If the temperature is high, the

chance of accepting a worse solution will also be high. The temperature T will

be cooled down at a cooling rate c. Finally, the process will terminate when

the temperature is lower than a threshold Tt. The pseudo code is shown in

Figure 1.3.

Chapter 1 Introduction 14

SIMULATED .ANNEALING {ITER, To, Tt, c)
1 X Xo
2 T — Tq �

3 WHILE T > Tt
4 FOR i from 1 to ITER
5 Xnew — move (a;)

6 A / — cost (x̂ eti;) - cost (x)

7 r random number between 0 to 1

8 IF A / < 0 OR r < exp(-A:A//T)

9 X ^ 工 new

10 END IF

11 END FOR

12 r — T X c
13 END WHILE

14 RETURN X

Figure 1.3: Pseudo Code of Simulated Annealing.

Genetic Algorithm

Genetic algorithm [16] [17] is another stochastic searching approach to solve

NP-complete problems. A pseudo code of the general genetic algorithm ap-

proach is described in Figure 1.4. The process starts with a set of initial

solutions namely population. By using two types of genetic operators, muta-

tion and crossover, better populations can be obtained iteratively by means of

evolution. Mutation means modifying one solution by applying a small change

to itself. Crossover means forming a new solution by combing two solutions in

the population.

1.3.3 Interconnect-Driven Floorplanning

Traditional floorplanners [18] [11] [13] [17] [19] [20] [21] [22] aim at minimizing the

chip area so as to increase the yield. However, as technology advances, the

number of transistors and the number of interconnections involved increase

dramatically. Interconnections between modules become longer and denser.

Chapter 1 Introduction 15

GENETIC_ALGORITHM (P, R� , Rm)
1 X ^ { x i , X 2 , … ， X p }
2 WHILE stopping criteria not met

3 ^new — 0

4 WHILE number of children created < P x Rc
5 select two solutions Xi and xj from X
6 Xnew ^ c r o s s o v e r , Xj)
7 ^new ^ ^new U {Znett;/
8 END WHILE

9 select P solutions from X U X m w » and call it X
10 WHILE number of children mutated < P x R爪

11 select a solution Xk from X
12 Xnew 卜 mutate (xfc)
13 -̂ nett; "̂"" ^new U {̂ n̂etf；

14 END WHILE

15 X Xnew
16 END WHILE

17 RETURN the best solution in X

Figure 1.4: Pseudo Code of Genetic Algorithm.

According to [3], a significant portion of about 80% of the clock cycle is con-

sumed by interconnections in some advance systems. As there are a lot of

wires to be connected, routing becomes more and more difficult. If this is

not considered in early design phrases, like floorplanning, unroutable layouts

may be resulted. To avoid unnecessary iteration of the design cycle, modern

floor planners always take interconnections into account.

1.4 Motivations and Contributions

In VLSI system design, it is common that a system is consisted of millions of

transistors. A good planning in the early design phase is of vital importance

as it sets up a ground work for a good layout.

As the functionality of chips increases, chip designs become more and more

complicated and involve a huge number of transistors. Beside functionality,

Chapter 1 Introduction 16

chip designs are expected to meet many other requirements, like timing, power

consumption, etc. On the other hand, it is favorable to keep the chip size as

small as possible. This makes the design process much more difficult than ever.

In the deep submicron era, the number of transistors and interconnections

are growing rapidly. The wires are becoming longer and denser. More routing

space is needed to ensure design convergence. Bus is a collection of wires to

carry a set of signals among different modules. As the complexity of chip de-

sign increases, bus routing becomes more and more important. If we do not

carefully plan the routes of the buses and reserve sufficient space for them in

the layout, there will be a high chance to have a lot of unroutable buses. In

order to ease bus routing and avoid unnecessary iteration in the design cycle,

we incorporate bus planning in the early designing phase. This is our motiva-

tion to solve the bus-driven floorplanning problem.

Our research focused on bus-driven floorplanning, in both 2D and 3D chip

design. We have reviewed literatures on floorplanning, which include different

floorplan representations and bus planning methods. We used the sequence

pair (SP) representation and the transitive closure graph (TCG) representa-

tion for 2D and 3D floorplanning respectively.

For 2D floorplanning, we made use of the characteristics of SP and pro-

posed a novel algorithm [23] to solve the bus-driven floorplanning problem,

allowing buses with bendings. Given a SP, the topological relationships be-

tween the blocks can be found. We have proposed a method to check if buses

can be placed in a specific floorplan by studying the relative positions between

the blocks as represented by a SP. Simulated annealing was used to find a good

solution. We have compared our work with [1], and significant improvement

were made.

Chapter 1 Introduction 17

3D chips are useful in reducing interconnect lengths. However, there is not

much previous work done in 3D floorplanning. In this thesis, we have pro-

posed a 3D floorplan representation called Layered Transitive Closure Graph

(LTCG). It is based on the Transitive Closure Graph (TCG) representation

for non-slicing floor plans, together with some layer information. We proposed

a method to align blocks of the same bus on different layers, by adding edges

into the LTCG. A floor planner is implemented using the LTCG representation.

Experimental results have shown that LTCG is a promising representation for

3D floor plans and can handle bus planning in 3D floor plans effectively.

1.5 Organization of the Thesis

The rest of this thesis is organized as follows. After giving a brief introduction

to the background information in this chapter, a literature review on different

2D floorplan representations will be given in Chapter 2. After that, a liter-

ature review on 3D floorplan representations will be given in Chapter 3. In

Chapter 4, a literature review on previous approaches to solve the bus-driven

floorplanning problem will be presented. Our proposed algorithm to solve the

multi-bend bus-driven floorplanning problem in 2D floorplan will be presented

in Chapter 5, followed by our proposed representation for 3D floorplans and

our approach to perform bus-driven floorplaning for 3D chips in Chapter 6.

Finally, a conclusion will be given in Chapter 7.

Chapter 2

Literature Review on 2D

Floorplan Representations

2.1 Types of Floorplans

Floorplans can be classified into three main categories: slicing [24] [25] [26],

non-slicing [12] [20] [27] [28] [11] [19] [29], and mosaic [18] [30] [13] [31] as shown in

Figure 2.1.

- ' ‘ ' • , .

‘ ,, ‘ ‘

r ‘

, ‘ ‘‘ ‘ ‘ - ‘ ‘ “ 1 i i •
(a) Slicing (b) Non-slicing (c) Mosaic

Figure 2.1: Examples of the Three Main Kinds of Floorplans.

A slicing structure can be obtained by recursively dividing a rectangle into

smaller rectangles using a horizontal or a vertical cut. An example is shown in

Figure 2.1(a). A widely adopted slicing floorplan representation is proposed by

Wong and Liu in 1986 [25], which is called normalized Polish expression. One of

18

Chapter 2 Literature Review on 2D Floorplan Representations 19

the advantages of the slicing structure is that the solution space is smaller, im-

plying faster runtime for some search-based floorplanning algorithms. Solution

space refer to how many different solutions can one representation represent.

However, the representation is not general enough, as most of the real designs

are not in slicing structure.

A non-slicing floorplan is a floorplan that is not necessarily slicing (Fig-

ure 2.1(b)). It is the most general kind of floorplans. Much work has been

done on non-slicing floorplan representation recently, e.g., sequence pair [11],

BSG [29], 0-Tree [20], B*-Tree [12], and TCG [32:.

Mosaic floorplan is first proposed in 2000 [18], to represent a new class of

packing structure. Mosaic floorplan is similar to non-slicing floorplan except

that there is no empty room in the floorplan (Figure 2.1(c)). Each module

corner is formed by a T-junction (no +-junction), except those at the four

corners of the floorplan. Besides, the non-crossing segment of a T-junction

can slide along the crossing segment to represent the same floorplan as shown

in Figure 2.2.

‘ •

, ‘ / ,‘ …’ ,

. — 一 ”
‘「乂i ‘丨丨、I.1丨|丨丨|丨nil (
•• ‘ ‘ ‘ ‘ ‘ ^

- ‘ ‘ _ ‘.

Figure 2.2: One of the Properties of Mosaic Floorplan.

According to [13], the categories of floorplans can be summarized as in

Figure 2.3, where slicing floorplan is a proper subset of mosaic floorplan, and

mosaic floorplan is a proper subset of general(non-slicing) floorplan.

Chapter 2 Literature Review on 2D Floorplan Representations 20

t a l F l o o m l a n ^ x

ic F l o o i ^ a n X 、

3 FloorplanĴ /̂̂ŷ

Figure 2.3: Floorplans Categories.

2.2 Fioorplan Representations

A good fioorplan representation should have the following qualities: small so-

lution space, quick fioorplan realization procedure, and being P-admissible.

The notion of P-admissible is first proposed by Murata et al. in [11]. For a

representation to be P-admissible, it has to satisfy the following four require-

ments:

1. The solution space is finite,

2. Every solution is feasible,

3. Evaluation for each solution is possible in polynomial time and so is the

realization of the corresponding packing,

4. The packing corresponding to the best evaluated solution in the space

coincides with an optimal placement solution.

Chapter 2 Literature Review on 2D Floorplan Representations 21

Different representations for different kinds of floorplans will be discussed

in the following sections.

2.2.1 Slicing Floorplan

Normalized Polish Expression

According to Wong and Liu in [25], A slicing structure is a rectangle dissection

that can be obtained by recursively cutting rectangle into smaller rectangles.

The authors suggested to use an oriented rooted binary tree called slicing tree

to represent the hierarchical structure of a slicing floorplan. Each internal node

of such a slicing tree is labelled by a (corresponds to a vertical cut) or a

'+ ' (corresponds to a horizontal cut), while each leaf is labelled by the module

name. An encoding to the tree can be obtained by traversing the slicing tree

in a post-order, called a Polish expression. A Polish expression is said to be

normalized if the Polish expression contains no consecutive ‘氺，s nor '+'s. In

Figure 2.4，an example of a slicing tree together with its normalized Polish

expression is shown.

Floorplan Slicing Tree

I I I pip I
B C E F f \

A-' A A D 八

_ . _ I I B C E F

Normalized Polish Expression: ABC*+DEP+*

Figure 2.4: An Example of a Slicing Tree and Its Normalized Polish Expression.

Chapter 2 Literature Review on 2D Floorplan Representations 22

In [25], it is shown that there is a one-to-one correspondence between the

normalized Polish expressions and the slicing floorplans. The size of the solu-

tion space is where n is the number of modules. A slicing

floorplan can be realized from a normalized Polish expression in 0{n) time.

The representation is P-admissible. Normalized Polish expression is a widely

adopted, elegant representation for slicing structures.

2.2.2 Non-slicing Floorplan

Sequence Pair (SP)

Sequence Pair (SP) was first proposed in 1995 by Murata et al [11]. In the

representation, two sequences (r+, r _) are used to represent a floorplan. For

example, [ABDECF, CBFADE) is a sequence pair of the set of modules {A,

B, C, D, E, F}. The relationship between every two blocks is governed by

the following rules:

• If two blocks A and B appear in the sequence pair as • - A - • • B • •-,

• - • A -' • B -' •), block B is on the right of block A.

• If two blocks A and B appear in the sequence pair as {• • • A - - - B • • •,

• B •' • A - • •), block B is below block A.

To realize a floorplan from a sequence pair representation, a pair of graphs,

the horizontal constraint graph Gh and the vertical constraint graph Gy can

be constructed. Each constraint graph has a source s and a sink t to denote the

floorplan boundaries. In Gh, the source and the sink correspond to the left-

most and the rightmost boundaries of the floorplan respectively, while in GV,

the source and the sink correspond to the bottommost and uppermost bound-

aries of the floorplan respectively. The constraint graphs are vert ex-weighted,

and the set of vertices V is {s} U {t} U {vi, 〜}，where n is the number

Chapter 2 Literature Review on 2D Floorplan Representations 23

of modules, and each Vi corresponds to a module. The vertex-weight is zero for

s and t in both graphs; and is the width (height) of the corresponding module

in GniGy). The constraint graphs can be constructed as follows (Figure 2.5):

• If block A is on the left of block B, add an edge {A, B) in Gh.

• If block A is below block B, add an edge {A, B) in Gy.

猶 鲁
(ABDECF, CBFAD母 Horizontal Constraint Graph V ^

Vertical Constraint Graph

Figure 2.5: Constraint Graphs for the Sequence Pair {ABDECF, CBFADE).

Sequence pair is a P-admissible representation. The time complexity of

realization of a floorplan from a SP is 0{in?) according to [11], where n is the

number of modules, and is improved to 0{nloglogn) in [33]. The size of the

solution space of SP is 0((n!)^).

Bounded-Sliceline Grid (BSG)

BSG refers to Bounded-Sliceline Grid. It is a non-slicing floorplan represen-

tation proposed in 1996 by Nakatake et al. in [19] based on the topological

relationships between blocks. A meta-grid is defined on a plane without any

Chapter 2 Literature Review on 2D Floorplan Representations 24

physical dimension. Different segments in the grid create rooms to place dif-

ferent blocks. The unit segment on the (x, y)-coordinate system is defined by:

Hi,j 二 {(x, y) I i - 1 < < i + 1, 二 j }

Vij = {{x, y) \ x = i j - K y <j+ 1}

A BSG consists of a set UBSG of the unit segments as defined above. An

example is shown in Figure 2.6.

UBSG = Wj \ h j ' integers, i + j ： even} U

{HiJ I 2, j : integers, i + j : odd}

y Hj j y, rooms

f^mmmmmmmtmmimi^ •immmmmmrnmrnmamc - “ 彳

(0 .^ 1c (0，0) X̂

(a) BSG (b) BSG of Dimension pxq

Figure 2.6: (a) An Example of a BSG. (b) A Domain BSGpxg

A pair of graphs, the horizontal unit adjacency graph Gh and the vertical

unit adjacency graph GV, can be constructed to realize the floorplan. In Gh,

each vertex corresponds to a horizontal segment. Edges are added between

adjacent segments and thus, each edge crosses one room. If an edge e crosses

a non-empty room where block A is placed, the weight of e will be the width

of block A. If e crosses an empty room, the weight of e will be 0. Gy can

be built in a similar fashion. With the constructed graphs, the layout of the

Chapter 2 Literature Review on 2D Floorplan Representations 25

floorplan can be found by performing longest path search for every block. An

example of representing a floorplan using BSG is showin in Figure 2.7.

According to [19], BSG is beneficial when packing blocks into a chip of

non-rectangular shape. BSG is a P-admissible representation. To realize a

floorplan from its BSG representation, the time complexity is The size

of the solution space of BSG is - n)!).

O-Tree

In 1999, Guo et al. proposed an 0-tree representation for non-slicing floorplan

in [20]. They defined an admissible placement as a compacted placement where

all blocks can neither move down nor move left. 0-tree is devised to represent

admissible placement.

Given a floorplan, two different ordered trees can be built, one with the

root corresponding to the left boundary of the floorplan and one with the root

corresponding to the bottom boundary of the floorplan. Given an 0-tree, its

orthogonal correspondent can be built. An example of an admissible place-

ment and its corresponding 0-tree is shown in Figure 2.8. The root node in

the figure corresponds to the left boundary of the floorplan.

The authors proposed to encode the rooted ordered tree into two sequences

(T, tt). The sequence T indicates the structure of the tree: a '0' represents a

descending edge and a '1' represents an ascending edge. The sequence tt is a

sequence of module labels obtained by performing a depth-first search. Thus,

the floorplan in Figure 2.8 is represented by (00110100011011, ADBCEGF).

This representation is not P-admissible. The size of the solution space of

Chapter 2 Literature Review on 2D Floorplan Representations 26

� 1 1
i z z LJl

(a) Assignment of Rooms

t

Q / ^ N Q

(b) G,and G, s

8 9 •

‘ / ,, ‘ ‘ ‘ •
、1 , ‘ , ‘ ‘ , , , ‘ - ； , ‘ , \

‘‘ -‘‘“ I ‘ ： •‘ D ； 00
- , ‘ ‘ ‘ • ‘ "Z , ‘ ‘ • /
/ , ‘ ‘ ‘ __ , / ,

C D B 一 ' … ’ ’ ’ ’ ”

‘ ‘ ‘ ‘ > k
/ ‘ - / ‘ “‘ .,,‘ ‘ ‘ ‘
‘‘ ‘ ‘‘ , ‘ ‘‘‘‘‘‘

人： C
‘ � / , ‘ ' ' ' , ‘ ‘ ‘ , ‘ ,‘；‘ ‘‘

> f J ‘ / ‘ �‘ ‘ 、 ： ‘ ‘ \ f
< — •

6 11

(c) The Resultant Packing

Figure 2.7: Representing a Fioorplan Using BSG.

Chapter 2 Literature Review on 2D Floorplan Representations 27

Figure 2.8: An Admissible Placement and Its Horizontal Constraint Graph.

0-tree is and the runtime to transform an 0-tree to its pack-

ing is linear, i.e., 0{n).

B*-Tree

B*-tree[12] is proposed in 2000 by Chang et al. which is similar to 0-tree,

with some modifications and enhancements.

Each admissible placement has a corresponding B*-tree T, Each node in

T corresponds to a module. The root node of T corresponds to the module

at the bottom-left corner of the floorplan. Let R be the set of modules on the

right-hand side of and adjacent to a block x. The left child of the node x in

T is the lowest unvisited block in R. Similarly, let U be the set of modules

above and adjacent to x, the right child of x in T is the leftmost unvisited

block in U. According to [12], there is a one-to-one correspondence between

admissible placement and B*-tree. An example of a placement and its B*-tree

representation is shown in Figure 2.9.

B*-tree is advantageous over 0-tree, as B*-tree is a binary tree and it can

be implemented easily with a static data structure such that node searching

Chapter 2 Literature Review on 2D Floorplan Representations 28

麵
Figure 2.9: A Floorplan and Its Corresponding B*-Tree Representation.

and insertion can be done in constant time, i.e., 0(1). Similar to 0-tree, B*-

tree is not P-admissible. The size of its solution space is and

floorplan realization takes 0{n) time.

Transitive Closure Graph (TCG)

In 2001, Transitive Closure Graph (TCG) is proposed by Lin and Chang in [32

to represent non-slicing floorplan. A TCG is a pair of directed acyclic graph,

the horizontal transitive closure graph Ch and the vertical transitive closure

graph Cy. The authors defined the transitive closure G丨 in of a directed acyclic

graph G = {V, E) as follows: G, 二 (V^ where E' 二 { (n � U j) : there is a

path from node rii to node rij in G}.

The authors made use of the topological relationships between blocks to

represent a floorplan. For two non-overlapping modules bi and bj, they must

bear one of the following three relationships: (1) horizontal relation, (2) ver-

tical relation, or (3) diagonal relation. The first two relationships are easy to

understand: the two modules are overlapped in one dimension but not the

other. For the third one, bi is said to be diagonally related to bj if the projec-

tions of the two modules do not overlap in either dimension. For simplicity,

a diagonal relationship will be treated as a horizontal one, unless there exists

Chapter 2 Literature Review on 2D Floorplan Representations 29

a chain of vertical relations (e.g. if A is diagonally related to C, but A is

above B and B is above C, then A must be above C). For two blocks bear-

ing a horizontal relationship, an edge will be added in Ch between the nodes

representing the two blocks, while edges in C^ will correspond to vertical re-

lationships. The graphs are vert ex-weighted, where the weights correspond to

the widths (heights) of the blocks. Figure 2.10 shows an example of represent-

ing a floorplan using TCG.

r s _ d K ^ © K

B O
Ch Cv

Figure 2.10: A Floorplan and Its Corresponding TCG Representation.

Realizing a floorplan from its TCG representation is easy. It can be done

by performing a longest path search on the two constraint graphs. It is

claimed that TGC has several advantages over some published work: TGC

is P-admissible, TGC does not need sequence encoding, cost can be evaluated

directly basing on the representation, and geometric relationship is transpar-

ent to its operations, etc. The size of the solution space of TGC is 0((n!)^)

and floorplan realization can be done in time.

Chapter 2 Literature Review on 2D Floorplan Representations 30

2.2.3 Mosaic Floorplan

Corner Block List (CBL)

Corner Block List (CBL) is a topological representation for mosaic floorplan.

It is first proposed by Hong et al. in 2000 [18]. A corner block is the upper-

rightmost block in a floorplan. A CBL is a three tuple {S, L, T), that can be

obtained by repeatedly deleting the corner block of the floorplan.

The sequence 5 is a sequence of block names. It records the order of the

blocks being deleted. L is a list of orientations. The orientation of a block is

defined according to the T-junction at its bottom left corner. There are two

kinds of orientations: a 'T' rotated by 90 degrees anticlockwise (h) or by 180

degrees (丄).In the former case, a '0' will be recorded in L and in the latter

case, a '1' will be recorded. The list T records the number of T-junctions on

the left or bottom boundary of the corner blocks. The number of consecu-

tive 'I's in T corresponds to the number of T-junctions on the left or bottom

boundary of a corner block. A '0' is added to separate this information for

different blocks. The orientation and the T-junction information of the last

block will not be recorded as there is only one block left at the end of the

deletion process. An example is shown in Figure 2.11 to illustrate the process

of obtaining the CBL from a packing.

Floorplan realization for CBL can be done in a similar fashion as in CBL

construction. It can be done by checking the orientation of the corner block,

and determining whether the horizontal segment or the vertical segment of the

corner block should be pushed to make a room. According to [13], the size of

the solution space of CBL is The computation complexity to

convert a CBL to a floorplan is 0(n). However, CBL is not a P-admissible

representation.

Chapter 2 Literature Review on 2D Floorplan Representations 31

t i “ ““

C D I P I A I B I I ^
一••卞•厂 S :D _ Q A S:AD . - ； S : B A D

0 G L :0 Q L:00 c B L:100
_] _ „ T:10 I D T:010 : I 。 T : 10010

Q D；, ' • -

F F P

““ i k A

T F h M \
_ S : GBAD ^ ^ S:EGBAD q S : CEGBAD S : GCEGBAD

Q ； L : 1100 Q L: 01100 L: 001100 ^ L : 001100
T : 1010010 _ 1 :01010010,^ T : 001010010 T : 001010010

F F F

Figure 2.11: Constructing a CBL from A Floorplan.

Twins Binary Trees (TBT)

Twins Binary Tree (TBT) is first proposed to be used as a floorplan represen-

tation by Yao et al. in 2001 [30]. It is proved that there exists an one-to-one

mapping between TBT and mosaic floorplan. According to [30], the set of

twins binary trees TBTn C TreCn x Tree^ is defined as followed:

TBTn = {(bi, b2)\bi, b2 e Trecn and 0(6i) = 6^(62)}

where Tree^ is the set of binary trees with n nodes, and 6(6) is the la-

belling of a binary tree.

The labelling of a tree can be obtained by carrying out an in-order walk

on the tree. Beginning with an empty sequence, a '0' is added to the sequence

if a node with no left child is being visited, and a '1' is added to the sequence

if a node with no right child is being visited. The first '0，and the last '1'

in the sequence are omitted. The complement €)。(亡1) of 0(t i) is obtained by

Chapter 2 Literature Review on 2D Floorplan Representations 32

interchanging the '0' and '1' bits.

Given a mosaic floorplan, its TBT representation {ti, t �) c a n be obtained

by traversing along the slicelines. Both trees contain n nodes, where n is the

number of modules in the floorplan. The root of ti is the bottom-left cor-

ner block of the floorplan. The tree ti is built by connecting the bottom-left

corners of all the blocks. The left tree edge of a node represents the vertical

sliceline, and the right tree edgerepresents the horizontal sliceline.亡2 is built

similarly: the root is the upper-right corner blcok of the floorplan, and the

tree is built by connecting the upper-right corners of all the blocks. The left

tree edgeof a node represents the horizontal slicelnie, and the right tree edge

of a node represents the vertical sliceline. It is proved that the pair of trees

constructed in this way must be twin binary to each other. An example of a

floorplan and its TBT representation is shown in Figure 2.12. The solution

space of TBT is

TFM
— � ,I �i 0 ' �

f \
* ^ d 1

Figure 2.12: A Non-Slicing Floorplan and Its TBT Representation.

Chapter 2 Literature Review on 2D Floorplan Representations 33

Twins Binary Sequences (TBS)

In 2002, Young et al. proposed a Twins Binary Sequences (TBS) represen-

tation for mosaic floorplan in [13] basing on TBT. The idea of using TBT to

represent mosaic floorplans was proposed in [30] but the exact modelling was

not mentioned. For example, it is not known that how the nodes in the TBT

should be labelled so that it corresponds to a feasible floorplan. In view of this,

the authors in [13] proposed a TBS representation to cope with the problems.

The authors proposed to use a 4-tuple s = (tt, a, f3, to represent a floorplan.

We call s the TBS representation of a floorplan.

TT is the in-order traversals of the twin binary trees, and a is the labelling of

them. The authors claimed that a pair of twins binary trees will correspond to

a feasible packing if and only if their in-order traversals are the same. However,

these two pieces of information solely are not enough to represent a floorplan

uniquely. Thus, two more bit sequences P and P' are needed. These two se-

quences record the structural information of the trees: a bit '0' represents the

root of a tree and a node that is the right child of its parent, and a bit '1'

represents a node that is the left child of its parent. P is used to represent

the directional information of ti, where is used to represent the directional

information of 亡2. An example is shown in Figure 2.13.

To make TBS more general, the authors proposed to include in the input

some dummy zero-area blocks. They have proved that a tight bound of 9{n)

dummy blocks are needed to obtain general non-slicing floorplan from mosaic

floorplan.

Realizing a floorplan from its TBS representation is very efficient according

to [13]. It can be done by scanning the sequences only once from right to left.

Chapter 2 Literature Review on 2D Floorplan Representations 34

Floorplan t̂

% = ABCFDE
r- A A tX = lOOlO
t U V 3 = 000111

= 001001
^ 感 冗=ABCFDE

D I d ® a = 10 010
^ ^ ^ ^ 3 = OOOlll

E Hp © 3' = o o i o o i
A ^ ^ % = ABCFDE

Oi = lOO lO
W 3 = o o o i i i “

X A 兀=ABCFDE

L L l E l ^ " —

m 〜 （ A)
b 风 ^ ^ % = ABCFDE

^ ^ ^ (f h CT © ^ = h^'oiL

八 I B 兀=ABCFDE
- t q v ^ = 韶 ：
L L i l J ^ (g — � i

Figure 2.13: A Floorplan Realization Example using TBS.

Chapter 2 Literature Review on 2D Floorplan Representations 35

It is also proved that there is a one-to-one mapping between TBS and TBT,

and thus a one-to-one mapping between TBS and mosaic floorplan. The size

of the solution space of TBS is the same as that of TBT,

2.3 Summary

In this chapter, different types of floorplan are introduced, which are slicing,

non-slicing, and mosaic floorplan. Slicing floorplans are obtained by recur-

sively dividing a rectangle into smaller rectangles. Though the solution space

is small, slicing floorplans are not general enough, as most floorplans are not

slicing practically. Mosaic floorplans are not necessarily obtained by dividing

rectangles and thus are more general but they contain no empty space. Non-

slicing floorplan is the most general one.

Current state-of-the-art representations of each type of floorplan are pre-

sented. Table 2.1 is a table summarizing the characteristics of these repre-

sentations. For slicing floorplans, the most popular representation used is the

normalized Polish Expression [25]. The representation is simple and elegant,

and floorplan realization can be done in linear time.

For non-slicing floorplans, there are several representations such as se-

quence pair (SP), bounded-sliceline grid (BSG), 0-Tree, B*-Tree, and transi-

tive closure graph (TCG). The sizes of their solution spaces and the floorplan

realization runtimes are different. SP, BSG, and TCG are P-admissible where

0-Tree and B*-Tree are not.

Mosaic floorplans can be represented using corner block list (CBL), twins

binary tree (TBT), or twins binary sequences (TBS). The solution space of

Chapter 2 Literature Review on 2D Floorplan Representations 36

CBL is small, but not all CBL corresponds to a floorplan. In TBT and TBS,

the solution is one-to-one mapped to the representation and the realization

process can be done in linear time.

Representation Size of Solution Space Time Complexity of
Floorplan Realization

Normalized PE (9(n!25几—Vni.5) 0(n) 一

SP Q((n!f) ~ T 0{nloglogn)
BSG — 0{n''\/{n^-n)\) 0{n')

O-Tree 0{n)
B*-Tree 0{n)

TCG Q((n!)^) 0{n')
CBL 0(n!23” 0(n) —
TBT (9(n!23"ni.5) 0(n)
TBS 0(n) —

Table 2.1: Comparison between Different Kinds of Floorplan Representations.

Chapter 3

Literature Review on 3D

Fioorplan Representations

3.1 Introduction

As the VLSI design complexity increases, both the number of blocks and the

number of interconnects involved have increased dramatically. Interconnect

awareness in every step of the design cycle has become a major concern as

technology advances into the deep submicron era. In view of this, 3D chip

is proposed. Interconnect lengths can be reduced greatly in 3D chips and

thus making it easier to meet the timing requirements and to reduce the in-

terconnect cost. Unlike the traditional packing problem of 3D blocks, there

are several layers available for placing modules in 3D floorplanning. Thus, 3D

floorplans are also known as multi-layer floorplans.

Though 3D chips are advantageous in solving the interconnect problem,

there are still a lot of design challenges and there are not yet enough EDA

tools to assist 3D chip design. In this chapter, some previous work on floor-

planning for 3D chips will be discussed.

37

Chapter 2 Literature Review on 2D Floorplan Representations 38

3.2 Problem Formulation

The formal definition of the floorplanning problem for 3D design are given as

followed:

Definition 3.1 The input is a set of n modules {Mi , M2, • • •, M^} and a value

K that represents the number of layers, where each module Mi is associated

with an area A“ together with two aspect ratio bounds r̂ and Si such that

Vi < hi/wi < Si, where hi and Wi are the height and the width of module i

respectively. The output of the problem is a packing of the set of modules,

i.e., the x- and ^-coordinates and the dimensions {hi, Wi) of modules z, and

the layer I“ where I < k < K, on which module i lies. There should be no

overlapping between modules in each layer, and the circuit performance should

be optimized.

3.3 Previous Work

Several researchers have worked on floorplanning for 3D chips recently. They

have proposed different representations for 3D floorplans. Their work will be

reviewed in this section.

Slicing Tree

In 2004, the authors of [4] proposed a slicing structure representation for multi-

layer floorplans. In 2D floorplan representation, a floorplan is said to be a slic-

ing structure if it can be obtained by recursively dividing a rectangle into two

by vertical or horizontal lines. The authors extend this idea into three dimen-

sions, and adopted the Normalized Polish Expressions to represent multi-layer

floorplans.

Chapter 2 Literature Review on 2D Floorplan Representations 39

Similar to Normalized Polish Expressions for 2D floorplans, a slicing tree is

constructed for multi-layer floorplans. There are three kinds of internal nodes,

‘H’，'V，，and 'Z', representing horizontal, vertical, and lateral cuts respectively,

while each leaf is labelled by a module name.

To realize the fioorplan, the slicing tree has to be broken down. Each layer

is represented by a slicing sub-tree. This is done by removing all the 'Z' nodes

in the tree, leaving behind those 'V' and 'H' nodes only.

Given a slicing tree, we will construct the slicing sub-tree for each layer

one by one from the top to the bottom. At each layer, the 'Z' node is replaced

by its left child, and the right sub-tree is put to the lower layer. To put a

sub-tree to the lower layer, it is checked whether the lower layer is empty first.

If so, the sub-tree becomes the slicing sub-tree of that layer. Otherwise, a new

root node is created to join the current slicing sub-tree and the newly added

sub-tree and the label on the new root is either 'V' or 'H' depending on the

lowest common ancestor of these two subtrees in the original slicing tree. An

example showing a multi-layer fioorplan and its slicing tree representation is

illustrated in Figure 3.1.

An Array of 2D Representations

To make things easy and strict forward, some researchers have proposed to

use an array of 2D representations to represent multi-layer floorplans [34] [35 .

In [34], the authors proposed to use an array of Base Slice-line Grid (BSG) to

represent a multi-layer fioorplan, where each BSG represents the 2D fioorplan

on each layer. In [35], the same approach is used, but sequence pair is selected

as the 2D fioorplan representation.

Chapter 2 Literature Review on 2D Floorplan Representations 40

^ \ (I) @

d ®

A ^
(6) ®

Layer 1 Layer 2 Layer 3

I 4 I I 6 I I
3 2 7 8

5 1

Figure 3.1: (a) A 3D Slicing Tree, (b) The 2D Slicing Tree and the Floorplans
of Each Layer.

Chapter 2 Literature Review on 2D Floorplan Representations 41

This kind of representations is strict forward and easy to understand. How-

ever, the relationships between blocks in different layers can not be reflected

by the representation solely.

Combined Bucket and 2D Array (CBA)

To represent multi-layer floorplans, we can use a 2D representation to repre-

sent each layer. However this is not good as the relationships between blocks

in different layers are not stored. In view of this, the authors of [36] proposed

a multi-layer representation called Combined Bucket and 2D Array (CBA).

CBA is consisted of two parts, a 2D representation to represent each layer,

and a bucket structure to store the relationships between blocks in different

layers. In [36], TCG is selected as the 2D representation but in fact, any 2D

floorplan representation like Sequence Pair or Corner Block List can be used.

A bucket represents a rectangular region on the x-y plane. It stores the

relationships between blocks in different layers. For each bucket, indexes of

the blocks that intersect with that bucket are stored. Besides, for each block,

the indexes of the buckets that intersect with that block are also recorded.

Thus, if two block i and j, locating in different layers, intersect with the same

bucket /c, it is likely that they are placed close to each other. In Figure 3.2, a

multi-layer floorplan and its CBA representation is shown.

Simulated annealing is used in [36] to search for a good floorplan. The

authors have proposed different kinds of moves. Apart from some intra-layer

moves like ‘rotation，, 'swap', 'reverse', and 'move', the authors suggested three

more inter-layer moves namely 'interlayer swap', 'z-neighbor swap', and 'z-

neighbor move'. The first one means swapping two blocks in different layers.

Chapter 2 Literature Review on 2D Floorplan Representations 42

• G h G v

(b ^ K d) (b)

b 11 c Bucket

1 — b, e, f a, e

j Gh G v b，f |a，c,d’g

^ 1 ® A
r v] C D — ^ 0 汤

i

Figure 3.2: A Floorplan Represented by CBA.

The second one means swapping two blocks in different layers, but they must

be close to each other. The third one means moving a block to another layer,

and the destination must be close to its original position. Experimental results

showed that the performance of [36] is better than that of [35 .

3.4 Summary

In this chapter, the mutli-layer floorplanning problem is defined. It is different

from the traditional floorplanning problem, as it allows blocks to be placed on

more than one layer. Multi-layer floorplan design is beneficial as it can reduce

the interconnect cost significantly, making the routing step easier, and making

it easier to meet the timing requirements.

Several previous work on multi-layer floorplan representation is reviewed.

Chapter 2 Literature Review on 2D Floorplan Representations 43

In [4], a slicing tree representation is proposed and in [34] [35], an array of

2D floorplan representations is proposed. However, for both of them, the re-

lationships between blocks in different layers are neglected. Thus, the authors

of [36] proposed a Combined Bucket and 2D Array representation to extend

the state-of-the-art 2D representations to multi-layer.

Chapter 4

Literature Review on

Bus-Driven Floorplanning

4.1 Problem Formulation

Bus-Driven Floorplanning problem is a floorplanning problem with bus plan-

ning taken into consideration. Bus is a collection of interconnections between a

set of modules. The problem of bus-driven floorplanning (BDF) can be defined

as follows [1]:

Definition 4.1 Bus-Driven Floorplanning (BDF)

Given the following:

1. A set of n blocks B = {60, h,bn-i}, where each block bi is associated

with a width Wi and a height hi, where Wi, hi G 11+.

2. A set of m buses U = {uq.Ui, where each bus Ui has a width

ti, ti e R+, and goes through a set of blocks Bi, Bi C B.

Our task is to decide the position of each block and the route of each bus, such

that each bus Ui can go through all its blocks. There should be no overlapping

between any two blocks. The goal is to minimize the chip area and the total

bus area.

44

Chapter 4 Literature Review on Bus-Driven Floorplanning 45

Some recent approaches used to solve the bus-driven floorplanning problem

will be discussed in the coming sections.

4.2 Previous Work

Many algorithms have been proposed to enforce different kinds of placement

constraints in floorplan design. For example, the authors in [37] [38] [39] [40] [41

had considered alignment and abutment constraints in floorplan design. In

1][42], the bus-driven floorplanning problem is addressed. These approaches

will be discussed in details in the following sections.

4.2.1 Abutment Constraint

The authors of [37] enforce abutment constraint in floorplanning in order

to handle rectilinear block placement. The sequence pair representation is

adopted. To take care of rectilinear blocks, the authors proposed to partition

each rectilinear block into a set of rectangular sub-blocks. Each block is par-

titioned in one direction only, and all neighboring sub-blocks are orthogonally

aligned (Figure 4.1). Some rectilinear blocks with complicated shape may need

to be partitioned into L-shaped sub-blocks, and then into rectangular shapes.

In order to employ the approach proposed, the partitioning has to be done

in such a way that the neighboring sub-blocks can be grouped into a L-shape

block. However, some rectilinear blocks cannot be partitioned according to the

above requirements. Then, an e-approximation is performed to divide it into

two L-shape sub-blocks. An example is illustrated in Figure 4.2.

After partitioning, the sub-blocks have to be abutted to maintain the orig-

inal rectilinear shape. For example, if a block X is partitioned into three

sub-blocks as in Figure 4.1(a)), they have to be abutted horizontally or verti-

cally in the final floorplan in order to get back the original rectilinear shape.

Chapter 4 Literature Review on Bus-Driven Floorplanning 46

A C A
B

B

(a) (b)

Figure 4.1: (a) A Feasible Partitioning, (b) An Infeasible Partitioning.

MEUr

• I

Figure 4.2: A Rectilinear Block That Cannot Be Decomposed into Two L-
Shape Sub-Blocks and Its e-Approximation.

There is a key observation: the sub-blocks should maintain their initial rela-

tive positions in any feasible placements, e.g., the blocks should appear in the

sequence pair as {...A...B...C..., ...A...B...C...), (...A...B...C..., ...C...B...A...),

(...C...B...A..., ...C...B...A...), or {...C...B...A..., ...A...B...C...) for the example

in Figure 4.1(a). Simulated annealing is used. Infeasible candidate solutions,

e.g., the sub-blocks are not abutted, will be penalized in the cost function.

In 2001, the authors of [38] have proposed an algorithm to enforce abut-

ment constraints to blocks in a floorplan. L-shaped and T-shaped blocks are

first partitioned into rectangular sub-blocks, and the sub-blocks are then forced

to obey the abutment constraints and the rectilinear blocks can thus be placed.

Unlike [37], Corner Block List (CBL) is used to represent a floorplan. The

authors have showed that the abutment information of the blocks can be de-

duced from the CBL representation. Let HSEG be a horizontal segment in a

Chapter 4 Literature Review on Bus-Driven Floorplanning 47

floorplan P, BHSEG = {^ i , . . . , Bp} denotes the p blocks lying immedi-

ately below HSEG, arid THSEG 二 { T i , T2, . . . , T J denotes the q blocks lying

immediately above HSEG. If q equals one, every block in BHSEG is lying

immediately below the block T\, implying an abutment information. The case

of p equaling one is similar. If both p and q are greater than or equal to two,

Bi will abut with and Bp will abut with Tq (Figure 4.3).

HSEG

j一 \a_J.B I c
B C D D E F

� W

Figure 4.3: (a)Block A is Abutted With Block B, C, and D. (b)Block A is
Abutted With Block D, Block C is Abutted With Block F.

To place L-shape or T-shape blocks, they are first partitioned into rect-

angular sub-blocks. However, enforcing only the abutment constraints to the

sub-blocks is not enough. An example is illustrated in Figure 4.4. Thus, the

authors introduced the align-abutment constraints, which means the blocks

has to be aligned and abutted at the same time. Then, simulated annealing is

used to search for a good solution. A penalty will be given to the candidate

floorplan solutions in which the align-abutment constraints is violated.

An algorithm to handle arbitrarily shaped rectilinear blocks were proposed

in 2004 by Tang et al in [41]. They also used the sequence pair representation.

According to the paper, a rectilinear block is said to be H-sequential if

Chapter 4 Literature Review on Bus-Driven Floorplanning 48

I B I
A ^ ^ A B

Original Shape Abutment Constraint

Figure 4.4: Abutment Constraint Alone is Not Enough to Form a L-Shape.

no single vertical line can cut the block into more than two parts. Similarly,

a rectilinear block is said to be V-sequential if no single horizontal line can

cut the block into more than two parts. An example is illustrated in Fig-

ure 4.5. A block is said to be non-sequential if it is neither H-sequential nor

V-sequential (Figure 4.6). If a block is H-sequential, it can be partitioned

into a set of horizontally-abutted sub-blocks, the set of sub-blocks are called

a H-sequential sequence. For the set of sub-blocks, the relative position of

them has to be the same in both sequence of the sequence pair representation.

V-sequential sequence can be defined in a similar fashion. An orthogonal link

list is proposed to store the information of the rectilinear blocks.

r ^ I I

(a) (b)

Figure 4.5: (a) A H-Sequential Rectilinear Block, (b) A V-Sequential Recti-
linear Block.

Simulated annealing will then be applied to search for a good solution. Ex-

perimental results showed that the performance of the approach is promising.

Chapter 4 Literature Review on Bus-Driven Floorplanning 49

1 I , — . 'n ''' '//l-T
. D

�r 1? A - —
I 。“

InininimiMnil ‘ liniiiifniniMfi J
‘ '' ‘

C f
I——I ‘ ^ ― ,

(a) (b)

Figure 4.6: (a) A Non-Sequential Rectilinear Block, (b) It is Partitioned into
Several Sub-Blocks.

However, the algorithms proposed cannot be applied directly in the bus-

driven floorplanning problem, as for a bus to go through a set of blocks, it is not

necessary for the blocks to abut with one another. Besides, the order in which

a bus goes through its blocks is not known beforehand. Nevertheless, their

novel notion of checking relative positions between blocks in a representation

is helpful.

4.2.2 Alignment Constraint

In [39], the authors proposed a unified method to handle different kinds of

placement constraints, like pre-placed constraint, range constraint, boundary

constraint, alignment, abutment, and clustering constraint, etc.

The authors proposed that all the constraints mentioned above can be mod-

elled as a collection of relative placement constraint and absolute placement

constraint. Relative placement constraints are vertical or horizontal distance

restriction (a certain range of values) between two modules. For example,

h{A, B) = [a, p] means that the horizontal distance between the lower left

corners of block A and block B has to be greater than a, but cannot exceed

P (Figure 4.7). Absolute placement constraints are similar, except that one of

the two modules in the relationship is a boundary of the chip. The left, right,

Chapter 4 Literature Review on Bus-Driven Floorplanning 50

bottom, and top boundary of a chip are denoted by LL, RR, BB, and TT.

An example is illustrated in Figure 4.8.

A i

^ J i

Figure 4.7: Relative Placement Constraint: h{A, B) = [a, (5

mmmmmmmmmmmmmm^MM^^^^
SSiSi兹该鬆丨彡丨翁丨嫁；；丨丨站丨：胃：彳：纟叙移錄丨站逸:截？按iii?!發!揮兹銷终勒兹 ‘‘/ ‘ ‘ - ‘ ‘‘ -, ‘ ‘ ‘‘‘ ‘ ‘ ‘ ,‘
_ _ 缀 | | _ 錄 丨 _ _ _ 丨 _ _ | 摩 _ _ 丨 丨 _ 丨 _ _ _ _ _ _ | _ _ 錢 _ 翁 | _) 紫 錢 丨 | _ 丨 _ _ _ _ _ _ 錢 _ _ _ _ | _ _ 丨 _ _ | _ | _ _

_1|丨1_賴_簿顏iil額镇_1__麗1_錄翁難缀譜賴賴I丨餞丨
_ _ _ ! _ _ _ _ _ _ _ 丨 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 議丨 _ _ _ _ _ _ 丨 _ | 纖 _ _ _ _ _ _ _ 蒙 議 議 _ _ _

‘ ‘ ‘ , ‘‘‘ ：： ,^^ ‘
• ‘ 'iiMlMMIMMIMIMItlllMIHaHi

A
^ ^ ^ ^ ^ ^ ^ ^ ^ ‘ - ‘ ‘

— ， — _ — — 胃 — — « _

B a - ： ： ‘ ： , ：
r^TT • � ’ . " ’ ‘ - ‘‘‘.

Figure 4.8: Absolute Placement Constraint: ”[BB, A) 二 [a, jS

Sequence pair representation is adopted. After modelling different kinds

of placement constraints as a collection of relative and absolute placement

constraints, they can be enforced by inserting pairs of edges in the constraint

graphs. If adding of edges produces positive cycles in the constraint graphs,

the packing is infeasible (cannot satisfy all placement constraints). Then, a

penalty will be added in the cost function of the simulated annealing process.

Based on the sequence pair representation, the authors of [40] proposed a

Chapter 4 Literature Review on Bus-Driven Floorplanning 51

method to enforce the alignment constraint and some other placement con-

straints in 2002. �

An intuitive idea of deducing the approximate positions of a set of blocks

by looking at the sequence pair is proposed in [40]. In the paper, a set of blocks

are said to be H-aligned if they are abutting with each other horizontally. V-

alignment can be defined in a similar fashion. After that, the authors defined

strictly ahead as follow: Given two blocks a and b and a sequence pair {X, Y)

(Xi0X26X3, YiaY2hY^), a is strictly ahead of b in (X, Y) if and only if the

length of the longest common subsequence of (X2, I2) 二 0.

It is shown that if a set of blocks are H-aligned, the relative positions of

the blocks in both sequences of the sequence pair should be the same, and

the strictly ahead relationship should exists between every pair of consecutive

neighboring blocks. The method of finding the approximate positions of the

blocks by looking at the sequence pair is very helpful. In [1], the authors have

made use of this to design an algorithm to solve the bus-driven floorplanning

problem.

These kinds of approaches to enforce alignment constraint in a floorplan

are again not suitable for solving the bus-driven floorplanning problem, as for a

bus to go through a set of blocks, it is not necessary for them to align. Forcing

them to align will impose some needless restrictions to the solution. Besides,

for a bus to go through a set of blocks, the order in which the blocks are placed

is not fixed.

Chapter 4 Literature Review on Bus-Driven Floorplanning 52

4.2.3 Bus-Driven Floorplanning

In [1], the authors aimed at solving the bus-driven floorplanning problem,

based on a simulated annealing framework. Sequence pair representation is

used. Each candidate floorplanning solution would be checked in an evalua-

tion step to see if the buses are feasible, i.e., the required set of blocks can be

passed through by a 0-bend bus.

The authors has derived necessary conditions for feasible buses. Given a

candidate sequence pair, if a bus has to go through a set of blocks B, the rel-

ative positions of the blocks in B has to be either the same or reversed in the

sequence pair. If more than one buses have to be placed, the orderings between

the buses have to be taken into account. The final step of the algorithm is to

realize the floorplan, by calculating the coordinates of each blocks and buses.

Sometimes the positions of the blocks have to be adjusted in order to let buses

to go through.

In 2005, authors in [42] have proposed an algorithm to solve the bus-driven

floorplanning problem using the B*-Tree representation. A modified simulated

annealing framework is used.

Similar to [1], the authors aim at solving the problem using either horizontal

or vertical buses. It is claimed that in a B*-Tree representation, the nodes in a

left-skewed sub-tree may satisfy a horizontal bus constraint. Dummy blocks of

appropriate heights are then added to guarantee the feasibility of a horizontal

bus whose corresponding B*-tree nodes are in a left-skewed sub-tree. Vertical

buses can be handled in a similar fashion. After that, the twisted-bus struc-

ture has to be taken care of (Figure 4.9). Two buses in a twisted-bus structure

cannot be placed at the same time. A candidate solution with twisted-bus

Chapter 4 Literature Review on Bus-Driven Floorplanning 53

structures will be discarded.

f J — G ,

l i © ® J M ^ B

M 責 B r
Figure 4.9: A Twisted-Bus Structure.

These paper provided an algorithm to solve the bus-driven floorplanning

problem. Nevertheless, one major drawback of their approaches is that, only

horizontal and vertical buses are considered and the solution quality will dete-

riorate if the number of blocks involved in each bus is large, i.e., each bus has

to go through many blocks. Our proposed algorithm, which will be discussed

in Chapter 5, has made a significant improvement over [1] by allowing 0-bend,

1-bend, and 2-bend buses.

4.3 Summary

In this chapter, some previous work related to the problem bus-driven floor-

planning is discussed. The previous work can be divided into three main

categories: enforcing abutment constraints, enforcing alignment constraints,

and solving the bus-driving floorplanning problem directly.

Many work was done on handling placement constraints in floorplan de-

sign. Some of them was proposed to solve the problem of packing rectilinear

blocks. In most cases, rectilinear blocks were first partitioned into rectangu-

lar sub-blocks. Those sub-blocks were then placed in the floorplan with some

Chapter 4 Literature Review on Bus-Driven Floorplanning 54

placement constraints, like alignment constraints, abutment constraints, etc.,

in order to get back the original shapes of the rectilinear blocks. However,

the abutment constraint alone is not helpful in the bus-driven floorplanning

problem, as the blocks involved in a bus are not necessarily abutted. Similarly,

alignment constraint is not helpful as it may over-restrict the solution space.

Besides, the order in which a bus goes through its blocks is not known before-

hand and it is hard to enforce the abutment or alignment constraint.

To solve the bus-driven floorplanning problem, the authors of [1] and [42

have proposed different algorithms, using different floorplan representations.

However, both of their works considered only horizontal and vertical buses.

The solution quality will deteriorate if the number of blocks involved in a bus

is large. Improvements can be made if the buses are allowed to have more

bendings.

Chapter 5

Multi-Bend Bus-Driven

Floorplanning

The paper [23] of the content of this chapter is included in the proceedings of

the International Symposium of Physical Design (ISPD) 2005.

5.1 Introduction

Floorplanning is to plan the positions and shapes of a set of modules at the

beginning of the design cycle to optimize circuit performance. Interconnect-

driven floorplanning is considered to be one of the most important problems in

physical design today. As the complexity of chip design increases, the amount

of interconnections between different modules on a chip becomes huge. Bus is a

collection of wires, which can be used to carry signals among different modules.

Bus routing has become more and more important as the complexity of chip

design increases. An area-compacted floorplan is not necessarily bus-routable.

In order to ease bus routing and avoid unnecessary iterations of the physical

design cycle, it would be favourable to incorporate this bus routing problem

in the early designing phases.

55

Chapter 5 Multi-Bend Bus-Driven Floorplanning 56

Bus-driven floorplanning considers the placement of buses. Buses are of

different widths and need to go through different sets of modules. Therefore,

the positions of the modules will affect the placement of the buses. The ob-

jective of the problem is to obtain a bus-rout able floorplan such that the area

of the chip and the total area of the buses are minimized.

In this chapter, this bus-driven floorplanning problem will be re-visited.

Unlike [1], our proposed algorithm allows 0-bend, 1-bend, and 2-bend buses.

To have a 1-bend bus, one via is used and thus, it can be considered as a

1-via bus. Experimental results have proven that our algorithm can generate

solutions with higher quality especially when the number of blocks in each bus

is large. For example, if the buses have to go through more than 10 blocks,

1] is not able to generate any solution while our algorithm can still generate

solutions of good quality.

The rest of the chapter is organized as follows. A formal definition of the

problem will be given in Section 5.2. After that, an algorithm is proposed to

solve the problem, and the details will be discussed in Section 5.3. Experimen-

tal results will be presented in Section 5.4. Finally, a summary will be given

in Section 5.5.

5.2 Problem Formulation

We assume that buses are routed on two layers, one for horizontal buses and

the other for vertical buses. The bus-driven floorplanning problem can be for-

mulated as follows.

Given the following:

Chapter 5 Multi-Bend Bus-Driven Floorplanning 57

”] B
,,•• immmm mm mmm.mmmmmm 權「••••• ••••••^•睡

‘ mmmm mmm mmm mm mm mm hmmmmmmmmMmm mm

c �...........

>

Figure 5.1: Bus Ui Goes Through A, B, and C.

1. A set of n blocks B = {bo, 6i, • • • , where each block bi is associated

with a width Wi and a height ĥ , where Wi, hi G R+.

2. A set of m buses U = {uq, ^i, • • • , Um-i}, where each bus Ui has a width

ti, U G R+, and need to go through a set of blocks Bi, Bi C B.

Our task is to decide the position of each block and the route of each

bus, such that all the buses are 0-bend, 1-bend, or 2-bend and each bus Ui

goes through all its blocks. There should be no overlapping between any two

blocks. As there are only two layers for bus routing, we have to ensure that

there is no overlapping between the horizontal (vertical) components of the

buses. The goal is to minimize the chip area and the total bus area.

We will define the meaning of "going through" here. For a horizontal

component of a bus Ui to go through a set of blocks {A , B, C} , the vertical

overlapping between the blocks has to be greater than or equal to the bus

width ti of Ui. An example is shown in Figure 5.1. The condition for a vertical

component of a bus to go through a set of blocks can be defined similarly.

5.3 Methodology

Simulated annealing (SA) will be used to derive a solution. A candidate solu-

tion will be evaluated according to (l)the number of buses it can accommodate,

Chapter 5 Multi-Bend Bus-Driven Floorplanning 58

c ^ ^ E I c i j B

A B • A B

(a) (b)

Figure 5.2: (a) A 1-Bend Bus. (b) A 3-Bend Bus.

(2)the total area of the buses, and (3)the total area of the floorplan. There

are three main steps to evaluate a solution. The first step is to determine the

shapes of the buses by examining the sequence pair. After that, a bus ordering

is found such that all feasible buses can be laid out correctly by following this

order. Finally, a flooplan is obtained by calculating the coordinates of the

blocks and the buses. Details of each step will be presented in the following

sections.

5.3.1 Shape Validation

We can deduce the shape of a bus by looking at the sequence pair represen-

tation of the floorplan. As we allow buses of at most two bends, buses that

cannot be realized in two bends will be considered as infeasible, and will be

excluded from further checking. A penalty will be added for each infeasible bus.

An example is shown in Figure 5.2. Consider a sequence pair {FGHICDEAB,

ABCDEFGHI), a bus Ui that need to go through the blocks in {D,E,G}

can be realized as a 1-bend bus (Figure 5.2a). Another bus uj that need to

go through the blocks in {A, C, D, E, G�H, 1} will have at least three bends

(Figure 5.2b), and it will be marked as infeasible. The aim of this step is to

find out all the infeasible buses, and to determine the shape of each feasible bus.

Chapter 5 Multi-Bend Bus-Driven Floorplanning 59

。 ：-f | F

A D C

_ _ I
Figure 5.3: Two Valid 0-Bend Buses, {A, B, C} and {C, F}.

Given a bus ui that need to go through Bi = 62, • •. , bk}, we will first

extract those blocks in Bi from the sequence pair, without altering their rel-

ative positions. For example, if we are checking a bus that goes through the

blocks in {A, B, E} from the sequence pair {ADBCE, EBCAD), we will first

extract spi 二 [ABE, EBA) from the sequence pair, where spi denotes the ex-

tracted sequence pair for bus Ui. Then, we will work on spi to check whether

Ui can be realized as a 0-bend, 1-bend, or 2-bend bus one after another.

0-Bend Bus Checking

A 0-bend bus is actually a horizontal bus or a vertical bus. For a bus Ui to be

0-bend, the orders of the blocks in the two sequences of spi have to be either

the same (horizontal bus) or reversed (vertical bus). Let (a, /?) be the sequence

pair of spi, a and f5 are in reversed order \i a = 丑,where X^ is the reverse

of string X, For example, given a sequence pair (DEFABC, ABCDEF) and

a bus uo that has to go through the blocks in {A, B, C} , the first step is to

extract the corresponding blocks from the sequence pair: spo ={ABC, ABC).

As the blocks appear in the same order in both sequences, it can be concluded

that Uo can be realized as a 0-bend horizontal bus. For another bus Ui that

has to go through the blocks in {C, F } , the extracted spi is (FC, CF). As

the blocks appear in reversed order in the two sequences, it can be realized as

a 0-bend vertical bus. This example is illustrated in Figure 5.3.

Chapter 5 Multi-Bend Bus-Driven Floorplanning 60

1-Bend Bus Checking

1-bend bus is also called L-shaped bus. For a bus to be 1-bend, a neces-

sary condition is that it consists of one vertical component and one horizontal

component. This can be checked easily by identifying the longest common

subsequence (LCS) in spi first, and then check if the remaining blocks (after

removing the blocks in the LCS) in the two sequences are in reversed order.

We have to identify the longest common subsequence to form the horizon-

tal component of an L-shaped bus. It must be the LCS but not any common

subsequence in spi because we have proved that if taking the longest common

subsequence as the horizontal component fails to form a valid L-shape, taking

any other shorter subsequences will also fail. Let li be the longest common

subsequence of spi and I2 be another common subsequence of shorter length.

We can analyze the situation by looking at two different cases. The first case

is that I2 is not a substring of h. Then, a valid L-shape can never be formed

with I2 as the horizontal component because there exist at least two blocks

m and 712 which are in h but not in I2, and these two blocks must be in a

left-right relationship with each other. This implies two separate horizontal

components and thus, a valid L-shape cannot be formed. Another case is that

I2 is a substring of li. Similarly, choosing I2 as the horizontal component will

prevent a valid L-shape to be formed as those blocks in h must be in left-right

relationship with each other. Therefore, we will pick the longest common sub-

sequence as the horizontal component.

If there exist more than one longest common subsequences li and Is, pick-

ing either one of them will be the same. Let's consider three different cases

according to the number of blocks in li but not in Is. The first case is that

there exist more than one blocks in li but not in I3 (i.e., there exist more than

Chapter 5 Multi-Bend Bus-Driven Floorplanning 61

one blocks in I3 but not in li). Then, the blocks in h but not in Is will form a

horizontal component, and so as the blocks in I3 but not in li. Thus, a valid

L-shape cannot be formed no matter which one we pick. The second case is

that there is only one block x that is in li but not in I3 (i.e., there is another

block y that is in I3 but not in /i), and that block appears in the middle of /i,

i.e., X is neither the first nor the last block in li. Note that the position of x

in li must be the same as that of y in I3. In this case, a T-shape (not L-shape)

will be formed if we take li as the horizontal component, as y will be in an

upper-lower relationship with x. Notice that we cannot take Is as the horizon-

tal component neither in this second case for a similar reason. The last case is

that there is only one block x that is in li but not in I3, and x is the first block

or the last block of h. A valid L-shape may be formed as x can participate in

the vertical component and act as a 'joint' of the two components. In the last

case, picking either h and I3 will be the same. In the following steps, we will

regard the first and the last block of the longest common subsequence as in

the vertical component and will keep them for checking whether the vertical

component is on the left or on the right of the horizontal component.

Note that even if a bus is consisted of one vertical component and one

horizontal component only, there are still several possibilities. The blocks may

be in T-shape or +-shape which we consider as invalid. Let {ao,ai, • … ， 以 工 }

be the set of blocks that form the vertical component, and {bo, 61，... ,by} be

the set of blocks that form the horizontal component. If there exists a block bi

that has to be on the left of aj for some j G {0,1, • • • and a block bk that

has to be on the right of ai for some I e {0，1，... this bus is in T-shape

(or 丄-shape or +-shape) and is invalid. Similarly, if there exists a block â

that has to be on top of bj for some j G {0,1, • • • and a block a^ that has

to be below bi for some Z G { 0 , 1 , … , y } , this bus is in h-shape (or H-shape or

+-shape) and is also invalid.

Chapter 5 Multi-Bend Bus-Driven Floorplanning 62

… '‘‘ y ‘ / ‘ /

D • • F.‘

_ I

Figure 5.4: A Valid 1-Bend Bus {A, B, C, D)

Let's look at an example. Given a sequence pair {DEFABC, ABCDEF)

and a bus US that has to go through the blocks {A, B, C, D}, the first step is to

extract the corresponding blocks SPS = {DABC, ABCD) from the sequence

pair. As it failed the 0-bend checking, the next step is to check if it can be

realized as a 1-bend bus. The LCS of sp3 is ABC, so ABC will be taken as

the horizontal component of U3 and B will be removed from sps. Then we

have to check whether the remaining block D can form a vertical component

with the block A or C. As the blocks A and D appear in reversed order in sps,

AD can form the vertical component of U3 (Note that C and D also appear in

reversed order in sps and we can pick either AC or AD). After checking, U3 is

classified as a valid 1-bend bus. This example is illustrated in Figure 5.4.

Let's look at another example, given the same sequence pair (DEFABC,

ABCDEF) and another bus U4 that has to go through the blocks in {A, B, E, F } ,

we first extract the corresponding blocks sp4 二 (EFAB, ABEF) from the se-

quence pair. The LCS is AB or EF. As there exist more than one longest

common subsequence and there are more than one different symbols between

them, it is not a valid 1-bend bus and will proceed to the 2-bend checking.

This example is illustrated in Figure 5.5.

In this 1-bend checking, some buses may be identified as T-shaped but

we will not mark it as infeasible yet since it may form a valid 2-bend bus by

Chapter 5 Multi-Bend Bus-Driven Floorplanning 63

E

丨 I - F 丨 :

A 論 3 b

Figure 5.5: Bus U4 Cannot Be Realized as A 1-Bend Bus.

D E ~ 一 . ” D E _ , _
D_r•囲 F , ——=1_J F

.J___J w r ‘ ‘ ‘‘ -
A C A B e

W in I ‘

Figure 5.6: In Some Cases, A T-Shaped Bus Can Be Changed into A Valid
2-Bend Bus.

adjusting the positions of some blocks. An example is illustrated in Figure 5.6.

2-Bend Bus Checking

If the bus is found to be neither 0-bend nor 1-bend, we will check whether it

is a 2-bend bus. There are several kinds of 2-bend buses, Z-shape, mirrored

Z-shape, C-shape, or mirrored C-shape. There will be two horizontal (vertical)

components and one vertical (horizontal) component in the bus, denoted by

HVH or VHV respectively. Assuming the case of HVH, we will first identify

the vertical component of the bus. Let the extracted sequence pair spi of bus

Ui be (a,/?), where a and j3 are strings of blocks. The vertical component

can be found by finding the longest common subsequence in {a,卢丑)’ where

denotes the reverse of the string (3.

Similar to 1-bend checking, the first block and the last block of the longest

common subsequence will be kept for horizontal component checking. Besides,

we have to pick a longest common subsequence but not any other shorter subse-

quence, and if there are more than one longest common subsequences, picking

Chapter 5 Multi-Bend Bus-Driven Floorplanning 64

any one of them will do. The argument is similar to that in 1-bend checking.

After identifying the vertical component, we will classify the remaining

blocks of the bus into different relationships with the vertical component.

For example, block A from the bus ui with extracted sequence pair spi 二

{ABCDEF, FEDABC) will be classified as in the set Upper, as A is on top

of all the blocks in the vertical component. On the other hand, block F will

be classified as in the set Lower, as F is below all the blocks in the vertical

component. We can deduce these relationships easily from the sequence pair.

There are totally eight types of position sets: (1) Upper, (2) UpperLeft, {3�Left,

{4:)LowerLeft, {5) Lower, {6) Lower Right, {7) Right, and (8) UpperRight

There are four valid shapes for the case of HVH: Z-shape, mirrored Z-

shape, C-shape, and mirrored C-shape. In order to form a valid shape, some

of the position sets have to be empty. For example, to form a mirrored Z-

shape, there should be no block in the upper-left and lower-right directions

of the vertical component. Thus, the sets UpperLeft and LowerRight have to

be empty. The blocks in the set Upper, UpperRight, and Right will form one

horizontal component, and the blocks in the set Lower, LowerLeft, and Left

will form another horizontal component. Details are shown in Figure 5.7. The

last step is to check both horizontal components to ensure that the blocks in

each component can indeed align horizontally, i.e., the blocks appear in the

same order in both sequences of spi.

The shape validation step for 0-bend, 1-bend, and 2-bend buses can be

incorporated into one whole process. The overall algorithm is shown in Fig-

ure 5.8.

Chapter 5 Multi-Bend Bus-Driven Floorplanning 65

Q)®@ a；、!、）

© © • 0 �" L
� • �

(9 © [� 3 J"

0 upper ⑥ UpperRight © ^c^pSnent)

0 Lower 0) UpperLeft • T X & S l 二

0 Left 0 LowerRight Q Components of H1 or H2

0 Right LowerLeft O Empty set

Figure 5.7: The Necessary Conditions for The Position Sets to Form A Valid
2-Bend Shape.

5.3.2 Bus Ordering

In this step, we aim at determining an ordering between the valid buses, and

removing those that have conflicts with some other buses. For example, given

a sequence pair (CADB, ACBD), block C has to be placed above block A ac-

cording to the order in the sequence pair, so any horizontal bus going through

block C has to be placed above any horizontal bus going through block A.

This kind of constraint is called bus ordering constraint.

However, some ordering constraints may be contradictory to each other.

An example is shown in Figure 5.11. In this example, block A is on the left

of block B according to the sequence pair, so any vertical bus going through

A has to be placed on the left of any vertical bus going through block B.

Similarly, block C is on the left of block D and thus, any vertical bus going

Chapter 5 Multi-Bend Bus-Driven Floorplanning 66

SHAPE-VALIDATION (int i)

1 k — number of blocks that bus Ui has to go through

2 Extract spi from the sequence pair

3 Find the longest common subsequence Icsi of spi

4 IF = 1 OR 丨奴I = k
5 Mark as 0-bend

6 result — SUCCESS

7 ELSE

8 Put the remaining blocks into position sets

9 result 一 ONE_BEND_CHECK ⑴

10 IF result = FAIL

11 result — TW0_BEND_CHECK_VHV(O

12 IF result = FAIL

13 Reverse the first sequence in spi

14 Find the longest common subsequence of spi

15 Put the remaining blocks into position sets

16 result — TWO_BEND_CHECK_HVH (i)
17 END IF

18 END IF

19 END IF

20 RETURN result
Figure 5.8: Pseudo Code of Shape Validation.

Chapter 5 Multi-Bend Bus-Driven Floorplanning 67

ONE_BEND一CHECK (int i)
1 result ^ FAIL

2 IF I Right I = 1 (The vertical component must be on the left)

3 IF |UpperRigh1:|=0A|LowerRight|=0A|Lower|=0A|LowerLeft|=0

4 IF Upper U UpperLeft can form a vertical component

5 Mark as L-shape and result SUCCESS

6 END IF

7 ELSE IF I UpperLeft I =0 A | Upper | =0 A | UpperRight | =0 A | LowerRight | =0

8 IF Lower U LowerLeft can form a vertical component

9 Mark as 「一shape and result — SUCCESS

10 END IF

11 END IF

12 ELSE IF I Left I = 1 (The vertical component must be on the right)

13 IF lUpperLef11 =0A|LowerLeft|=0八|Lower| =0八|LowerRight| =0

14 IF Upper U UpperRight can form a vertical component

15 Mark as j-shape and result SUCCESS

16 END IF

17 ELSE IF |UpperRight|=0A|Upper|=0A|UpperLeft|=0A|LowerLeft|=0

18 IF Lower U LowerRight can form a vertical component

19 Mark as 二shape and result — SUCCESS

20 END IF

21 END IF

22 END IF

23 RETURN result

Figure 5.9: Pseudo Code of 1-Bend Checking.

Chapter 5 Multi-Bend Bus-Driven Floorplanning 68

TWO_BEND_CHECK_VHV (int i)
1 result 卜 FAIL

2 IF |UpperRight| = 0 AND |LowerLeft| = 0

3 IF the blocks in Upper, UpperLeft, Left can be vertical AND

4 the blocks in Lower, LowerRight, Right can be vertical

5 Mark as 2-bend and result — SUCCESS

6 END IF

7 ELSE IF |UpperLeft| = 0 AND |LowerRight| = 0

8 IF the blocks in Upper, UpperRight, Right can be vertical AND

9 the blocks in Lower, LowerLeft, Left can be vertical

10 Mark it as 2-bend and result — SUCCESS

11 END IF

12 ELSE IF iLowerLeftl = 0 AND |LowerRiglrt| = 0 AND |Lower| = 0

13 IF the blocks in Upper, UpperLeft, Left can be vertical AND

14 the blocks in Upper, UpperRight, Right can be vertical

15 Mark it as 2-bend and result — SUCCESS

16 END IF

17 ELSE IF |UpperLeft| = 0 AND |UpperRight| = 0 AND |Upper| = 0

18 IF the blocks in Lower, LowerLeft, Left can be vertical AND

19 the blocks in Lower, LowerRight, Right can be vertical

20 Mark it as 2-bend and result 卜 SUCCESS

21 END IF

22 END IF

23 RETURN result

Figure 5.10: Pseudo Code of 2-Bend Checking.

Chapter 5 Multi-Bend Bus-Driven Floorplanning 69

r f ^ D
E J k AT IB

Ui- = 二 — — Ui

F ~ . i | IH <
Jl| L I'K

Figure 5.11: Bus Ui Has to Be Placed on The Left of Uj and Bus Uj Has to Be
Placed on The Left of Bus Ui.

through C has to be placed on the left of any vertical bus going through D.

Problem will occur if there are two 2-bend buses Ui and Uj, where a vertical

component of Ui has to go through block A and D, and a vertical component

of Uj has to go through block B and C. These two vertical components have

to be placed on the left hand side of each other, which is impossible. This step

aims at removing the least number of buses such that the remaining buses do

not have any conflict with each other. For simplicity, our discussion is limited

to the horizontal components of the buses, where the case for the vertical com-

ponents can be derived similarly.

Assuming that buses are routed on two layers, one layer for horizontal buses

and the other for vertical buses. We can consider the constraints between

horizontal components and the constraints between vertical components sepa-

rately. For 1-bend or 2-bend buses, we will first break them down into two or

three 0-bend components respectively before checking the ordering constraints

(Figure 5.12).

For horizontal buses, we use a graph G = {V,E) to determine whether

all the ordering constraints can be satisfied. Each vertex in V represents a

0-bend component, and E = {{vi, Vj)\ component Vi has to be placed above

component Vj.}. In order to check if {va, Vb)e E, we will first extract spab

from the sequence pair, where spab contains only the blocks in Ua and Ub. For

Chapter 5 Multi-Bend Bus-Driven Floorplanning 70

——琴 F p i F 厂

D、"！ I D • G
_ . 1 . 1 I 1 ' j '
A_ B C B C

(a) (b)

Figure 5.12: A 2-Bend Bus is Broken Down into Three 0-Bend Components
for Checking The Ordering Constraints.

Case 1 and Case 2
i i _ L

A |sPij=(ADEBC，DEABC)

“ - 1 I'AlDlElBie
D 纖 / / >

——E I D| E 丨割 B[;C1
•

Case 3

A 、 D sp. =(ACDB, CABD)

L ^ B i Cî Al'Bj D •

Figure 5.13: Different Cases of The Bus Ordering Constraint.

example, if the sequence pair is {ABCDEF, DEACBF), and Ua has to go

through block A and B and u^ has to go through block C and D, the extracted

spah will be {ABCD, DACB).

Let m be a block, Si[m] denotes the position of block m in the first se-

quence of spab, e.g., Si[A] in the above example is one. Similarly, 52[m] is

the position of block m in the second sequence of spab. In the above exam-

ple, S2[A] is two. Let Ba{Bb) be the set of blocks that ua{ub) has to go through.

After computing the si[m] and S2[m] for each related block m, we will check

if spab falls into one of the following three cases (Figure 5.13):

1. If \fx e Ba, si[x] > S2[x\, and 3y e Ba, Si[y] > S2[y], then Ua is below

Chapter 5 Multi-Bend Bus-Driven Floorplanning 71

UB. Thus, {VA, VB) E E.

2. If Vx e Bb, si[a;] > 52[x], and 3y e B^, Si[y] > S2[y], then Ub is below Ua.

Thus, {VB.VA) E E.

3. If 3x e Ba, Si[x] > S2[x], and 3y G Bb, Si[y] > 52[y], then contradiction

occurs, as Ua cannot be above û and below ui at the same time. Thus,

{VB, VA) E E and (^o, VB) ^ E.

As some of the buses cannot be placed at the same time, our aim in this

step is to remove the least number of buses such that all the remaining buses

can be placed. Besides, we aim at finding an ordering for the remaining buses

such that they can be placed one after another successfully in a bottom-up

(left-right) fashion according to the order. To do so, we have to examine the

graph Gh. Contradiction exists if cycle presences. So the first step is to check

whether cycles exist in Gh- If there are cycles, we want to remove the least

number of nodes (buses) to make the graph acyclic. However, this Node-

Deleting Problem is proven to be NP-complete [1]. Our heuristic to solve the

problem is to keep on removing the node with the highest degree (in-degree

plus out-degree), until the graph is acyclic.

Assume that a 2-bend bus Ui is broken into three 0-bend components Ui,

U2, and Us, where Ui and U3 are horizontal and U2 is vertical When processing

the horizontal buses, a graph Gh is built. If Ui is selected to be removed in

order to make Gh acyclic, U3 in the horizontal graph and U2 in the vertical

graph have to be removed as well. This is obvious since we should not keep

partial bus components in the solution, if some components of the bus are

already marked as invalid.

In some cases, bending can help to resolve conflicts in the ordering con-

straint graph Gv and Gh. An example is shown in Figure 5.14. In the example

Chapter 5 Multi-Bend Bus-Driven Floorplanning 72

� � “
Figure 5.14: Adding Bend to Resolve Bus Ordering Conflict.

Ui and Uj are horizontal buses that contradict with each other. Changing Ui

from 0-bend to 1-bend can resolve the conflict without removing any bus from

the graph. However, this technique of adding bends to a bus to resolve conflict

can only be used for buses that are 0-bend or 1-bend originally, so that one

more bend can be added to resolve the conflict by the method as illustrated

in Figure 5.14. After obtaining an acyclic graph, an ordering of the remaining

buses can be obtained from a topological sort of Gh-

5.3.3 Floorplan Realization

The final step to evaluate a candidate solution is to realize the floorplan, i.e.,

obtaining the coordinates of the blocks and buses, to determine the chip area

and the total bus area. After the previous checkings, all the invalid buses are

removed, and a correct bus ordering is found. Based on those information,

we can compute the coordinates of all the blocks and valid buses, and thus

the chip area and total bus area. In order to obtain the coordinates of the

blocks, we used the algorithm FAST-SP in [33] to construct a floorplan from

the sequence pair.

We use the same approach as in [1], which can be described in brief as fol-

lows. The following process repeats 0{m) times, where m is the total number

of valid buses. Note that all 1-bend and 2-bend buses will have been broken

Chapter 5 Multi-Bend Bus-Driven Floorplanning 73

BASIC_ALIGNMENT_H (int i)
1 Umax —max{yk ： Ui goes through block k}
2 FOR all blocks j Ui goes through
3 IF Umax + U - hj > yj
4 Vj <~~ Umax + tj - hj
5 END IF

6 END FOR

Figure 5.15: Pseudo Code of The Basic Alignment Step for Horizontal Buses,

y E Z H m M y E Z J w t "
Yb ^

Vb • •
(a) (b)

Figure 5.16: (a) ymax, Uh, and y�are Calculated Correspondingly, (b) yb Has
to Be Moved Up to Let The Bus Go Through.

down into 0-bend buses for processing. Let's consider horizontal buses only.

In iteration i, bus Ui will be processed. The coordinates of the blocks that

Ui goes through will be computed first. Then, the position of Ui will be cal-

culated by performing some basic alignment steps between the blocks that Ui

goes through. These basic alignment steps for horizontal buses are shown in

Figure 5.15. An example is shown in Figure 5.16.

After doing the basic alignment steps, we will check if Ui overlaps with any

previously placed bus. If so, Ui will be moved up and the coordinate y叫 will

be updated. If Ui is moved up, all the blocks that Ui goes through must be

deleted again. We may need to move some of them up in some cases.

5.3.4 Simulated Annealing

Simulated Annealing (SA) is used to search for a good solution. In this section,

the set of moves and the cost function used in the SA will be discussed.

Chapter 5 Multi-Bend Bus-Driven Floorplanning 74

Moves

To change from one candidate solution to another, we use two operations, swap

and rotate.

1. Swap is to exchange the positions of two blocks in either the first se-

quence or the second sequence. This can be done in constant time.

2. Rotate is to exchange a block height with its width. This can be done

in constant time.

Cost Function

As mentioned before, the aim of the problem is to (l)accommodate all the

buses, (2)minimize the total area of the buses, and (3)minimize the area of the

floorplan. Bus area is included in the cost function as bus is actually a collec-

tion of wires, and it will be favorable to have the total bus area (interconnect

resources) as small as possible. Thus, the cost function is defined as follows.

Cost = a'A + f3-B + j-I

where A is the chip area, B is the total bus area, I is the number of invalid

bus, and a, and 7 are parameters that can be specified by the users.

In this bus-driven floorplanning problem, we focused on fitting all the buses

in a compact floorplan solution. Other aspects like the total wire length and

routing congestion can also be considered by including more terms in the cost

function.

Chapter 5 Multi-Bend Bus-Driven Floorplanning 75

5.3.5 Soft Block Adjustment

In order to compare with the results presented in [1], we have added the fea-

ture of 'soft block adjustment'. The adjustment is the same as that in [1.

This step makes use of the fact that the width and height of a block can be

altered as long as the area is unchanged and the dimension is constrained by

an aspect ratio bound. The process is again done by simulated annealing. The

cost function is the same as before. In each pass, a block lying on a critical

path will be selected, and the width or height of it will be changed a little

bit. Then, the fioorplan realization step is repeated to obtain a new chip area

and total bus area. Note that if an originally valid bus is made invalid, the

candidate solution will be discarded. Besides, when changing a block width or

height, the aspect ratio constraint has to be obeyed.

5.4 Experimental Results

The proposed algorithm was implemented using the C + + language and the

experiments were conducted using an Intel Xeon (2.2 GHz) machine with IG

memory. The test cases are derived from the MCNC benchmarks for floor-

planning. In order to compare with the results presented in [1], the same test

cases are tried using our proposed algorithm and all the experiments (includ-

ing those of [1]) are run on the same machine. The ratio of a-.pî y is set to be

1:1:1. The results are listed in Table 6.4. Comparing with the results of [1],

the dead space of the fioorplan obtained by our algorithm can be reduced on

average.

To demonstrate the importance of having 1-bend and 2-bend buses, we

have created another set of test cases based on the ami33 and ami49 bench-

marks. In these test cases, each bus will go through at least ten blocks. The

Chapter 5 Multi-Bend Bus-Driven Floorplanning 76

File No. of Blocks No. of Buses Average/Max. No. of
Blocks in a Bus

apte II 9 I 5 I 2.60 / 3
xerox “ 10 6 2.50 / 3

“ h p 11 14 2.29 / 3 一

ami33-l 33 8 4 . 1 7 / 6
ami33-2 — 33 _ 18 2.39 / 4
ami49-l — 49 9 一 4.00 / 6
ami49-2 49 12 3.58 / 6
ami49-3 49 | 15 | 3.53 / 6

Table 5.1: Data Set One.

F ^ N o . of Blocks No. of Buses Average/Max. Na
Blocks in a Bus

ami33-3 11 33 I 1 I 10.00 / 10
ami33-4 — 33 3 10.00 / 10
ami33-5 “ 33 5 10.00 / 10
ami49-4 — 49 1 15.00 / 15 一

ami49-5 49 3 一 11.67 / 15
ami49-6 49 4 11.25 / 15 一

Table 5.2: Data Set Two.

|] \l] Our Work Comparison*
Time I Dead Time Dead Time Dead
(s) Space (s) Space Space

—apte II 15 0.72% 30 0.48% +100% -33.33%
- x e r o x T 5 0.95% “ 35 0.42% +133.33% -55.79%

hp 33 0.62%~~ 51 0.29% +54.55% "^3.23%
"ami33-l H 0.94% 93 T 0 0 % ~ ~ +745.45% +6.38%
"ami33-2 1.27% 144 ~ J J W o + 5 6 . 6 2 % -6.30%
"ami49-l ^ 0.85% 71 0.56% +343.75% -34.12%

ami49-2 302 ' M W o ~ ~ 713 0.58% +136.09% "^0.95%
-ami49-3 | 285 1.09% 865 0.60% +203.51% -44.95%

II I I I Average: +221.65% -31.54%
*It is calculated by {{yi - yo)/yo) * 100%, where yo and yi are the time (dead

space) obtained by [1] and by our algorithm respectively.
Table 5.3: Results of Data Set One.

Chapter 5 Multi-Bend Bus-Driven Floorplanning 77

[1] Our Work Comparison
Time Dead Time Dead Time Dead
(s) Space (s) Space Space

ami33-3 86 1.81% 32 1.01% -62.79% -44.20%
ami33-4 ~ > W ~ - ~ 92 T"90% - -
ami33-5 >10^ 95 3.80% - “
ami49-4 73 1 ^ 4 % 88 0.63% "+20.55% ~96.74%
ami49-5 >10^ - 261 1.17% - —-
ami49-6 >10^ - 140 2.19% - ~

Average: 118 1.78% —

Table 5.4: Results of Data Set Two.

results are shown in Table 6.5. For this data set, the approach in [1] is not able

to generate any solution for most of the test cases, while our algorithm can still

generate solution with high quality (with average dead space of 1.8% only).

We can see that our algorithm can perform much better. As their approach

allows only 0-bend bus, it is very difficult to accommodate several buses that

go through many blocks.

5.5 Summary

In this chapter, an algorithm to solve the bus-driven floorplanning problem

allowing 0-bend, 1-bend, and 2-bend buses is proposed. Experimental results

show that our approach is effective. The presence of 1-bend and 2-bend buses

is important especially when the number of blocks that a bus goes through is

large. It is difficult to find a solution if only 0-bend bus is allowed in those cases.

Chapter 5 Multi-Bend Bus-Driven Floorplanning 78

丨 雅•
< ' » ^ ^ ^ ‘ II I • . . •

• ^ m l — ~ I

: t ^ f f e i i ' , ,
< ‘--‘‘^产!饼‘,.•'•'：'• “ ：‘

\ ：： . J ^ f f l P : ::艘:::二:..::

_ ： 茂 ‘ : ：； M , , , ‘ 。liiLmu丨U丨晴丨丨

. T " ； “ ‘ 广 " ’ 國 “ 。 , ' : 〜 广 , B 9 '<21 •
W » ； … ：：一“'":•''>:;,:'：艰："',:'”: ‘ ,： ‘ ,, , ,,. ，'… , ‘ ‘
« j^^^^rn^mMmmm^^mmmmmmm^mmmmm , - - ^

Figure 5.17: Result Packing of ami49-2.

I' ~ ；- I 殘》•‘ -. I ‘ • ‘ ‘ A~“

；一 —Pf ̂ ^ ^ ^ ^ ^ ^ ‘ . .
—'乡‘：i^j^^tpii^z ‘ ’ t)、'：’

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

‘An A6 . 4. , .K . »

Figure 5.18: Result Packing of ami49-3.

Chapter 5 Multi-Bend Bus-Driven Floorplanning 79

iU4iJLUjiUpliJLLLUiyJjUiilUjyUiilJUUiJULUJLUjyybtliJU|LULjJLUiJjJtyi4U
V： '' - L ,赞

i 、 ： ： ’ / 二
\ ‘ ‘ ‘‘ ‘‘ , ‘‘ * ‘ ik ‘

‘ , ‘ ‘ ‘ ‘ ,

• 二’
] 铁'II 爷[：丨 3331：'

口 ： , I pf .‘‘；丨
： ^^ ‘ 减

： mm^^^h^^^ ^^ffl ‘

雙 丨 ^ ^ ^

. ^ ' / f y 一\ ：... -

\ _ A _ _ _ - _

] ‘ ' 、 : , : : ’ ‘ ： I - ‘ ‘ ： 拉 ‘ 誦

'I '•‘ ' ' ' � ’ ‘ ‘ ‘ ® '

«
• 0 io
ft_— L i — I

Figure 5.19: Result Packing of ami49-6.

Chapter 6

Bus-Driven Floorplanning for

3D Chips

The paper on the content of this chapter is submitted to the 11th Asia and

South Pacific Design Automation Conference (ASP-DAC) 2006.

6.1 Introduction

In modern IC designs, the growing number of long on-chip wires is a byproduct

of the increasing circuit complexity. As circuits are expected to perform more

complicated functions, the number of interconnects involved has increased in-

evitably. Interconnect delay has dominated over gate delay as technology ad-

vances into the deep submicron era. Timing constraints have become more

and more difficult to be met with this huge number of interconnects involved.

Interconnect-driven floorplanning becomes one of the top ten physical design

problems [43]. 3D chip is a solution to these problems. It can greatly reduce

interconnect lengths.

A 3D chip is not a "true" 3D structure where each block is associated

with three dimensions. It is actually a chip with more than one silicon layers

80

Chapter 6 Bus-Driven Floorplanning for 3D Chips 81

to place modules. A 3D floorplan is also known as a multi-layer floorplan.

Therefore, those traditional 3D representations cannot be used directly here

to solve the multi-layer floorplanning problem. There is not much work done

on this 3D floorplan representation problem and we would like to propose an

elegant 3D floorplan representation for multi-layer circuit design. Moreover,

we have studied the bus-driven floorplanning problem in 3D chips. We will

propose a method to align blocks on different layers of a 3D floorplan, by

adding edges into the 3D floorplan representation.

In this chapter, the floorplanning problem in 3D circuit design will be

discussed. This chapter is organized as follows: In Section 6.2, the problem

will be defined formally. After that, a floorplan representation proposed for 3D

circuit design will be discussed in Section 6.3, followed by our proposed method

to align blocks on different layers of a 3D floorplan. Then some experimental

results will be presented in details in Section 6.6. A conclusion will be drawn

in Section 6.7.

6.2 Problem Formulation

A formal definition of the 3D floorplanning problem with bus aligment is given

as follows:

Problem: 3D Floorplanning with Bus Alignment Given a set of n

modules {Mi, M2, • • •, M^} and a value K that represents the number of layers

and a set of m buses U = {uo^ui, •.. ,Um-i}- Each module Mi is associated

with an area Ai and two aspect ratio bounds n and Si such that n < hi/wi < Si,

where hi and Wi are the height and the width of module i respectively. Each

bus i is required to go through a set of blocks Bi, Bi C M. We want to find

a feasible 3D floorplan F, i.e., the coordinates {xi, yi) and the dimensions (Jm,

Wi) of modules i, and the layer k on which module i lies, where I < k < K,

Chapter 6 Bus-Driven Floorplanning for 3D Chips 82

such that if the blocks in Bi where 1< i < m are placed in k different layers

~’7r(i), î,7r(2), . . . , h 洲 where 2 < k < K (/乂，̂̂⑴ < li,n{2) < there is at

least one block on layer /、冗� aligning with a block on layer /i,7r(j+i) in the 2：-

direction for 1 < j < — 1. There should be no overlapping between modules

on each layer, and the circuit performance should be optimized.

6.3 The Representation

6.3.1 Overview

In this section, a multi-layer floorplan representation Layered Transitive Clo-

sure Graph (LTCG) is proposed. It is based on a 2D representation called

Transitive Closure Graph (TCG) [32]. TCG describes the geometric relation-

ships between different modules according to two constraint graphs Ch and

CV. Apart from traditional 2D floorplans, multi-layer floorplans involve layers

as well. In LTCG, there are also two constraint graphs but each block is as-

signed to one layer. Blocks on the same layer cannot overlap with each other.

To achieve this, blocks on the same layer must have a horizontal or vertical

relationship with each other. However, blocks on different layers do not have

this constraint. Therefore, for two blocks on different layers, they may overlap

in the x ox y directions.

Simulated annealing is used to search for a good solution. A set of moves

are designed to change one candidate solution to another. LTCG is capable

for handling block alignment effectively in 3D floorplans. We can align blocks

on different layers by adding edges into the LTCG. Details of LTCG and our

3D floor planner will be presented in the following sections.

Chapter 6 Bus-Driven Floorplanning for 3D Chips 83

6.3.2 Review of TCG

Transitive Closure Graph (TCG) was first proposed in 2001 in [32]. There

are two graphs Ch = {V, Eh) and Cy = (V, Ey) in TCG to represent a 2D

fioorplan where is a set of vertices representing the blocks, namely horizontal

transitive closure graph and vertical transitive closure graph respectively. For

two blocks X and y, if x is on the left of y, a directed edge {x, y) is added to

Ch. If X is below y, a directed edge (x, y) is added to Cy.

TCG have the following three properties [32]:

1. Ch and Cy are acyclic.

2. Each pair of nodes must be connected by exactly one edge in Ch or Cy.

3. The transitive closures of Ch and Cy are equal to themselves respectively,

where the transitive closure of a graph G = {V, E) is defined as a graph

G' = (y, E') where E' 二 {(n“ rij): there is a path from node Ui to node

rij in G}

An edge (x, y) is said to be a reduction edge if there exists no other path

from block x to block y in the same graph. Please note that if we want to

reverse an edge direction or move an edge from a graph to another during a

perturbation, the selected edge must be a reduction edge. Otherwise, cycle

may be resulted.

Realization of a fioorplan from its TCG representation can be done in O(n^)

time, by performing a longest path search for each vertex in both graphs. The

size of the solution space is 0((n!)^).

Chapter 6 Bus-Driven Floorplanning for 3D Chips 84

6.3.3 Layered Transitive Closure Graph (LTCG)

Based on TCG, we proposed a multi-layer floorplan representation namely

Layered Transitive Closure Graph (LTCG). The representation consists of two

main components: the layer information and the transitive closure graphs. The

layer information stores the layer assignment of each block. The two transitive

closure graphs show the topological relationship between the blocks.

We denote the two transitive closure graphs in LTCG by Gh = [V, Eh) and

Gy 二 (1^，Ey) where F is a set of vertices to represent the blocks. On the same

layer, an edge must exist between the vertices in either Gh or Gy. For each

pair of blocks located on different layers, they may or may not have topological

relationship with each other. Thus, an edge may exist between them in either

Gh or Gy, but there can also be no such edge.

Alike TCG, LTCG have three properties:

1. Gh and Gy are acyclic.

2. Each pair of nodes i and j , where i and j are assigned to the same layer,

must be connected by exactly one edge in Gh or Gy.

3. Let Ghk 二 (V̂ fc, Ehk) {Gyk = (Vk, E�where 1 < k < K he a sub-graph

of Gh = (y , Eh) {Gh = (y , Ey)), such that Vk is the set of vertices

representing blocks on layer k, Ehk Q Eh and Ehk contains only those

edges with both end points in Vk. For 1 < k < K,the transitive closures

of Ghk and Gyk are equal to themselves respectively.

The realization process can be done by performing a longest path search

for each node in Gh and Gy, which can be done in time. An example of

using LTCG to represent a layered floorplan is shown in Figure 6.1.

Chapter 6 Bus-Driven Floorplanning for 3D Chips 85

Layer 1

B I Gh G ,

(^ / p (f (B

^ ^ & m ^ k

^ ® cdT
Figure 6.1: A Layered Floorplan and Its LTCG Representation.

6.3.4 Aligning Blocks

There are two graphs, Gh and G们 in LTCG to govern the horizontal and ver-

tical relationships between the blocks. If we want two blocks X and Y located

on different layers to align in the z-direction, the blocks have to overlap ver-

tically and horizontally. To achieve this, a pair of edges (X, Y) an {Y, X),

both with zero weight, can be added into the graphs.

For simplicity, we assume that there are only two layers for placing blocks

in the following discussion. For a bus to go through a set of blocks, the blocks

have to be aligned in such a way that the bus can be routed in a simple geom-

etry. Let P 二 •.. ,Pa} be the set of blocks on the first layer and Q =

<?2,... , Qh) be the set of blocks on the other layer, that a bus goes through.

We assume that bus routing on a single layer can be done successfully. Our

task is to find a block pi from P and a block qj from Q such that Pi and qi align

in the 2;-direction. In some cases, it is not possible to do alignment for all the

buses. As shown in Figure 6.2, block A, D and block B, C cannot be aligned

simultaneously and one of the bus has to be considered as infeasible. We have

to select a pair of blocks for each bus (if the bus has to go through blocks

on two different layers) such that the number of aligned bus is maximized. If

Chapter 6 Bus-Driven Floorplanning for 3D Chips 86

V :-：：；

B
Layer 1 A

；/ ‘

Layer 2 麵 D
“‘''.

Figure 6.2: Block A, D and Block B, C cannot be aligned simultaneously.

there are K layers for placing blocks, where AT > 2, a bus with its blocks on k

layers where 2 < k < K can actually be considered as having k - 1 sub-buses

and the same approach can be applied.

To select pairs of blocks on the same bus to be aligned, we will scan one of

the two graphs Gh or Gy first. In our floorplanner, we will consider the graph

Gh first. Our proposed method is consisted of several iterations. In each it-

eration, vertices in Gh that have no incoming edges and participate in no bus

are first removed. Then a set S of candidate vertices are found, where each of

them has no incoming edges in Gh and belongs to some buses. Then for each

bus z, a pair of vertices in S which are on different layers and belong to bus i

are matched. After matching, the matched vertices are removed from Gh. If

no matching can be done, a vertex is randomly selected from S and removed

from Gh. The whole process is repeated (next iteration) until for each bus,

one pair of vertices are matched, or until Gh is empty.

Note that matching candidate vertices in a topological order as described

above can avoid creating positive cycles in Gh. An example is shown in Fig-

ure 6.3. Suppose block B and E are on different layers and belong to bus i,

and block C and D are on different layers and belong to bus j. Adding pairs

of edges between B, E and C, D simultaneously will yield a positive cycle. In

Chapter 6 Bus-Driven Floorplanning for 3D Chips 87

Kl̂—KE)
i

Figure 6.3: Cycle Exists if The Two Pair of Edges are Added Simultaneously.

our approach, we will only match B, E oi C, D depending on whether B or

D is randomly selected from S and deleted from Gh.

Suppose two blocks X and Y are selected to be matched for bus i. It is

guaranteed that no positive cycle will be produced in Gh because none of the

two blocks is predecessor of the other in Gh. However, we also need to add

those pair of edges (X, Y) and (F, X) in Gy and cycle may be formed in G”.

If adding a pair of edges to Gy produces a positive cycle, the pair will not be

matched and the edges will not be added. At the end, a penalty will be added

to the cost function for every unaligned bus. The pseudo code of the procedure

to align buses is shown in Figure 6.4.

6.3.5 Solution Perturbation

As mentioned before, simulated annealing is adopted. To change from one

candidate solution to another, we have defined several moves: rotate, swap,

move, reverse, remove, add, and change-layer. Details of each move will be

discussed in the following.

Chapter 6 Bus-Driven Floorplanning for 3D Chips 88

ALIGN—BLOCK
01 align — 0

02 FOR i from 0 to number of bus

03 matched[i]卜 FALSE

04 ENDFOR

05 WHILE {Gh not empty) & (align < number of bus)/*start iteration*/

06 Remove vertices with no incoming edge and not in any bus

07 S — vertices with no incoming edge

08 FOR i from 0 to number of bus

09 FOR all pairs x, y e S ±n bus i and on different layers

10 IF matched[i] = FALSE

11 IF adding (x, y) k iy, x) yield no cycle in Gy

12 add (x, y) k {y, x) in Gh，Gy with weight 0

13 align ++

14 delete vertex x and y in Gh
15 S — S - {x,y}
16 matched[i]卜 TRUE

17 END IF

18 END IF

19 END FOR

20 END FOR

21 IF no matching is done in this iteration

22 k — randomly select a vertex in S
23 delete vertex k in Gh

24 END IF

25 END WHILE

Figure 6.4: Pseudo Code of Aligning Blocks.

Rotate

In this operation, a randomly selected module is rotated. Rotating a module

means interchanging the width and height of a module.

Swap

In this operation, two randomly selected modules are swapped. To swap two

nodes x and y, exchange the nodes in both Gh and Gy.

Chapter 6 Bus-Driven Floorplanning for 3D Chips 89

, , Gh Gv

(A K D

A I B I © ©
+

C I ® ®
© ©

A

Figure 6.5: A Floorplan Before And After Applying "Move" to Edge {A, B)
in Gh-

Move

To "Move" an edge means moving it from either Gh or Gy to the other graph.

A reduction edge {x, y) is first selected randomly from Gh or Gy, where x and

y are on the same layer. Then, the edge is moved to the other graph. This will

change the relationship between x and y from horizontal (vertical) to vertical

(horizontal).

To maintain the properties of LTCG, some checkings have to be performed

after the move. Assume that (x, y) is moved from G to G'. After moving, for

each node tm G Fin{x) U {x } in G' and rij G F—Qy) U {y} in check whether

(n“ Uj) exists in G丨.If the edge (n ,̂ rij) does not exist, add it to G' and delete

the corresponding edge in G. An example of applying "Move" is illustrated in

Figure 6.5.

Note that after applying "Move", no cycle will be created. It can be proved

by contradiction. Assuming that cycle exists after adding (x, y) to G'. That

cycle must involve the edge (x, y) as the original graph is acyclic. This means

Chapter 6 Bus-Driven Floorplanning for 3D Chips 90

that there exists a path from y to x in G'. However, according to property 3

of LTCG, if a path exists from y to a: in an edge {y, x) will also exist in

G', contradicting to the fact that (x, y) is an edge in G. Therefore, after the

"Move" operation, the graphs will remain acyclic, and the transitive closure

property will also be preserved.

Reverse

Reverse means reversing the direction of a randomly selected reduction edge

(x, y) in Gh or Gy, where x and y have to be on the same layer. This operation

will also change the geometric relationship between the blocks. To reverse an

edge (x, y) in G = Gh or Gy, delete it from G first and then add (y, x) back

to G.

Similar to the "Move" operation, checkings have to be performed to main-

tain the properties of LTCG. For each node n̂ G Fin{y) U {y} in G and

Uj G Fout{x) U {x} in G, check whether (n“ rij) exists. If (n“ rij) does not

exist, add it to G and delete the corresponding edge in the other graph {Gy or

Gh)- An example of applying "Reverse" is illustrated in Figure 6.6.

After reversing an edge, the acyclic property and the transitive closure

property will also be preserved. The latter is maintained by performing the

checkings described above. The former can be proved by contradiction. As-

sume that cycle exists after reversing an edge (x, y). It means that a path

exists from x to y originally. This contradicts to the fact that (x, y) is a re-

duction edge in G (there exists no other path from x to y). Therefore, it is

guaranteed that the properties of LTCG are maintained after the move.

Chapter 6 Bus-Driven Floorplanning for 3D Chips 91

G G

A |B| © ©

® ®

© © B
Figure 6.6: A Floorplan Before And After Applying "Reverse" to Edge {A, C)
in Gy.

Remove

In LTCG, blocks on different layers may bear one or no relationship with each

other. In this operation, the relationship between a pair of randomly selected

blocks on different layers is removed.

Add

It is the opposite of "Remove" • The "Add" operation adds an edge between

a pair of randomly selected blocks in Gh or G们 where the blocks belong to

different layers. Note that after adding the edge, the graph should remain

acyclic. If adding a selected edge (x, y) will yield a cycle, the edge will not be

added.

Change-Layer

In this operation, a randomly selected block x is moved from one layer to

another. It will be placed on the boundary of the destination layer. For

every block y that is no longer on the same layer as x, both (x, y) and (?/,

x) will be removed in both graphs. For every block z that is now on the

Chapter 6 Bus-Driven Floorplanning for 3D Chips 92

same layer as x, edges (x, z) are added in Ch as x is placed on the leftmost

boundary. Similarly, if x is selected to be placed on the rightmost boundary

(the bottomost boundary or the topmost boundary) corresponding edges have

to be added in the closure graphs.

6.4 Simulated Annealing

Our objective is to minimize the area of the floorplan and the number of

unaligned bus. Thus, the cost function is defined as follows:

Cost = a- A + p-1

where A is the chip area and I is the number of infeasible bus. a and (3 are

parameters that can be specified by the users. Though we aim at minimizing

the area of the floorplan and the number of infeasible buses, other aspects like

total wire length and routing congestion can be taken into account by including

more terms in the cost function.

6.5 Soft Block Adjustment

After placing the modules as hard blocks, soft block adjustment is done to

change the shapes of the blocks to make the resultant floorplan more compact.

This is again done by simulated annealing. In each perturbation, a block is

selected randomly. The shape of it is changed a little bit, as long as it does not

violate the aspect ratio of the block. The cost function is defined as follows:

cost = a- A ^ (3- S

where A is the total area of the floorplan and S is the difference between the

preset aspect ratio bound and the actual aspect ratio bound of the floorplan.

This step is shown to be essential by the experimental results as it can greatly

reduce the deadspace of the floorplan.

Chapter 6 Bus-Driven Floorplanning for 3D Chips 93

Benchmark No. of Blocks No. of Layers
ami33 33 4
ami49 49 ~ 4 ~

Table 6.1: Characteristics of Data Set 1.

Benchmark Layer Dead Dead Time
Space Space (s)
([4]) (LTCG) (LTCG)

~ a m i 3 3 4 3.09% 1.95% 13
一ami49 4 3.76% 2.49% 28

Table 6.2: Comparisons between [4] and LTCG.

6.6 Experimental Results

A 3D floorplanner was implemented with the C + + language, using the LTCG

representation. All the experiments were conducted in an Intel P4 (3.2 GHz)

machine with 2G memory. The MCNC benchmarks and the GSRC bench-

marks were used. We have conducted two sets of experiments. The first set of

experiments does not consider buses. The characteristics of the benchmarks

(data set 1) are shown in Table 6.1. The results are shown in Table 6.2. Com-

parisons showed that our floorplanner outperforms the floorplanner proposed

in [4]. As the runtimes were not reported in [4], only the runtimes of our floor-

planner are shown in Table 6.2. For all the experiments, the best of twenty

trials are reported. The runtime reported is the average of the twenty trials.

The second set of experiments considers buses. Buses are randomly con-

structed in the benchmarks. We have constructed two sets of data (data set

2 and data set 3). The characteristics of data set 2 are shown in Table 6.3.

The number of buses involved is large, though the number of blocks a bus goes

through is small. The characteristics of data set 3 are shown in Table 6.4. The

number of buses involved is smaller, but the number of blocks involved in each

bus is huge. The experimental results after soft block adjustment are shown

Chapter 6 Bus-Driven Floorplanning for 3D Chips 94

Layer 1 Layer 2

广 ‘ ‘‘‘‘ „ ‘ ‘ ‘ , ‘‘ ‘ , ''' / ‘‘，"" "“ '‘',,''"，， ‘ ' ' ' ' ‘ ' ‘ Z ‘ / ' ‘ , ‘ / > / , ‘‘ ^ / ‘ , • ‘ ‘ , / ‘ ‘ / , / , , ‘‘ , , ‘ “ ‘ , • ‘‘ ‘ . , ‘ 。 " ， ’ ， ’ ’ ， - ,；f ‘：

" V ' 八 ’ ： 、 , " ' < ' , ' ? , / , ' < ' ' , 。 ’ , ； - ‘ , ‘ , ： ••...
“ „ ‘ ‘ “ ‘ , , ,‘‘ ./ ‘ , ‘ ‘ ‘ ‘, ‘ • ‘ ‘ , / ‘ , , / , ‘ ‘ ‘ / / f / ‘ ‘ ‘ ‘ / ‘‘ t / ‘, ‘， ‘ ‘ ‘ ‘ ‘‘)jL“uj»ii_»iii .••I • “"•.•.v.yiAj

“ - U , ; — 膚 一 t t : 如 珍 ‘ ‘ ：‘ /. ‘ ‘ , ‘ ' ' ' ' “ ‘ ‘ ‘ , ‘，’’’‘ ‘‘- ‘ ''' , ‘‘ ‘"‘‘ ‘ ‘ ‘/ ‘‘‘ ‘ . . /.…..… i '''''' ‘ . ,“ '山，，
\ • •• ‘ ‘‘ ‘：. ‘ , , , ： , ； ‘‘ lillllliiitiiiil*^ liiiiiiiliii iiili*̂ ^̂

：丨：丨；；妒丨丨:::丨:::|::::梦;丨丨丨资丨丨；；祭；杉伊：！：^:^^ivii^iv：'; îiv：'
‘ , ‘ ‘ . / > ‘ . ‘ ‘‘ > / ‘ ‘ ‘ ‘ ,‘

'mwm^mmmmmmmMmv^ivm'^^^ 丨?：：丨丨打發;：丨丨錄：灘;；:::;树::(:::丨:;:®総::::丨《这幾阅衫::wwM^MmMM.
• yiŷî̂ ŷ：̂̂ ::::丨:::丨:::丨::任:丨丨；|：::|?；|:丨:::丨：―；名::丨:::丨：；:丨：丨丨$〔:S:::::丨:::::::丨:丨&公ft:.̂.；：)::::::::丨刚:̂丨：::::̂ 丨卩I：:：丨丨：丨：丨：丨的丨：丨丨5丨:•丨丨：丨：丨：丨.丨：丨.丨：丨:丨:丨:丨::&丨:丨丨：：：：： ‘ , 一 ‘‘‘‘ “ ‘ ‘‘ ‘‘ ‘ ‘ ‘‘ ‘‘ ‘‘ ‘ '““ •‘ ‘： ‘ ‘ ‘‘ ‘ ‘ ‘ ‘ ‘ /；‘‘ ‘ \ ‘ ‘‘ ‘ ‘ ‘ ‘ ‘ \ „ ‘ , ‘ ‘ . � ‘‘ “ / ‘ , , ‘ ‘ ‘ ‘ , , / ‘ ‘ , • ‘ , ,

‘ / ‘‘ ‘‘‘ ,, ‘ ； ‘‘ ,, , ‘……L:::.�-“-�-.�
‘ ‘ . ,

, ‘ , ‘ , ‘ / / ‘‘ ‘ / “ ‘ ‘ / ‘ ‘ ‘ ‘ , ‘ ‘ ‘ ‘ ‘ ‘‘‘ > ‘‘ ‘

, - ‘ , / , ' . . y ‘ - ‘‘ • •

丨?;頃丨辑丨；丨丨药丨；；弹托玲丨：：;丨5如；沒躲_丨豹的丨丨丨；丨丨；结丨豸终好择,丨丨憩塞丨丨在：结丨续托拓思按丨丨；丨齒：丨：；:曲择按：：丨战空碎沒g终5丨觉丨P丨场：：丨：;丨^丨：丨；丨：丨丨 i；丨丨丨战丨丨丨P这3;改於兹3

“ ••-- ，-•_-_-'''•I-'_._----二 >---*•---_-- i , ‘‘ ‘
^ ‘ ‘ / , “ , ‘ , , ‘ ‘ ‘

‘ , , , ‘ , - •• 5 ‘ ‘ ‘ ‘
‘ ‘ ‘ , ‘ ‘ \ ‘ ‘ ‘ ‘ ‘

•• . 二 � ‘ '“‘ , , j . , ‘ j — ‘
Layer 3 Layer 4

缀lil議薩lli鐵li隱i il謹錢iil___ 丨i議隱丨iif難缓_籙_缀越 ：丨丨__1__鎮__丨纖_缀議議議錢耀_|__丨_丨！隱______丨丨丨議iil_i__!!
‘ — — — — — 丄 . . … 一 一 」 一 — — • 一 i , ‘ ‘

丨：丨丨敢丨:S丨：丨：丨：®:丨：丨名丨：丨：丨:K•丨:丨：丨：丨:S丨-丨丨：：；；：；；；^：；；1：；；-；!；-；；：^：；：1：：：：：；；：：>：<；：：^;|>：；；0^
丨联 尔::::::丨:::丨:wi；!：-；：：：；!：;：!：：；!?：：；；；- ：：：；：?；：;：：?；：：；；：；；：；>¥：̂：$；：；̂

^^rn^rnimmmimmmmmmmmm^ mrnrnM^^^^msmgrniimmm
I l i l i i l i i i i l l i i i l i i l i i l i l liiiiiiiiiiiiiiiiiiiiiiiiii liiliilliiiillii^iliiiiiiiiiiilli
l l l l l l l l l l l l l l l l l i i i i i i 丨丨義|_|義|_丨__義:_:_:|||_||_議_||||!__!議_丨： li:iSili|liiliii||i;iiiii:iiiliii

11 l L ‘ ' . ' ‘ ‘

iiiiiiiii*̂ ^ siipiiiiiiii*^ ‘ ^ ‘ , - - ‘ - “ , i . ； ‘ — —'-1 . , i - / , ‘ . - ；

--- , ‘ I / . -,

,, , • ‘ ‘ •• , • ‘ “ ‘‘ • •‘‘： , ‘ , ；： '') • I ‘ / /' , / '‘ ‘ I
f “一 —j - - i„„„I ； L 哪—
Figure 6.7: Result of ami49 in Data Set 1.

in Table 6.5 and Table 6.6. All floorplans are packed successfully with every

inter-layer bus aligned. The deadspace is 5.86% on average for data set 2, and

4.97% on average for data set 3. Experimental results showed that LTCG is

very promising for multi-layer floorplanning and can handle inter-layer block

alignment very effectively.

6.7 Summary

As the complexity of VLSI circuit design increases, the number of intercon-

nects involved has grown rapidly. 3D chips can reduce interconnect lengths

significantly. However, there was not much work done in 3D floorplanning. It

is a problem yet to be explored. In this chapter, we have propsoed a 3D floor-

plan representation namely Layered Transitively Closure Graph (LTCG), based

on the Transitive Closure Graph [32] representation for non-slicing floorplans.

Besides a pair of graphs Gh and G们 LTCG also stores the layer information

Chapter 6 Bus-Driven Floorplanning for 3D Chips 95

Benchmark No. of No. ^ No. of Average/Max.
Blocks Layers Buses No. of Blocks in

a Bus
— a p t e 9 2 3 2/2
_ hp “ 10 2 " 3 " 2 / 2
“ x e r o x 11 2 3 2/2
_ ami33 33 ~ 3 7 2.29/3 —
— a m i 4 9 49 — 4 7 2.29/3 —

nlOOa I 100 I 4 10 2.21/3

Table 6.3: Characteristics of Data Set 2.

Benchmark No. of No. of No. ^ Average/Max.
Blocks Layers Buses No. of Blocks in

a Bus
. apte 9 2 2 4/4
- hp 10 2 1 — 6/6 —

xerox 11 2 2 4.5/5
ami33 33 3 2 7.5/8
ami49 49 4 3 “ 7/9
nlQQa | 100 | 4 5 7.4/10

Table 6.4: Characteristics of Data Set 3.

of each block. Based on LTCG, we proposed a method to align blocks on

different layers, by adding pair of edges in LTCG. A floorplanner was imple-

mented using the LTCG representation, and the experimental results are very

promising.

6.8 Acknowledgement

We would like to thanks Royce L.S.Ching for helping in extending our bus

alignment algorithm from 2D to 3D.

Chapter 6 Bus-Driven Floorplanning for 3D Chips 96

Benchmark Time(s) Deadspace
apte 2 2 . 0 6 % ~
hp - 4 8.18%

xerox 4 ~ 5 . 4 7 %
ami33 23 5.32% —
ami49 8 9 ~ 6 . 3 0 % ~
nlQOa 371 7.84% 一

Table 6.5: Experimental Results of Data Set 2.

Benchmark Time(s) Deadspace
apte 4 — 1.77% 二

hp 3 8.44% —
xerox 7 3.16%
ami33 一28 5.24 %
a m i 4 9 ~ 63 4.10% —
iUQQa 545 7.13%

Table 6.6: Experimental Results of Data Set 3.

Chapter 6 Bus-Driven Floorplanning for 3D Chips 97

Layer 1 Layer 2
f

- - � fe ； ： 。 ; c ' / � / " t ,力 ,殆 : —i
、 - , 、 ‘ ‘ : ' ' 、 、 ， 人,人y“>,秘.y，';::尊, .

‘ -‘ ‘ ； .,‘； / __ ''、？’/'”'、广‘‘工广

, ‘ ‘ 厂 ， ’ , ’ " ' ， , ,；；'.‘’’•. “： ̂ ' ' 。 ' 减
‘、‘‘ ， , - ‘ “ , ： / " " 乂 ’ 心 ； : • 乂 广 ' 〜 ‘

"‘ “ 0 , ； - " > ' ： ： ‘ 射 ‘

“‘‘： /''：‘‘ '7 “：' /'liKry^f^cV

^ ‘�：•；. “：众絲if ‘

"‘；‘‘；/ -

1 ' " , ' , ' / 、 ‘ ‘ " , ： ‘‘ ; 。 - / " : 仲 ‘

‘ ‘ ‘ , ‘ ‘ ‘ . ‘ ‘ “ \ 人‘；山？‘
： " 二 人

‘ ‘ - / ‘ ‘ ‘ •'“‘ “ ‘ / “ /

“ ： ' ‘ , ‘ , / ‘： ' " / 〜 ’ ， ' ‘
/ “ ‘ / -� / , , ^^

%% Z ‘‘ '''// ‘‘ 'I ‘‘'''''…y ‘ ：》“‘： iipliiiiiiiiiiiiiiiiiiiiililiilpiiiii
, ‘ / z " ~ ‘ ‘ ‘ / ‘ , ‘ ‘

‘ ‘ ‘ 二 ‘ / ‘ V ‘
一 ‘ � , ‘ ‘ / ' ' ' “ , 广

• IEZZ
Layer 3 Layer 4

‘ ‘ “ ‘ Jnnnn 丨…•赛 _”r••…r_i脚 •

: , ‘‘ ‘•‘ ‘ ‘ ‘ “ "“
‘ “ ‘ ' , ' , : ‘ : 々 / ' ' ‘ 2 6

,,,。，，‘ „ “ “ ' 4 丄 • ： , > 。 - ： , 广 ― , 妨 ：

— 一 ： 一 … • J 丄 」 二 爷 二 ： ： ! 二 J S

______ ___丨_羅_:_ 、

ilfeiiil g:|;|i|||i|| iiii
r 38

M

隱____麗__！_1纖_____:1 liii::iiiliii

ilm^m
Figure 6.8: Result of ami49 in Data set 3 (J5i = {0-5, 32, 33, 44}, B) = {6-11},
Bs = {12-17}).

Chapter 6 Bus-Driven Floorplanning for 3D Chips 98

Layer 1 Layer 2

_ 毅 麗 纖 顏 纖 _ 凝 纖 觀 i i i i i M S M i ! ^ ^ ^ ^ ^ ^ ^ ^ mmmMmm$mm mmmmm^mmmmm^mmmmmm^mmm ̂ mi^immmmmmmM^mm^imm mm^^M^mM^mm^^^mMi^^
_ 纖 _ 灣 _ 議 錢 • 議 纖 灘 凝 _ 讓 凝 i i i g i e i p p i g ^ ^m^MiiMmmrn

• ：们 ‘ 、 •‘ ： ‘ ‘ ' … 、 ； … … ： ” r ； 广 乂

； ‘ ‘ ' ' ; ' 、 ， ’ ： ；

： ‘ / ‘ , ‘‘ ‘ ‘ ,, / / • • � I
「 : , 广 、 ； 、 、 广 � ‘ �T v y , ' 令 ^ T 在 ； L 广 ' ‘ ‘ / 1 iiiiiiiiliiî ^̂ ^̂ . _ _ _ _ _ _ _ _ 邏 _ 隱 _ _ _ _

霧 凝 iiiiiiiiiii _____ 耀議_錄..J____i :« 卜： ‘ \ ‘： ‘ A 少二 〜牽 f “
、 ’ ’ / , ' ' 》 £ > \ ‘‘ ^ ‘ 1 , , ‘

l l i i i i 丨 丨 _ _ _ 霧 難 缀 顯 i i 键 丨 • 錄 蔡 議 i 灘 翁 ! 麵 _ 誦 纖 i 議 麵 _ ； 缀

liiiiii®
I , * / * * 样 * •* 4 • • ‘ u L TT. t 要 ：:；1>；:；'；:̂：;；:；:；:：:；:：:；：0：：：.;<<：:：：0： ^ ^ ^ ^ ^ ^ ^ ^ , •“ ‘ ‘ ‘ ‘‘‘ ‘ ‘ ‘‘‘ ,

‘ ‘ 、 、 、 、 \ " / 、 ‘ ‘ 、 二 ^ - I ‘ - ‘ ‘ , 一 "

\ ： , - ^^m ‘ ，’ ‘ “ T — ^ ― —

i a* ‘ ‘ ‘ ‘ ‘ ‘

\ , , , ‘ ‘ , … ， ’ ‘‘
- ‘ , ： ： h i ^ H ^ - " ‘ ‘ ''：? ：； I；：；：-；

, ‘ ‘ i'""'；'''‘； ‘ ‘ ,

h,''/'/ ii L -----—……一.二..一

Layer 3 i “ ™ ” — I — "”“~™ “™ \ ‘

• U ,

\ ^t^ \ ‘‘
I ‘ ‘ ‘ ‘ ‘ ‘

_ 纖 圓 \ ‘ ‘ n
r 、 ’ 。
i, \ / ‘ “ ‘ ‘

‘ ‘ 5?z . ,,•； „„„.„,||„.i,.Hy,iir--[rnmiirinii.̂ r.il

, J , ， ’

Figure 6.9: Result of ami33 in Data set 3 [B^ = {6-9, 26, 29, 30}, B2 = {10-14,
18, 24, 31}).

Chapter 7

Conclusion

As the VLSI technology advances into the deep submicron era, the complex-

ity of VLSI circuit design has increased greatly. Not only has the number

of modules involved become large, the number of interconnects involved was

also multiplying. We are interested in the interconnect-driven floorplanning

problem as it is an important issue in floorplanning in this deep submicron era.

Obtaining a compact floorplan is not enough, it is the routability that matters.

At the beginning of this thesis, an overview of the VLSI design cycle is

presented. After that, an introduction to the physical design cycle is given.

In our research, we focused on the floorplanning phase. We have reviewed the

literatures on 2D floorplan representation, 3D floorplan representation, and

bus-driven floorplanning. We have proposed an algorithm to solve the bus-

driven floorplanning problem in 2D floorplan. We have also proposed a 3D

floorplan representation.

Bus-driven floorplanning is a floorplanning problem with bus planning

taken into consideration. Bus is a collection of wires running over a set of

modules. To solve the bus-driven floorplanning problem in 2D floorplans, we

use the sequence pair representation for general non-slicnig floorplans. The

input of the problem is a set of blocks and a set of buses, where each bus has

99

Chapter 1 Conclusion 100

to go through a set of blocks. We have to decide the position of each block

and each bus such that all the buses are just 0-bend, 1-bend, or 2-bend. We

have derived some necessary conditions for a bus to go through its blocks.

Simulated annealing is adopted to find a solution, and a floorplan is evaluate

according to the packing area, the total bus area, and the number of infeasible

buses. Experimental results have demonstrated the strength of our proposed

algorithm.

As the complexity of VLSI circuit design increases, the number of inter-

connects involved has grown rapidly. 3D chips can reduce interconnect lengths

significantly. However, there was not enough EDA tools for 3D circuit design,

and there was not much work done in 3D floorplanning. It is a problem yet to

be explored. We have proposed a 3D floorplan representation namely Layered

Transitive Closure Graph (LTCG). It is based on the Transitive Closure Graph

32] representation for non-slicing floorplans. Beside a pair of graphs Gh and

Gy, LTCG also stores the layer information of each block. Based on LTCG,

we proposed a method to align blocks (of the same bus) on different layers, by

adding pairs of edges in LTCG. A 3D floorplanner was implemented using the

LTCG representation, and the experimental results is very promising.

Bibliography

1] H. Xiang, X. Tang, and M. D.F.Wong, Bus-Driven Floorplanning, in

International Conference on Computer Aided Design, 2003.

2] N. A. Sherwani, Algorithms for VLSI Physical Design Automation,

Kluwer Academic Publishers, Massachusetts 02061, USA, third edition

edition, 1999.

3] J. Cong, Challenges and Opportunities for Design Innovations in Nanome-

ter Technologies, in SRC Design Sciences Concept Paper, 1997.

4] J. Berntsson and M. Tang, A Slicing Structure Representation for the

Multi-Layer Fioorplan Layout Problem, in European Workshop on Evo-

lutionary Computation in Hardware Optimization, 2004.

5] G. E. Moore, Gramming More Components onto Integrated Circuits, in

Electronics, volume 38, 1965.

•6] S. Sutanthavibul and Rosen., An Analytical Approach to Fioorplan De-

sign and Optimization, in IEEE Transaction on Computer-Aided Design,

pages 761-769, 1991.

7] T. Chen and M. K. H. Fan, On Convex Formulation of the Fioorplan

Area Minimization Problem, in Proceedings of the 1998 International

Symposium on Physical Design, pages 124-128, 1998.

101

8] N. Metropolis, A. Rosenbluth, M. N. Rosenbluth, A. Teller, and E. Teller，

Equations of State Calculations by Fast Computing Machines, in J. Chem.

Phys 21, pages 1087-1092, 1958.

9] M. Pincus, A Monte Carlo Method for the Approximate Solution of

Certain Types of Constrained Optimization Problems, in Oper. Res. 18,

pages 1225—1228，1970.

10] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by Simulated

Annealing, in Science, volume 220, pages 671-680, 1983.

11] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, Rectangle-

Packing-Based Module Placement, in Proceedings of the 1995 IEEE/ACM

International Conference on Computer-Aided Design, pages 472-479,

1995.

12] Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu, B*-Trees: A New

Representation for Non-Slicing Floorplans, in Proceedings of the 37th

Conference on Design Automation, pages 458-463, 2000.

13] E. F.Y.Young, C. C.N.Chu, and C. Shen, Twin Binary Sequences: A Non-

Redundant Representation for General Non-Slicing Floorplan, in Pro-

ceedings of the 2002 International Symposium on Physical Design, pages

196-201, 2002.

14] C. W. Sham and E. F. Y. Young, Routability Driven Floorplanner with

Buffer Block Planning, in Proceedings of the International Symposium on

Physical Design, pages 50-55, 2002.

15] K. K. C. Wong and E. F. Y. Young, Fast Buffer Planning and Congestion

Optimization in Interconnect-Driven Floorplanning, in Proceedings of the

conference on Asia South Pacific Design Automation Conference, pages

411-416, 2003.

102

16] J. H. Holland, Adaptation in Natural and Artificial Systems, in Ann

Arbor, MI: The University of Michigan Press, 1975.

17] M. Rebaudengo and M. Reorda, Gallo: A Genetic Algorithm for Floorplan

Area Optimization, in IEEE Transaction on Computer-Aided Design,

volume 15，pages 943-951，1996.

18] X. Hong et al., Corner Block List: An Effective and Efficient Topolog-

ical Representation of Non-slicing Floorplan, in Proceedings of the 2000

IEEE/ACM International Conference on Computer-Aided Design, pages

8-12，2000.

19] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani, Module Placement

on BSG-Structure and IC Layout Applications, in Proceedings of the 1996

IEEE/ACM International Conference on Computer-Aided Design, pages

484-491, 1996.

20] R-N. Guo, C.-K. Cheng, and T. Yoshimura, An 0-tree Representation

of Non-slicing Floorplan and Its Applications, in Proceedings of the 36th

ACM/IEEE Conference on Design Automation, pages 268-273, 1999.

21] P. Pan and C. L. Liu, Area Minimization for Floorplans, in IEEE Trans-

action on Computer-Aided Design of Integrated Circuits and Systems, vol-

ume 14，pages 123-132, 1995.

22] F. Y. Young, C. C. N. Chu, W. S. Luk, and Y. C. Wong, Floorplan Area

Minimization Using Lagrangian Relaxation, in Proceedings of the 2000

International Symposium on Physical Design, pages 174-179, 2000.

23] J. H. Y. Law and E. F. Y. Young, Multi-Bend Bus Driven Floorplanning,

in Proceedings of the 2005 International Symposium on Physical Design,

pages 113—120, 2005.

103

24] R. H. Otten, Automatic Fioorplan Design, in Proceedings of the 19th

conference on Design automation, pages 261-267, 1982.

25] D.F.Wong and C.L丄iu, A New Algorithm for Fioorplan Design, in Pro-

ceedings of the 23rd ACM/IEEE conference on Design automation, pages

101-107, 1986.

26] W. Shi, An Optimal Algorithm for Area Minimization of Slicing Floor-

plans, in Proceedings of the 1995 IEEE/ACM International Conference

on Computer-Aided Design, pages 480-484, 1995.

27] H. Onodera, Y. Taniguchi, and K. Tamaru, Branch-and-Bound Placement

for Building Block Layout, in Proceedings of the 28th Conference on

ACM/IEEE Design Automation, pages 433-439，1991.

28] T.-C. Wang and D.F.Wong, An Optimal Algorithm for Fioorplan Area

Optimization, in Proceedings of the 27th ACM/IEEE Conference on De-

sign Automation, pages 180-186, 1990.

29] Y. Pang, C,K. Cheng, and T. Yoshimura, An Enhanced Perturbing Al-

gorithm for Fioorplan Design Using the 0-Tree Representation, in Pro-

ceedings of the 2000 International Symposium on Physical Design, pages

168-173, 2000.

30] B. Yao, H. Chen, C.-K. Cheng, and R. Graham, Revisiting Fioorplan

Representations, in Proceedings of the 2001 International Symposium on

Physical Design, pages 138—143, 2001.

31] K. Sakanushi and Y. Kajitani, The Quarter-State Sequence (Q-sequence)

to Represent the Fioorplan and Applications to Layout Optimization, in

Proceedings of the 2002 IEEE Asia-Pacific Conference on Circuits and

Systems, pages 829-832, 2000.

104

32] J.-M. Lin and Y.-W. Chang, TCG: A Transitive Closure Graph-Based

Representation for Non-Slicing Floorplans, in Proceedings of the 38th

Conference on Design Automation, pages 764-769, 2001.

33] X. Tang and D.F.Wong, FAST-SP: A Fast Algorithm for Block Placement

Based on Sequence Pair, in Proceedings of the 2001 Conference on Asia

South Pacific Design Automation, pages 521-526, 2001.

34] Y. Deng and W. P. Maly, Interconnect Characteristics of 2.5-D System

Integration Scheme, in Proceedings of the 2001 International Symposium

on Physical Design, pages 171-175, 2001.

35] P. H. Shiu, R. Ravichandran, S. Easwar, and S. K. Lim, Multi-Layer

Floorplanning for Reliable System-on-Package, in Proceedings of the 2004

IEEE International Symposium on Circuits and Systems, 2004.

36] J. Cong, J. Wei, and Y. Zhang, A Thermal-Driven Floorplanning Algo-

rithm, in Proceedings of the 2004 International Conference on Computer

Aided Design, 2004.

37] J. Xu, P. N. Guo, and C. K. Cheng, Rectilinear Block Placement Using

Sequence-Pair, in Proceedings of the 1998 International Symposium on

Physical Design, pages 173-178, 1998.

38] Y. Ma et al, Floorplanning with Abutment Constraints and L-Shaped/T-

Shaped Blocks Based on Corner Block List, in Annual ACM IEEE Design

Automation Conference, 2001.

39] E. F.Y.Young, C. C.N.Chu, and M.L.Ho, A Unified Method to Handle

Different Kinds of Placement Constraints in Floorplan Design, in Pro-

ceedings of the 2002 with EDA Technofair Design Automation Conference

Asia and South Pacific, 2002.

105

40] X. Tang and D.F.Wong, Floorplanning with Alignment and Performance

Constraint, in Annual ACM IEEE Design Automation Conference, 2002.

41] X. Tang and M. D.F.Wong, On Handling Arbitrary Rectilinear Shape

Constraint, in Proceedings of the 2004 偏h EDA Technofair Design Au-

tomation Conference Asia and South Pacific, pages 38-41，2004.

42] T.-C. Chen and Y.-W. Chang, Modern Floorplanning Based on Fast

Simulated Annealing, in Proceedings of the 2005 International Symposium

on Physical Design, pages 104-112, 2005.

43] J. Parkhurst, N. Sherwani, S. Maturi, D. Ahrams, and E. Chiprout, SRC

Physical Design Top Ten Problems, in Proceedings of the 1999 Interna-

tional Symposium on Physical Design, pages 55-58, 1999.

106

泛
/

：
：

：
：

：
、

厂
•

綱

m
^

:
.
.
:
:
•

:

?
、

_

：
：

.
議

fi：
》
二

r .

:

"
r了

’
一
碍

〜
’

•
=

-
.

•

〜
，

>
:

•
，

•
:

,
.

.
.

…
.

：

—

/

C U H K L i b r a r i e s

圓 __llllll •
004278941

